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Abstract: To foster a circular economy in line with compost quality assessment, a deep understand-
ing of the fates of nutrients and carbon in the composting process is essential to achieve the co-
benefits of value-added and environmentally friendly objectives. This paper is a review aiming to 
fill in the knowledge gap about the composting process. Firstly, a systematic screening search and 
a descriptive analysis were conducted on composting models involving the fates of Carbon (C), 
Nitrogen (N), Phosphorus (P) and Potassium (K) over the past decade, followed by the development 
of a checklist to define the gap between the existing models and target models. A review of 22 mod-
els in total led to the results that the mainstream models involved the fates of C and N, while only 
a few models involved P and K as target variables. Most of the models described the laboratory-
scale composting process. Mechanism-derived models were relatively complex; however, the ap-
plication of the fractionation of substrates could contribute to reducing the complexity. Alterna-
tively, data-driven models can help us obtain more accurate predictions and involve the fates of 
more nutrients, depending on the data volume. Finally, the perspective of developing composting 
models for the fates of C, N, P, and K was proposed. 
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1. Introduction 
Organic solid waste (OSW), the solid waste containing organic matters (i.e., food 

waste, livestock manure, green waste), has been a critical issue for sustainable develop-
ment due to its continuous increasement in amount and non-recycled treatment [1–3]. Till 
today, most OSW is still disposed of in unsustainable and conventional ways, such as 
landfilling and incineration [4], which result in the emission of greenhouse gases and 
leachate containing heavy metals [5], toxic gases such as sulfur dioxide, dust, heavy metal 
fumes, and incombustible hydrocarbons, and losses of valuable nutrients [4]. Therefore, 
the effective management strategies of OSW, including composting, are attached with 
more importance by relevant stakeholders and policy makers, with the aim of overcoming 
the challenge of environmental protection, promoting the circular economy and, hence, 
achieving sustainable development [6–8].  

Compared with landfilling and incineration, composting is now one of the most pop-
ular technologies to recycle nutrients from organic waste [9], which can significantly 
shorten the processing cycle and more efficiently recover the nutrients from organic waste 
[4,10,11]. In China, about 76% of the poultry and livestock manure collected by intensive 
farming was processed through composting in 2015 [12], which can promote the organic 
fertilizer production industry and increase the circulation of regional nutrients [13]. Even 
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though fruitful results have been achieved in the research on composing, there remains a 
large challenge when microorganisms convert complex substrates into ultimately useful 
products in the composting process, in which some by-products, such as Ammonia (NH3), 
Carbon dioxide (CO2), Methane (CH4), Nitrous oxide (N2O), etc., are produced to burden 
the atmosphere [14,15]. The accumulation of P in surface soil can lead to the transfer of 
Phosphorus (P) to groundwater, which becomes an environmental concern during the 
compost application [16]. During the composting process, the Carbon (C) loss to the at-
mosphere ranges from 30% to 63% [17], and the Nitrogen (N) loss ranges from 19% to 42% 
mainly because of the vigorous NH3 volatilizations, while the Phosphorus (P) loss is less 
than 2% mostly due to the runoff [18,19]. These data may be different due to the origin of 
various raw materials. The loss and dissipation of nutrients may not only lead to potential 
environmental risks, but also reduce the agronomic quality of the composted product [20]. 
Instead, applying more remaining C from composted fertilizer to the soil can reduce 
greenhouse gas emissions and sustainably mitigate climate change through storage or se-
questration strategies [21]. It will also contribute to the efficiency of other fertilizers by 
altering soil properties, so as to bring environmental and agronomic co-benefits [22]. 
Therefore, for composting technology, it is significant to minimize both C and nutrient 
losses for the production of stable products with high quality. 

Generally, the motivation of modeling is to develop mathematical tools to integrate 
the knowledge with the phenomena, determine the direction of experimental design, eval-
uate experimental results, test hypotheses, reveal relationships between variables, predict 
the system development, and design the process and management strategies [23]. Since 
1976, mathematical models of composting technology have appeared in the literature [24]. 
In recent years, many models have been developed to contribute to predicting the distri-
bution of temperature, humidity, solids, oxygen content, and carbon dioxide during the 
composting process [25–31]. However, from an environmental and agronomic point of 
view, the focus should be placed on regional C and nutrients for a better understanding 
of composting technology and assessment of the effectiveness of this sustainable solution 
[32]. Moreover, the methodology for regional assessments, such as life cycle assessment 
and material flow analysis, requires the accuracy of the model and a certain number of 
target variables to be simulated when it is used to simulate and evaluate composting tech-
nologies on a regional scale with high accuracy [33]. According to the research of Lauwers 
et al., the models can be grouped as mechanism-derived models that are established based 
on the biochemical reaction to reveal more mechanisms and data-driven models focusing 
more on the experimental data than the process of intermediate reaction [34]. According 
to the research results from the database of the Web of Science Core Collection, the number 
of papers on the composting process has shown an increase from 74 in 2011 to 114 in 2020. 
Initially, the focus of relevant research was mechanism-derived models [24], while in re-
cent years, data-driven models based on various algorithms have gained more popularity 
[35]. 

