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Abstract: Al-Mg-based composite is used in producing a variety of components. To improve the
machinability of the composite, MoS2 is added. For characterizing the machining of the Al-Mg-based
composite, different wt.% (2, 4, and 6) of MoS2 are added as reinforcement. Wire Electrical Discharge
Machining (WEDM) process is performed to analyze the kerf width and surface roughness. Due
to the complex nature of the WEDM process, the necessity for its optimization through the use of
innovative methods is well-proven in the process of research. Evolutionary algorithms, specifically
genetic algorithm based on NSGA-II and Multiple Objective Particle Swarm Optimization (MOPSO),
are used for optimizing kerf width and surface roughness. For assessing the impact of current,
pulse on time, and gap voltage on kerf width and surface roughness, an analysis of the selected
WEDM process parameters is performed. MOPSO takes lesser iterations as compared to NSGA-II
in giving nearly the same optimal fronts for achieving low kerf width and surface roughness. The
10–12 A of current, 50–57 µs of pulse on time, and 30–33 V of gap voltage are used for the WEDM
process based on the Pareto-optimal solutions and better performance is achieved on the samples. In
addition, the supplementary DOE method is applied to determine the relationship between factors
affecting a process and the response. The analysis revealed that current has played a major part
in the governance of kerf width and surface roughness over pulse on time and gap voltage for
Al-Mg-MoS2 composite.

Keywords: wire-EDM; NSGA-II; MOPSO; pulse on time; gap voltage

1. Introduction

There is a great demand for machine components with better strength to weight
ratio, improved resistance shown towards corrosion, and wear and tear in the automotive
sector. For example, Al-Mg composite is the solution to problems related to low corrosion
resistance and high strength of tank car bodies [1]. Moreover, aluminum metal matrix
composite is considered as a possible substitute for traditional materials in the shipping and
aerospace industries, electronic products, and industrial machinery [2]. Al-Mg composite
plays a major role because of its machinability properties, such as good specific strengths,
specific stiffness, specific moduli, and fewer coefficients of linear expansion properties [3,4].
To improve the machinability of Al-Mg composite, MoS2 is added to the composite by
the ball-milling process. Al-Mg-MoS2 composite thus reduces wear loss, protects the
components from corrosion, and also improves the machining properties by making it an
excellent composite material to be used in the automotive sector. To analyze the properties
of Al-Mg-MoS2 composite, different wt.% of MoS2 are added. Wire Electric Discharge
Machining (WEDM) is used for machining the composite to have less tool wear and also
to get low residual stresses. Moreover, WEDM is used for high cutting speed and high

Processes 2021, 9, 469. https://doi.org/10.3390/pr9030469 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-7194-4963
https://orcid.org/0000-0003-4925-0054
https://doi.org/10.3390/pr9030469
https://doi.org/10.3390/pr9030469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9030469
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9030469?type=check_update&version=2


Processes 2021, 9, 469 2 of 12

precision works for enhancing productivity and accuracy to manufacture press tools, molds,
prototype parts, and complicated shapes, etc. [5]. WEDM does not require high cutting
forces for the removal of material with complex profiles. Hence, it is used for the machining
of Al-Mg-MoS2 composite with varied wt.% of MoS2.

2. Related Works

Fard et al. [6] reported the impact of current, pulse off and pulse on time, gap voltage,
and tension of wire on surface texture in Al–SiC composite. Pulse on time and discharge
current have an effect on both cutting velocity and surface roughness of Al–SiC compos-
ite. Mahanta et al. [7] studied B4C and fly ash reinforced Al 7075 alloy for sustainable
production. It was found that current and pulse-on-time affect all three measures: Power
consumption, material removal rate, and surface finish. Ahsan Ali Khan et al. [8] examined
the influence of peak current, wire-speed, and wire diameter on the WEDM process in mild
steel. An increase in pulse peak current and a reduction in wire speed have contributed
towards deprived surface integrity on the workpiece. Ming et al. [9] found that while opti-
mizing the WEDM parameters in YG15, surface quality decreases with the rise of pulse-on
time. Zhang et al. [10] confirmed that the surface quality of the workpiece decreases with
the increase in pulse-on time while machining SKD11 steel.