Previous articles on the review of composting models usually focused on composting 
kinetics to discuss the process parameters, such as temperature, water content, pH, and 
carbon-to-nitrogen ratio (C/N). For instance, Mason reviewed and extensively analyzed 
composting models proposed in published papers before the end of 2003 [24]. He system-
atically described the establishment and improvement of the models on heat balance and 
mass balance during the composting process. Walling et al. conducted a comprehensive 
review on composting models published in the last 40 years to determine the trend of the 
composting models in terms of the goal and method, focusing on the research develop-
ment of composting kinetics, heat balance, and mass (mainly water and oxygen) balance 
[35]. In recent years, more importance has been given to the simulation of the fates of C, 
N, P and Potassium (K) in the composting model. However, due to the complexity of the 
composting process, only a few papers have been published about the systematic review 
of the modeling of the fates of C and nutrients in the composting process. So, a further 
study with the application of models is necessary to delve into the fates of C, N, P and K 
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during the composting process. Therefore, the following two research questions are to be 
addressed with the aim of attaining a deeper understanding and new knowledge based 
on available studies through the systematic review: 
1. What are the key features of existing composting models that involve the fates of C, 

N, P, and K? (RQ1); 
2. How could the gaps between the existing model and the target model be well defined 

and presented? (RQ2). 
The following parts of this paper are structured as follows: Section 2 presents the 

applied methods to show the process of a systematic review with a descriptive analysis; 
Section 3 includes the results; Section 4 proposes the guiding perspective of composting 
models involving the fates of C, N, P, and K, as well as the discussion on the implications 
of the study, and includes the explanation of how the fate of C, N, P and K in composting 
can be effectively described through modeling. 

2. Methods 
2.1. Literature Screening 

A systematic screening search of relevant literature was conducted based on the core 
collection in the database of Web of Science (https://www.webofknowledge.com), which is con-
sidered to cover papers of high quality and in sufficient quantity for a systematic review 
[36]. The time scope is defined as in the past ten years, from January 2011 to June 2020. 
The following search rule is used in the advanced search: “(TS = compost) AND (TS = 
model) AND ((TS = carbon) OR (TS = nitrogen) OR (TS = phosphorus) OR (TS = potas-
sium))”, where TS is defined as Topics. 

A total of 722 related articles were collected, followed by a precise refining process 
based on the following three criteria, including: (1) the substrates for composting were 
OSW; (2) the target variables of modeling objectives involved at least one of C, N, P, and 
K; (3) the research modeled the process of composting technology. Specifically, the pro-
cess of study selection and data extraction consists of three steps of results retrieval [37,38], 
as shown in Figure 1. First, search for articles based on a prioritized search strategy. Then, 
filter out irrelevant or unsuitable articles according to their titles and abstracts. Third, read 
the filtered articles in full text. Finally, a total of 22 models were selected for further stud-
ies, which are mainly from peer-reviewed journals or conferences such as Bioresource Tech-
nology, Environmental Technology, and Waste Management. 
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Source type: Journal and Conference

Key words:
Compost, Model, Carbon, Nitrogen, 
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Advanced search rule： 
(TS = compost) AND (TS = 
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Studies excluded on full-text review :
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· Only focus on process parameters such 
as temperature, oxygen content, 
moisture content, etc.
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Search
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Data 
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Step 2
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Step 2
Screening 

 
Figure 1. Process of study selection and data extraction. 

2.2. Data Extraction 
In order to further characterize the models, we developed code lists of target varia-

bles related to modeling objects, modeling approach types (mechanism-derived model 
types and data-driven model types), and applied environmental types as indicators to 
conduct data extraction as shown in S1, S2, S3, and S4. From these code lists, we then 
developed tables shown in S5 to describe and summarize the selected models. 

2.3. Checklist for Model Assessment 
A checklist approach was used to define the gap between the reviewed models and 

the target models. In this study, a checklist was designed according to the target models 
and the developing process of models. Given the fact that there is no consensus on the 
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best method of evaluating composting models, a brand-new checklist was finally devel-
oped and applied here to evaluate the models and help define the gaps of target models, 
while this method has been applied in other subject areas, such as ecology and medicine 
[39,40]. The most common questions in the checklists are whether the model clearly de-
scribes the objectives of modeling, whether the approach to modeling is reasonable, and 
whether the sensitivity and accuracy of the model are evaluated [39–41]. Developing a 
model follows six steps: analyze the problem, formulate a model, solve the model, verify 
and interpret the model’s solution, report by the model, and maintain the model [42]. Fur-
thermore, the emphases in the previous research on composting models, such as the com-
posting substrates [43] and the model’s reflection on the mechanism [44], have been com-
bined in developing the checklist to determine three major categories: the start points of 
the model, the process of modeling, and the internal assessment of models. In addition, to 
be more in line with our review scope, the target variables of modeling were set on 
whether the fates of C, N, P and K are all involved as an indicator at the start point of the 
model. Moreover, since the nutrients’ transformation mechanism plays an essential role 
in studying the balance of elements [44], we set the 7th item to explore the part of the data-
driven model of revealing the mechanism in order to better identify the main factors in-
fluencing the composting process. The weight of each category is 5-point. As the modeling 
process of the mechanism-derived models is different from that of the data-driven models, 
in the second category, different questions were applied to evaluate the two types of mod-
els. If we assume the score for the most optimal model is 15, the gap between the model 
in the checklist and the most optimal one is reflected by 15 subtracting the score for the 
model. The specific checklist for the composting model is shown in Table 1. 

Table 1. The checklist for composting models 

Category Items References 

Start points of models 

Were the target variables of modeling clearly described? (1 
point) [39,40] 

Do the research objectives fit our review scope (C, N, P, and 
K)? (3 points) 

(1 point will be calculated for only one of C, N, P, and K in-
volved in modeling; 2 points will be calculated for 2 or 3 of 
C, N, P, and K involved in modeling; 3 points will be calcu-
lated for all of C, N, P, and K involved in modeling. If par-
tially involved in each related element only, such as COଶ or 

C/N, 0.5 points will be calculated.) 

 

Were the substrates of the study clearly described? (1 point) [43,45] 

Process of modeling 

Mechanism-derived models Data-driven models  

Does the selection equation in 
the model clearly list the refer-

ence basis?  
(1 point) 

Does the study identify the 
sources of the data and de-
scribe how the data were 

collected clearly?  
(1 point) 

[39,41,42] 

Were the assumptions about the 
model clearly described? (1 

point) 

Was the modeling approach 
used clearly described? 

Does it include the reasons 
for adopting this approach 

(1 point)  

[39,40,42] 

Was the basis for the selection 
of relevant parameters clearly 

described? (1 point) 

Was the basis for the selec-
tion of variables clearly de-

scribed? (1 point) 
[24,40] 
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How about the complexity of 
the models?  

(1 point, 0.5 points, or 0 will be 
calculated for Not complicated, 
Complicated, and Very compli-

cated, respectively) 

How well does the model 
reflect the composting pro-

cess?  
(1 point, 0.5 points, or 0 will 

be calculated for Well re-
flect, Partly reflect, and Not 

reflect, respectively) 

[42,44] 

Was the platform/software clearly described to solve/simu-
late the model? (1 point)  [42] 

Internal assessment of mod-
els 

Was the sensitivity analysis conducted? (1 point) [40,46] 
Were experiments conducted to compare the models? (1 

point) [39] 

Was the accuracy evaluation method of the models clearly 
described? (1 point) [34,42] 

How about the accuracy of the models? 
(2 points, 1 point, or 0 will be calculated for Very accurate, 
Relatively accurate, and Not accurate or not mentioned, re-

spectively) 

[42] 

Out of the 12 questions, 9 were judged between yes or no, and the other three were 
scored based on the reality of the model. With reference to Wijewardhana et al. and Harris 
et al., we applied multiple reviewers to the checklist to ensure relative objectivity. All in-
dicator questions were rated by three reviewers who have a research background in mod-
eling or composting technology [39,40]. For yes/no questions, a discussion with the author 
would be proposed in case of a different judgment. For questions that needed to be scored 
according to circumstances, an average score was calculated. What is worth mentioning 
is that, in order to make the whole procedure as objective as possible, two rounds of re-
view were conducted on the checklist and results, one internally by the authors and the 
other by an invited expert from the Institute of Soil Science, Chinese Academy of Sciences, 
an the external reviewer. 

3. Results 

3.1. Overview of Reviewed Models 
The substrates, modeling approaches, and target variables of objectives for 22 re-

ferred models are shown in Figure 2. The 22 models were divided into two main catego-
ries based on the modeling approaches: 10 mechanism-derived models and 12 data-driven 
models. In particular, semi-empirical models fell in between [44], which are established 
based on mechanism-derived models but modified with experimental data. Since these 
three semi-empirical models were developed from a process perspective, they were also 
summarized in the mechanism-derived model in this section. The composting substrates 
of these models were mainly related to two categories including municipal solid waste 
(MSW) and agricultural waste. The target variables involved in the simulation, however, 
were mostly C and N, and to a lesser extent, P and K. 
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Figure 2. An overview of 22 reviewed models. 

Notes: The abbreviations are defined as follows: MSW (municipal solid waste), OC (organic carbon), MC (microbial bio-
mass carbon), TC (total carbon), ON (organic nitrogen), C/N (carbon-to-nitrogen ratio), MN (microbial nitrogen), OP (or-
ganic potassium), TP (total phosphorus), TK (total potassium). 

3.2. Composting Substrates and Target Variables 
The specific substrates of these models involved MSW and agricultural waste, as 

shown in Figure 3a. MSW mainly includes sludge (n = 5) and food waste or food pro-
cessing waste (n = 3). In comparison, other types of municipal waste have been studied, 
including cardboard, boxwood leaves, and sawdust (n = 3). In these models, most of the 
simulation of agricultural waste concentrated on livestock manure and crop residues, 
such as pig manure, chicken manure, and cattle manure mixed with straws of rice, wheat, 
and corn (n = 8). In addition, other types of agricultural wastes include vegetable wastes 
and fruit leaves (n = 3). 