Sonawane et al. [11] used Taguchi’s L27 orthogonal arrangement to study how pulse-
off time interval, pulse-on period, discharge voltage, discharge current, wire feed speed,
and cable tension influenced kerf width and surface roughness while machining an intricate
profile on Ti-6Al-4V. Scanning Electron Microscopy investigation of the parts machined has
proved that an increase in pulse on time and discharge current results in the deterioration
of the surface due to the presence of deep craters, globules of debris, voids, and micro
cracks. Himanshu Payal et al. [12] attempted an amalgam methodology of Taguchi, GRA,
and PCA to optimize the machining parameters involved in the die-sinking EDM process.

Deb et al. [13] introduced a new algorithm NSGA-II, an improved version of NSGA to
overcome computational complexity, non-elitism approach. NSGA-II was used to optimize
the WEDM process in Ti 6-2-4-2 alloy [14], AISI 5160 steel [15], high-speed steel [16], AISI
D3 tool steel [17,18]. Somashekhar et al. [19] calculated the significant parameters like
material removal rate, overcut, and surface roughness in Micro-WEDM of aluminum by
simulated annealing (SA) optimization. A maximum overcut value of around 69 µ was
observed at discharge energy of 2,645 µJ.

Coello and Lechuga [20] introduced a novel method, MOPSO (Multiple Objective
Particle Swarm Optimization) for finding the Pareto-optimal fronts. Kumar et al. [21]
disclosed an improvement of surface roughness from 2.689 to 2.448 µm by using MOPSO
optimization for Inconel 825. Saffaran et al. [22] used MOPSO and simulated annealing
to optimize the EDM process of AISI2312 and found the results were within ±7% error.
MOPSO converged quicker than simulated annealing. However, the optimized values
were approximately the same. Similarly, MOPSO algorithm was used for the optimization
of WEDM process of stainless steel of SS304 grade [23] and Inconel 718 [24]. An inves-
tigation on the tribological performance of Al-4%Mg added with MoS2 was offered by
Kumar et al. [25]. They found out, e.g., that tested samples are exceptionally plowed from
the softer pin surface to the hard asperity of the counter disc material, and hence, wear
loss is amplified. The influence of WEDM parameters for surface finish and cutting speed
for the Ni-based super alloy through multi-parametric optimization was investigated by
Kumar and Dhanabalan [26], where the WEDM process parameters for Inconel-600 has
been optimized by Grey relational method coupled with Taguchi method. According to
Vundavilli et al. [27], WEDM is a complex process, and thus it is difficult to determine a
unique set of optimal combinations of cutting parameters. In this nexus, a multi-parameter
complexity analysis can be employed to demonstrate how variables are mutually inter-
correlated [28,29].

In this work, non-linear regression is applied for modelling the WEDM process
parameters. L27 orthogonal array Box–Behnken design matrix is used to conduct the
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WEDM process. For the optimization of the WEDM process, the metaheuristics algorithms,
NSGA-II and MOPSO, are employed. The metaheuristics were selected since they are
suitable for a wide range of problems and allow identifying the best decision options [30].
The results derived from these algorithms are compared, and confirmation tests have been
conducted for validation.

3. Design of Real-Time Experiments

Wire Electrical Discharge Machining is an unconventional method of machining,
where a traveling wire chips off the material in a controlled manner. Both the workpiece
and wire are submerged in a dielectric liquid while machining. The cutting debris of
the process is flushed away along with the dielectric. WEDM is mainly used for its
high precision cutting of electrically conductive materials. WEDM does not damage or
compromise the finished product. Hence, there is no need for additional thermal treatments
after machining. To have minimal residual stress on the workpiece material, WEDM is
chosen over other non-conventional machining techniques. Figure 1 shows the procedural
steps involved in real-time experiments.
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Figure 1. An approach to machining process optimization.

The experiments are carried out using the Excetek V650 manufacturer machine. The
electrode material used in the experiments is a copper-zinc (Cu-Zn) wire with a diameter of
0.25 mm. Deionized water is used as the dielectric medium to machine the workpieces like
pure Al, Al-4%Mg alloy, Al-4%Mg-2%MoS2, Al-4%Mg-4%MoS2, and Al-4%Mg-6%MoS2
composite. All five workpieces were prepared through the powder metallurgy route.
Table 1 shows the various control factors involved in the WEDM process.