To address the challenges posed by the complexity of the substrates for compost 
modeling, fractionation of the substrates was applied to separate the organic matter into 
multiple components. Simply put, the substrates are divided into three categories, 
namely, soluble, insoluble, and inert substrates [44,47–50]. Furthermore, a more detailed 
fractionation method was applied, in which the organic matters were divided into five 
compartments: the easily degradable and soluble; slowly degradable and soluble; hemi-
celluloses, cellulose, and lignin fractions [51,52]. With this method of fractionation, the 
degradation process of the organic matters can be described according to different degra-
dation kinetics, thereby improving the accuracy of the model, and at the same time, 
providing a solution to the modeling of complex substrate composting. 

Since the review scope of this paper was the fates of carbon and nutrients, only the 
target variables related to C, N, P, and K in modeling were included. There were two parts 
in each element: the remaining and the lost. It can be seen from Figure 3b that most models 
involved the simulation of C and N. Models involving carbon mainly included organic 
carbon (OC) (n = 3) and microbial carbon (MC) (n = 1). There was also research on the 
remaining of total carbon (TC) (n = 4). The simulation of carbon loss mainly involved CO2 
(n = 9) and CH4 (n = 2). In terms of nitrogen, Bonifacio et al., St Martin et al. and Vasiliadou 
et al. developed models for organic nitrogen (ON) (n = 3) [33,49,53]. As for total nitrogen 
(TN) loss, Li et al. and Faverial et al. modeled this part as a whole variable (n = 2) [15,54]; 
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others focused on the emissions of N2O (n = 3) and NH3 (n = 3). There were some models 
related to the C/N that are considered to play a key role in the composting process, and 
these models also involve the mass balance of C and N (n= 3). Vasiliadou et al., Faverial 
et al., and Huang et al. have developed models for the mass balance of total phosphorus 
(TP) (n = 3) [15,49,55]. The research by Faverial et al. and Huang et al. also involved the 
model of total potassium (TK) (n = 2) [15,55]. 

In addition, mechanism-derived models mainly simulated the relevant mass balance 
of C and N, and, to a lesser extent, the mass balance of P. In contrast, the data-driven 
models could cover a broader range of simulated objects and even involved K. However, 
there were no mechanism-derived models that included K in the selected research. 

  
(a) (b) 

Figure 3. The specific situation regarding the (a) substrates and (b) the target variables of modeling objectives. 

Notes: The abbreviations are defined as follows: OC (organic carbon); MC (microbial carbon); TC (total carbon); ON (or-
ganic nitrogen); C/N (carbon-to-nitrogen ratio); MN (microbial nitrogen); OP (organic potassium); TP (total phosphorus); 
TK (total potassium). 

3.3. Modeling Approaches 
3.3.1. Mechanism-Derived Models 

The mechanism-derived models are generally based on mass balance, energy bal-
ance, and kinetics [56]. Composting kinetics describes methods of controlling the rate of 
waste degradation through environmental factors, such as temperature, oxygen utiliza-
tion, and moisture. So far, various kinetics models for biomass degradation through com-
posting have been developed based on the physical and biochemical characteristics of 
composting materials [57]. A summary of 10 mechanism-derived models and modeling 
objectives is shown in Table 2. 

  

3

3

5

3

8

0 2 4 6 8 10

Others

Food (processing)
waste

Sludge

Others

Livestock manure and
crop residus

M
un

ici
pa

l s
ol

id
 w

as
te

Ag
ric

ul
tu

ra
l w

as
te

3
1

4
9

2
2

3
3

1
1
1

5
3
3

4
1

3
1

2
1

0 2 4 6 8 10

OC
MC

TC remaining
CO2
CH4

TC LOSS
C/N
ON
MN

NH4+-N
NO3- -N

TN remaining
N2O
NH3

TN loss
OP

TP remaining
TP loss

TK remaining
TK loss



Processes 2021, 9, 473 9 of 19 
 

 

Table 2. Summary of 10 mechanism-derived models and modeling objectives. 

No. References 
Mechanism-Derived 

Model Type Involved Related Modeling Objectives 

1 Zhang et al. 2012 [51] 
Monod kinetics model 

First-order kinetics model 
Mass balance model 

CO2 corresponding to mineralization 
(% of initial total organic carbon) 

2 Oudart et al. 2012 [47] COଶ emission rate 

3 Lashermes et al. 2013 [52] OC and CO2 corresponding to mineralization 
(% of initial total OC) 

4 Villaseñor et al. 2012 [50] First-order kinetics model C degradation 
(% of DM) 

5 Vasiliadou et al. 2015 [49] 

Monod kinetics model 
First-order kinetics model 

Mass balance model 
Heat (energy) balance 

model 

Insoluble organic matter mass, insoluble N and 
P mass, and CO2 emission volume 

6 Petric and Mustafić 2015 [56] 

Monod kinetic model 
Mass balance model 

Heat (energy) balance 
model 

CO2 mass 

7 Ge et al.2016 [48] 

First-order kinetics model 
Michaelis−Menten kinetics 

model 
Energy balance model 
Mass balance model 

CH4 emission rate 

8 Kabbashi 2011 [58] Semi-empirical model 
Multi-stage model 

The remaining of TC and TN 
(% of DM) 

9 Oudart et al. 2015 [44] 
Semi-empirical model 
Process-based model 

Production yield of CO2, N2O and NH3  

10 Bonifacio et al. 2017 [33,59] 
OC, MC, ON, MN, NHସା, NOଷି 

(% of DM), 
and emission rates of COଶ, NଶO and NHଷ  

OC (organic carbon); TC (total carbon); TN (total nitrogen); MC (microbial carbon); ON (organic nitrogen); MN (mi-
crobial nitrogen); DM (dry matter). 

The common kinetics model is the first-order kinetics model (n = 6) related to the 
degradation of volatile solids or the utilization of oxygen. Hence, it has a close connection 
with the fate of C. The first-order kinetics model is based on temperature, oxygen, mois-
ture, biodegradable volatile solids (BVS), and free space as parameters that affect the rate 
of degradation [60,61]. 

Another widely used kinetics model is the Monod kinetics model (n = 5), which was 
developed from the mechanical or deductive point of view by integrating the basic prin-
ciples of physics, chemistry, and microbiology involved in the composting process 
[56,62,63]. 

The derivation of each kinetics model focuses on their mathematical formulas, which 
allows them to explain certain processes in composting. In the first-order kinetics model, 
the substrate concentration is used as the primary force determining the reaction rate, 
while the Monod kinetics model involves microbial activity, which makes the model more 
realistic. 

Semi-empirical models are based on the mechanism with test data to modify and 
determine their model parameters. This approach is different from other mechanism-de-
rived models, which requires a comprehensive understanding of the process. Unlike data-
driven models that rely on large amounts of data, it is developed based on internal pro-
cesses or stages. Oudart et al. simulated the interaction of nitrogen and carbon during 
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animal manure composting based on the main processes governing carbon and nitrogen 
transformations [44]. Then, models were analyzed and simulated according to the exper-
imental data. Bonifacio et al. developed a process-based model for simulating cattle ma-
nure compost windrows [33,64]. In their research, the fate of C and N through processes 
affected by compost windrows was established. Combined with a large amount of empir-
ical data, the parameters were determined to study the mass balance of C and N. 

In order to describe more variables, more equations and parameters are required, 
leading to the complexity of models. In mechanistically derived models, the studies by 
Bonifacio et al. and Oudart et al. involved more related modeling objectives [33,44]. The 
former included 10 equations and 52 parameters, while the latter included more, with 26 
equations and nearly 90 parameters. In addition to using mathematical models to simulate 
microbial growth, nitrification, denitrification and other biochemical process reactions, 
some physical processes were also described. For example, Bonifacio et al. incorporated 
the leaching and runoff of NOଷି, as well as ammonia volatilization, into the model [33]. 
Oudart et al. also considered ammonia volatilization [44]. 

3.3.2. Data-Driven Models 
Data-driven models are usually accompanied by experimental and empirical data 

collection to ensure the effective prediction of fundamental parameters [34], thereby es-
tablishing a reliable relationship between the model and the prediction of essential pa-
rameters or variables. A summary of 12 data-driven models and simulation objects is 
shown in Table 3. 

Table 3. The summary of 12 data-driven models and simulation objects. 

No. References Modeling Type Input Variables 
Target Variables Related to 

Modeling Objects 

1 Sun et al. 2011 [65] 
Genetic algorithm aided 
by the stepwise cluster 

analysis method 

NHସା − N concentration, 
moisture content, ash content, 
mean temperature, and meso-

philic bacteria biomass 

C/N 

2 Huang et al. 2011 [55] Linear regression analy-
sis 

pH, EC, and DM content  The remaining TN, TP, and TK 
(% of DM) 

3 Bayram et al. 2011 
[66] 

ANN model 
MLR model 

Food and yard percentage, 
ash and scoria percentage, 
moisture content, fixed car-

bon content, the total propor-
tion of organic matter, high, 

calorific value, and pH 

C/N 

4 
Hosseinzadeh et al. 

2020 [67] 

pH, EC, C/N, NHସା/NOଷି, 
water-soluble carbon, dehy-
drogenase enzyme, and total 

phosphorus 

The remaining TN and TP 
(% of DM) 

5 Boniecki et al. 2012 
[59] ANN model 

Time, temperature, pH, EC, 
DM concentration, C/N, NHସା − N concentration 

NHଷ emissions 
(% of air released from bioreac-

tor chamber) 

6 Díaz et al. 2012 [68] 
An adaptive network-
based fuzzy inference 

system  

Aeration rate, moisture con-
tent, particle size, and time COଶ emission rate 

7 
St Martin et al. 2014 

[53] 
Critical exponential 

function 

Composting formula, time 
and composting formula in-

teracting through time 

TOC and TKN 
(% of DM) 
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Rectangular hyperbola 
function  