Table 1. Wire Electrical Discharge Machining (WEDM) parameters and its levels.

Control Factors Unit Symbol Range Level 1 Level 2 Level 3

Current A I 9–15 9 12 15

Pulse on Time µs Ton 50–100 50 75 100

Gap Voltage V V 30–40 30 35 40

An L27 orthogonal arrangement table is employed for the WEDM process on all
five samples during the intricate manufacturing process. This approach uses a design of
orthogonal arrays by combining the complete parameter space with only a small number
of experiments. This tool is quite frequently applied for optimizing the experimental
conditions for maximizing/minimizing any target output. Through this method, it is often
possible to greatly improve process performance and reduce waste. In every process, a
precise description and distinction of the processes are required for quality control and
process improvement [31].

The relation between the process parameters: Current, pulse on time, and gap voltage,
and their impact on the quality measures as well as kerf width and surface roughness is
obtained using regression. The regression equation is of the form [7]:

Y = b0 + Sum{I = 1..3}bi × xi + Sum{I = 1..3}bii × xiˆ2 + Sum{I = 1..2}(Sum{j = i+1..3}bij × xi × xj), (1)
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where b0 is constant and all bi’s, bii’s, and bij’s are regression coefficients. Y holds linear,
squared and product terms of xi. The regression coefficients are obtained using Python
programming. The regression equations for all the five samples are listed below:

Sample 1: Pure Aluminum

y(1) = 0.33529 + 0.0046824 × x(1) − 0.00080307 × x(2) − 0.0037791 × x(3) + 1.9713 × 10−05 × x(1) × x(2) + 2.7815 × 10−05 × x(1) × x(3)

+ 1.0314 × 10−05 × x(2) × x(3) − 0.00022776 × x(1)ˆ2 − 4.0445 × 10−06 × x(2)ˆ2 + 4.8094 × 10−05 × (3)ˆ2
(2)

y(2) = 8.186 + 0.013343 × x(1) + 0.00024252 × x(2) − 0.2565 × x(3) − 0.00027087 × x(1) × x(2) + 0.00039991 × x(1) × x(3)

+ 0.00045118 × x(2) × x(3) + 0.0010694 × x(1)ˆ2 1.9824 × 10−05 × x(2)ˆ2 + 0.003215 × x(3)ˆ2;
(3)

Sample 2: Al-4%Mg

y(1) = 0.31336 − 0.011655 × x(1) − 0.00050156 × x(2) + 0.0025289 × x(3) + 1.8476 × 10−05 × x(1) × x(2) + 4.1994 × 10−05 × x(1) × x(3)

+ 7.496 × 10−06 × x(2) × x(3) + 0.00042499 × x(1)ˆ2 + 2.6703 × 10−06 × x(2)ˆ2 − 4.5244 × 10−05 × x(3)ˆ2;
(4)

y(2) = 3.531 + 0.06966 × x(1) − 0.003446 × x(2) + 0.038242 × x(3) + 0.00023891 × x(1) × x(2) − 0.00018854 × x(1) × x(3)

− 8.7165×10−06 × x(2) × x(3) − 0.0028926 × x(1)ˆ2 + 1.7735 × 10−05 × x(2)ˆ2 − 0.00043418 × x(3)ˆ2;
(5)

Sample 3: Al-4%Mg-2%MoS2

y(1) = 0.33946 − 0.0096184 × x(1) − 0.00095392 × x(2) + 0.001257 × x(3) + 5.6949 × 10−05 × x(1) × x(2) + 0.00010234 × x(1) × x(3)

+ 4.2289 × 10−06 × x(2) × x(3) + 0.00013301 × x(1)ˆ2 + 3.0439 × 10−06 × x(2)ˆ2 − 3.2943 × 10−05 × x(3)ˆ2;
(6)

y(2) = 0.44212 + 0.051265 × x(1) + 0.02432 × x(2) + 0.17335 × x(3) + 0.00031832 × x(1) × x(2) − 2.5547 ×10−05 × x(1) × x(3)