(Double) Fourier func-
tion 

MLR model 

8 
Faverial et al. 2016 

[15] Bayesian network model 
Total C, N, lignin, P and K 
contents, pH, and loss of 

mass 

The remaining, and loss of, TN, 
TP, and TK 
(% of DM) 

9 Mancebo and Het-
tiaratchi 2015 [69] 

Regression model 

Air-filled porosity, moisture 
content, and dissolved OC 

content 
CHସ emission rate 

10 Li et al. 2017 [54] 
Sucrose-adding ratio, adding 
time, sucrose concentration The loss TN ration  

11 Varma et al. 2017 [70] RBF neural network 
model 

Moisture content, pH, EC, 
TOC, TKN, soluble biochemi-
cal oxygen demand, NHସା −N concentration, available 

phosphorous, C/N, total 
phosphorous, oxygen uptake 

rate, Na, K, Ca 

COଶ emission rate 

12 Chen et al. 2019 [71] 
Backpropagation neural 

network model 
Linear regression model 

Moisture content, C/N, aera-
tion rate, and superphosphate 

content 
Proportion of NଶO on TN 

ANN (artificial neural network); BP (backpropagation); RBF (radial basis functional); MLR (multiple linear regression); 
EC (electrical conductivity); DM (dry matter); C/N (carbon-to-nitrogen ratio); TN (total nitrogen); TP (total phosphorus); 
TK (total potassium); TOC (total organic carbon); TKN (total Kjeldahl nitrogen). 

Artificial neural network (ANN) is most widely used in data-driven models (n=6), 
which is designed to simulate the biological nervous system’s response to real-world tasks 
[72]. In the reviewed articles, different types of neural networks have been studied, in-
cluding multilayer perceptron (MLP) [59,67], backpropagation (BP) [71], and radial basis 
functional (RBF) [70]. BP is a systematic approach to training MLP. Bayram et al. (2011) 
used the MLP trained with the BP algorithm to develop models for simulating C/N of 
MSW composting [66]. 

Linear regression analysis of data is a monitoring technique used to model target 
values based on independent predictors [72]. The composting process can be modeled 
based on one variable (single regression) model or multiple variables (multiple linear re-
gression (MLR)) model. St Martin et al. used different function models to simulate differ-
ent parameters of the composting process, leading to the recognition that the composting 
temperature and OC are best described by the critical exponential function and the rec-
tangular hyperbolic function, respectively [53]. ON, C/N, and pH are best described by 
double Fourier functions, while electrical conductivity (EC) is best described via Fourier 
functions. Huang et al. discussed the efficiency and feasibility of nutrient elements in 
chicken manure during composting with physical and chemical properties, such as pH, 
EC and DM [55]. It can be concluded that DM is a better predictor constructed as a single 
linear regression of nutrients, while DM and pH are more notable for MLR. Since MLR 
also involves multiple variables, it is usually compared with the ANN model in articles (n 
= 3). However, in terms of accuracy, the ANN model performed better in all three articles. 
Other models, such as Bayesian network models [15] and Genetic algorithms [65], are all 
used in data-driven models. 

The selection of input is an important step in developing the data-driven model. As 
can be seen in Table 3, pH is the most commonly used input variable (n = 7), which has a 
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great influence on the decay, odor emission, nutrient conversion, and loss rate in the com-
posting process [15,59]. Others, such as moisture content (n = 6), EC (n = 5), C/N (n = 4), 
and temperature (n = 3), are also commonly used as input variables. 

3.4. Application Scales 
Overall, as can be seen from Table 4, most of the mathematical models are still in the 

scope of the laboratory (n = 18). Bonifacio et al. and Oudart et al. developed semi-empirical 
models for the farm scale since the simulation and data collection were based on a farm 
over several years [33,44,64]. Huang et al. modeled based on data from composting plants 
in the perspective of a factory [55]. In addition, Vasiliadou et al. conducted a modeling 
study in the scale of the olive plant from the industrial plant scale [49]. According to the 
modeling approaches, both mechanism-derived and data-driven models could be studied 
at different scales. The research on the lab scale is more concerned with the composting 
reaction process itself through describing the target variables in detail. In contrast, re-
search from the industrial plant scale and farm scale tends to account for more indicators. 

Table 4. The numbers of reviewed models according to applied scales. 

Applied Scales 
Number of Reviewed Models 

Mechanism-Derived Models Data-Driven Models 
Lab scale 7 11 

Industrial plant scale  1 1 
Farm scale 2 0 

3.5. Sensitivity Analysis and Validation 
Sensitivity analysis and model validation are the main approaches to evaluating 

models [42]. Since the mechanism-derived models have more parameters, sensitivity anal-
ysis on the model is often conducted to assess the uncertainty of model parameters (n = 
6). It was noted in these studies that the maximum growth rate coefficient [49,51,56] and 
mortality constant have a more considerable influence on the composting process param-
eters [51,52]. For the data-driven model, in addition to the conventional sensitivity analy-
sis (n = 7), there is the adopting analysis of variance (ANOVA), which can also be used to 
achieve the purpose of sensitivity analysis (n = 3) in terms of selected input variables. For 
instance, the ANOVA of St Martin et al. indicated that composting formula, time and com-
posting formula interacting through time had a significant impact on the variables such 
as temperature, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N, pH, and 
EC [53]. Li et al. showed that the effect of addition ratio and addition time on nitrogen loss 
was statically significant at the 95% confidential level through ANOVA[54]. 

After obtaining a model, to verify the accuracy of the model, the determination coef-
ficient (R2) (n = 12) and root-mean-square error (RMSE) (n = 6) are the most commonly 
used methods to evaluate the quality of the fitting accuracy under the assumption that the 
parameters of the model are normally distributed. The calculation formulas are as follows 
[47]: 

RMSE = 100𝐸 ∙ ඩ෍(𝑆௜ − 𝐸௜)ଶ/𝑛௡
௜ୀଵ  (1)

Rଶ = ∑ (𝑆௜ − 𝐸)௡ଵ∑ (𝐸௜ − 𝐸)௡ଵ  (2)

where 𝐸, 𝑆௜, 𝐸௜ and 𝑛 are referred to as the averages of experimental values, simulated 
values, experimental values, and the number of samples, respectively. 

Others, such as Nash–Sutcliffe efficiency (NSE), a normalized statistic used to deter-
mine the relative size of the residual variance compared to the variation of the measured 
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data, is also used to evaluate a model’s quality [51,52,70]. St Martin et al. adopted a parallel 
curve analysis to carry out variance accumulation analysis of the effect of compost type 
and time on physical and chemical parameter models [53]. 

3.6. Gaps with the Target Models Reflected by the Checklist 
With the checklist, the scores of gaps ranged from 1.3 to 7.7, which can be seen in 

Figure 4. The model’s scores were only obtained in the checklist that we created to show 
the gaps between the target models. The checklist could efficiently describe the fates of C, 
N, P, and K during composting. It was not aimed to completely distinguish the advantages 
and disadvantages of models, but largely focused on checking whether these models fit 
the scope and subject of the review, and how well they fitted the procedures modeled. It 
can be seen from Figure 4 that the research of Faverial et al. was more in line with the 
scope of the review, while the overall modeling was also in line with the specification, 
having an excellent performance in accuracy [15]. The paper of Chen et al., a conference 
paper with limited space, also attracted our attention, in which their scores were affected 
as some modeling procedures may not be described in details [71]. The starting points of 
the model involve the target variables of modeling objectives; however, there are many 
models that do not fully include C, N, P, and K. When the starting points of the model are 
excluded from checklist results, there are more models that also perform very well. 

 
Figure 4. Results of the checklist for defining gaps. 

4. Discussion 
The purpose of developing models for the fates of C, N, P, and K is to improve pro-

cess operations and, more importantly, deepen our understanding of the process, so as to 
improve the utilization of nutrients and reduce greenhouse gas emissions to achieve co-
benefits for building the regional circular economy [73]. Therefore, the mechanics and the 
accuracy of the models are significant for the realization of the above purpose. Mecha-
nism-derived models are ideal models for revealing mechanisms; however, a lot of effort 
is required due to the complexity of the models. Moreover, the composting process is a 
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biochemical reaction process that involves physical phenomena, such as volatilization and 
leaching [74], which are often ignored by most of the mechanism-derived models, result-
ing in compromised accuracy. With the study of microbial communities, more and more 
composition information about a data-rich microbial community will be gained to signif-
icantly improve the performance of the model. For example, further knowledge of micro-
bial growth coefficients and mortality coefficients, etc., contributed a lot to the description 
of microbial activity in the composting process [34]. Additionally, in order to be able to 
simulate more nutrients, such as P and K, a focus on this part of the research would ad-
vance the development of mechanism-derived models of composting that involve more 
fates of nutrients. As Oudart et al. mentioned, black-box models such as data-driven mod-
els, due to the ignorance of complex reaction processes, often cause difficulty in explaining 
the differences between the results of simulation and observation [44]. The selection of 
input variables, sensitivity and uncertainty analysis is precisely the part that can react to 
the mechanism of the composting process. So, for data-driven models, this study will ad-
vance their role in revealing mechanisms. The issue of data reliability, however, has al-
ways been one of the top priorities for data-driven models. The application of advanced 
monitoring technology in the composting process will provide the model with certain in-
termediate process parameters, thereby reducing the possible errors. 

At present, most of the models are at lab scale, which tend to focus on the fate of the 
C and nutrients in the process during composting. For the models on industrial plant or 
farm scales, more factors will be incorporated, such as N run off and leaching on the sur-
face [33], as the data come from a wider perspective. In order to describe the modeling of 
composting in agricultural production activities on a regional scale, more indicators 
should be included, such as greenhouse gas emissions, nutrient losses, and proxies for 
ecosystem service that result from material exchanges among stakeholders [75]. 