− 0.00020219 × x(2) × x(3) − 0.0021158 × x(1)ˆ2 − 4.8464 × 10−05 × x(2)ˆ2 − 0.001933 × x(3)ˆ2;
(7)

Sample 4: Al-4%Mg-4%MoS2

y(1) = 0.22955 − 0.0074107 × x(1) + 0.00070705 × x(2) + 0.0034004 × x(3) + 1.3495×10−05 × x(1). × x(2) + 3.169 × 10−05 × x(1) × x(3)

− 7.3971 × 10−06 × x(2) × x(3) + 0.00025402 × x(1)ˆ2 − 2.2262 × 10−06 × x(2)ˆ2 − 3.7712 × 10−05 × x(3)ˆ2;
(8)

y(2) = 5.6231 − 0.049497 × x(1) − 0.00077891 × x(2) + 0.026841 × x(3) + 0.00012845 × x(1) × x(2) + 0.00018508 × x(1) × x(3)

− 7.0711 × 10−06 × x(2) × x(3) + 0.0014015 × x(1)ˆ2 + 8.7106 × 10−06 × x(2)ˆ2 − 0.000 × 36523 × x(3)ˆ2;
(9)

Sample 5: Al-4%Mg-6%MoS2

y(1) = 0.2625 − 0.0067164 × x(1) + 0.0001755 × x(2) + 0.0024636 × x(3) + 2.1966 × 10−05 × x(1). × x(2) + 1.0433 × 10−06 × x(1) × x(3)

+ 1.4677 × 10−06 × x(2) × x(3) + 0.00024191 × x(1)ˆ2 − 1.6296 × 10−06 × x(2)ˆ2 − 2.9184 × 10−05 × x(3)ˆ2;
(10)

y(2) = 3.4833 − 0.045099 × x(1) + 0.0079706 × x(2) + 0.15972 × x(3) − 0.00060826 × x(1) × x(2) − 0.00043229 × x(1) × x(3)

− 1.3229 × 10−05 × x(2) × x(3) + 0.0043558 × x(1)ˆ2 + 1.5639 × 10−05 × x(2)ˆ2 − 0.0021558 × x(3)ˆ2;
(11)

where, y(1) represents kerf width, y(2) represents surface roughness, x(1) defines current,
x(2) defines pulse on time, and x(3) defines gap voltage.

The regressed values obtained using the above equations for surface roughness and
kerf width have a mean R2 value around 1 for all the workpieces.

4. Multi-Objective Optimization of the Process Parameters

When the manufacturer wants to design a product with minimum fabrication cost,
then there arises a need to find the optimal solutions to avoid wastage of material, labor
cost, time, and money. Hence, WEDM process parameters have to be optimized. No single
combination of process parameters will offer the least kerf width besides the least surface
roughness at the same time. To sort out this issue, NSGA-II and MOPSO are utilized for
obtaining Pareto-optimal solutions.
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4.1. Non-Dominated Sorting Generic Algorithm-II (NSGA-II)

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is an improved version of
NSGA, which includes elitist and crowding tactics. Elitism is proved to be a pre-requisite
for the convergence to true Pareto front in Multi-Objective Optimization. Tournament
selection is used to diversify among non-dominated solutions. For each iteration in NSGA-
II, non-dominated solutions that are identified in the population are correlated with an
external set of non-dominated solutions found in the entire search process. Thus, NSGA-II
gives an improved feast of results and an improved convergence nearer to a true Pareto-
optimal front.

The procedure for NSGA-II is given below:
Step 1: Initialize the population (N = 20) based on the bounding values of the input parameters;
Step 2: Calculate fitness functions (kerf width and surface roughness) for every individual;
Step 3: Group the initialized population in terms of the non-dominated sorting;
Step 4: Select the individuals based on crowding distance and ranking and then

perform cross-over operation with the factor of 0.95 and mutation operations with the
factor of 0.01 to generate offspring;

Step 5: Combine the population of parents and offspring and find the individuals for
the next generation based on the ranking and crowding distance;

Step 6: If maximum generation (500) is reached, then stop, otherwise go to Step 4.
The flowchart for NSGA-II is shown in Figure 2.Processes 2021, 9, 469 6 of 14 
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4.2. Multi-Objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization (PSO) is enthused from the choreography of bird flocks.
Multi-Objective Particle Swarm Optimization (MOPSO) is particularly suitable for multi-
objective optimization, typically due to its high speed of convergence, like that of single-
objective optimization.

MOPSO Algorithm used is given below:
Step 1: Initialize the population (collection of particles) by randomly selecting an

n-dimensional array with array elements to have uniform probability within the bounding
limits. Initialize the position and speed of each particle;

Step 2: Evaluate the fitness functions (kerf width and surface roughness) for each particle;
Step 3: Search for non-dominated solutions and store them in an external repository;
Step 4: For each particle, set the current position of the particle as the local best and

form a non-dominated local set. Individuals with better crowding distance are preferred to
maintain diversity;

Step 5: Update the particle velocity and position and evaluate the fitness functions. Ex-
pand and update the non-dominated global and local solutions by removing the dominated
solutions from the set. Find the local best and global best for each particle;

Step 6: If stopping criteria are not met, update the weight and move to Step 4 or
else stop.

The flowchart for MOPSO is shown in Figure 3.
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5. Results and Discussion

For the WEDM process of Al-Mg-MoS2 composite, the L27 orthogonal array Box–
Behnken design matrix is used. Kerf width and surface roughness are measured for each
WEDM process. These measures are tabulated in Table 2.

Table 2. Experimental Results of WEDM process.

Sl.
No Current Pulse on

Time
Gap

Voltage

Kerf Width (mm) Surface Roughness (µm)

Pure Al Al-4%
Mg

Al-4%
Mg-2%
MoS2

Al-4%
Mg-4%
MoS2

Al-4%
Mg-6%
MoS2

Pure Al Al-4%
Mg

Al-4%
Mg-2%
MoS2

Al-4%
Mg-4%
MoS2

Al-4%
Mg-6%
MoS2

1. 9 50 30 0.2913 0.2904 0.2895 0.2830 0.2873 4.0109 4.5758 5.1802 5.8281 6.3337

2. 9 50 35 0.2937 0.2928 0.2919 0.2907 0.2897 4.1157 4.6641 5.3466 5.8872 6.3603

3. 9 50 40 0.2947 0.2894 0.2928 0.2916 0.2906 4.2179 4.6396 5.4287 5.8758 6.3630

4. 9 75 30 0.2971 0.2962 0.2953 0.2940 0.2930 4.3282 4.5931 5.5450 5.9053 6.3777

5. 9 75 35 0.2916 0.2979 0.2995 0.2957 0.2947 4.4347 4.6526 5.5975 5.8981 6.4271

6. 9 75 40 0.3029 0.3013 0.2920 0.2979 0.2969 4.5559 4.6299 5.6466 5.8869 6.4371

7. 9 100 30 0.3043 0.3044 0.2959 0.2993 0.2922 4.6398 4.6895 5.8082 5.9198 6.4274

8. 9 100 35 0.3095 0.3095 0.2986 0.3003 0.3002 4.7404 4.6799 5.8777 5.9266 6.9193

9. 9 100 40 0.3128 0.3103 0.3029 0.3013 0.3010 4.8539 4.7314 6.0268 5.9522 6.4440

10. 12 50 30 0.2941 0.2903 0.2894 0.2818 0.2820 4.9263 4.6399 5.1205 5.8176 6.3426

11. 12 50 35 0.2955 0.2929 0.2892 0.2907 0.2898 4.1279 4.6929 5.2394 5.8400 6.3869

12. 12 50 40 0.2984 0.2934 0.2925 0.2913 0.2903 4.2280 4.7097 5.4383 5.8536 6.3607

13. 12 75 30 0.3029 0.2959 0.2950 0.2937 0.2927 4.5278 4.6910 5.5588 5.8699 6.4295

14. 12 75 35 0.3046 0.2975 0.2966 0.2954 0.2944 4.4211 4.7357 5.7998 5.8895 6.3919

15. 12 75 40 0.3091 0.2962 0.2999 0.2974 0.2964 4.3009 4.7488 5.9013 5.9023 6.4703