Meanwhile, the development of open science will also promote the progress of the 
model. It is worth mentioning that among the 22 selected models, the model of Bonifacio 
et al. is based on the Integrated Farm System Model (IFSM) [33], which is a public inte-
grated farm research tool for many physical and biological processes [76]. In addition, 
huge amounts of empirical data are included to provide support for the development of 
the model. In addition, it can be found that the researchers working on these models grad-
ually began to pay attention to the significance of open science for scientific progress. For 
instance, Faverial et al. obtained the highest score in the checklist and their paper can be 
openly accessed [15]. Another treatment technology, anaerobic digestion (AD), a unified 
and open model of Anaerobic Digestion Model No. 1 (ADM1) was proposed as early as 
in 2002, which undoubtedly has played a positive role in the development of the AD mod-
els. Furthermore, some databases such as PHYLLIS 2 database are gradually being estab-
lished, which provide a large amount of reliable, high-quality, and shared biomass pro-
cessing data as strong support for the development of data-driven models. 

Regarding this research, some limitations are also worth our attention: First, the re-
search on latest models involving the fates of C, N, P, and K was conducted in the time 
scope of past decade, and only English-written papers from Web of Science were selected, 
which means less involved models were selected. Second, as we focused more on C and 
nutrients balance, the overview of composting modeling in our research is not as compre-
hensive as that in some other review papers regarding modeling of the composting pro-
cess [35]. In fact, as was mentioned by Mason and Walling et al., heat balance, moisture 
content balance, and oxygen content balance have an essential impact on composting. Fur-
thermore, there is inevitable subjectivity when the checklist is used to assess models 
[24,35]. These models and scientific articles are peer-reviewed and have a high level of 
creativity. However, data extraction through listing codes and the checklist evaluation 
method we applied are based on our review scope and more in line with the modeling 
procedure. Therefore, a degree of subjectivity may occur in our research of the checklist, 
mainly due to the professional background of the reviewers. More reviewers or multiple 
rounds of reviews would help to reduce the subjectivity. More importantly, our study 
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intends to provide guidance for future model development in the field of modeling on the 
fates of C, N, P, and K during composting process. 

5. Conclusion 
In this study, a systematic review was performed on the composting models involv-

ing C, N, P, and K. After reviewing the existing literature, 22 composting models were 
selected with the process of study selection. The application of a code-listing data extrac-
tion method could provide a framework for a better summary and cross-model compari-
sons. In addition, the characteristics and features of these 22 models were presented after 
data extraction. A checklist for composting models was created to define the gap between 
existing models and target models. The aim was to find the best fitting model for the com-
posting of various types of substrates. According to the modeling approaches, 22 models 
were divided into two categories: the mechanism-derived models and the data-driven 
models. The results of the checklist showed that the score of the mechanism-driven mod-
els was slightly higher than that of the data-driven models. The main reason is that the 
description of the selection basis of variables is ignored in some data-driven models, re-
sulting in a deficiency in highlighting the mechanism of the composting process. 

The mechanism-derived model does not involve the simulation of the mass balance 
of K. Through the sensitivity analysis in these studies, it is found that maximum growth 
rate coefficients and mortality constants are the main factors for the kinetics parameters. 
Although the mechanism-derived model is complicated, adopting the method of sub-
strates fractionation has reduced the complexity and improved the accuracy. At the same 
time, proposing a model framework such as ADM1 is also an approach to reducing the 
complexity of the model. With the development of artificial intelligence algorithms, data-
driven models can cover more target variables involving more nutrients. However, how 
to reveal the mechanism of the composting process based on the selection of input varia-
bles and the establishment of a reliable database still needs some further research. 

From the perspective of the model supporting the circular economy assessment at a 
regional scale, the focus should be on more indicators and high accuracy of models. On a 
larger scale, more indicators will be included in the modeling to allow for a more compre-
hensive assessment of circularity. At the same time, it is a scale-up process that requires a 
high level of accuracy for small scale models in order to ensure the accuracy of the regional 
model. These set requirements for the future development of composting models. 

Abbreviations 

AD Anaerobic digestion 
ADM1 Anaerobic Digestion Model No. 1 
ANN Artificial neural network 
ANOVA Adopting analysis of variance 
BP Backpropagation 
BVS Biodegradable volatile solids 
C Carbon CHସ Methane COଶ Carbon dioxide 
C/N Carbon-to-nitrogen ratio 
DM Dry matter 
EC Electrical conductivity 
IFSM Integrated Farm System Model 
K Potassium 
MC Microbial carbon 
MLP Multilayer perceptron 
MLR Multiple linear regression 
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MN Microbial nitrogen 
MSW Municipal solid waste 
N Nitrogen NHଷ Ammonia NଶO Nitrous oxide 
NSE Nash–Sutcliffe efficiency 
OC Organic carbon 
ON Organic nitrogen 
P Phosphorus Rଶ Determination coefficient 
RBF Radial basis functional 
RMSE Root-mean-square error 
TC Total carbon 
TK Total potassium 
TKN Total Kjeldahl nitrogen 
TN Total nitrogen 
TOC Total organic carbon 
TP Total phosphorus 
VOC Volatile organic compounds 
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