16. 12 100 30 0.3129 0.3062 0.3061 0.2994 0.2983 4.6191 4.7142 5.9438 5.9148 6.4377

17. 12 100 35 0.3194 0.3093 0.3073 0.3012 0.3002 4.7209 4.6909 6.0787 5.9287 6.3987

18. 12 100 40 0.3245 0.3138 0.3103 0.3042 0.3029 4.8214 4.7792 6.1816 5.9568 6.4832

19. 15 50 30 0.2974 0.2930 0.2899 0.2871 0.2877 4.1372 4.6291 5.2603 5.8353 6.3520

20. 15 50 35 0.2995 0.2963 0.2927 0.2915 0.2905 4.2205 4.6710 5.4328 5.8526 6.4692

21. 15 50 40 0.3019 0.2987 0.2960 0.2947 0.2937 4.5224 4.6575 5.5069 5.8652 6.4229

22. 15 75 30 0.3039 0.3039 0.2946 0.2982 0.2972 4.7247 4.6917 5.6391 5.8593 6.4864

23. 15 75 35 0.3073 0.3093 0.3029 0.3017 0.2997 4.6261 4.7068 5.7382 5.9093 6.4514

24. 15 75 40 0.3147 0.3103 0.3063 0.3029 0.3010 4.9062 4.7299 5.9032 5.8956 6.4065

25. 15 100 30 0.3176 0.3155 0.3129 0.3030 0.3029 4.7549 4.7673 5.9317 5.9379 6.4694

26. 15 100 35 0.3208 0.3197 0.3196 0.3071 0.3053 4.8617 4.8173 6.3271 5.9717 6.4554

27. 15 100 40 0.3251 0.3210 0.3206 0.3109 0.3093 4.9091 4.8093 5.9849 5.9665 6.5058

Kerf width and surface roughness must be as low as possible in machining. Because
of the conflicting nature of the performance measures, NSGA-II and MOPSO algorithms
are used to find the optimal machining parameters for each workpiece. These algorithms
are implemented in python. Initially, the population size of 20 is considered for all the
samples in NSGA-II and MOPSO.

For pure Al sample, the following Figure 4 shows the Pareto optimal solutions found
by NSGA-II and MOPSO.

Pareto optimal solutions obtained show that kerf width and surface roughness of
pure Al is low for a current of 9 A and gap on a voltage of 33 V. With these conditions,
when pulse on time is increased, kerf width increases and surface roughness decreases. For
Al-4%Mg sample, Figure 5a,b shows the Pareto optimal solutions obtained by NSGA-II
and MOPSO.
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For Al-4%Mg sample, kerf width and surface roughness are low when 9–10 A current,
50 µs of pulse on time, and 30–32 V of gap voltage according to the Pareto-optimal solutions.
For Al-4%Mg-2%MoS2 sample, Figure 6a,b shows the Pareto optimal solutions obtained by
NSGA-II and MOPSO algorithms.
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For Al-4%Mg-2%MoS2, Pareto-optimal solutions are obtained at 10 A of peak current,
50 µs of pulse on time, and 30–33 V of gap voltage. For Al-4%Mg-4%MoS2 sample,
Figure 7a,b shows the Pareto optimal solutions obtained by NSGA-II an MOPSO algorithms.
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For the Al-4%Mg-4%MoS2 sample, Pareto-optimal solutions are obtained at 11–12 A
of peak current, 50 µs of pulse on time, and 30 V of gap voltage.

For Al-4%Mg-6%MoS2 sample, Figure 8a,b shows the Pareto optimal solutions ob-
tained by NSGA-II and MOPSO algorithms. For the Al-4%Mg-6%MoS2 sample, NSGA-II
provides Pareto-optimal solutions for 10–11 A current, a pulse on time of 50 µs, and a gap
voltage of 30 V. MOPSO provides Pareto-optimal solutions for 10 A current, pulse on time
of 57 µs, and gap voltage of 31 V.
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By employing the optimization algorithms, the following optimal machining parame-
ters were identified, as shown in Tables 3 and 4.

From Tables 3 and 4, it is evident that samples other than pure Al have low kerf width
and surface roughness, for about 9–12 A current, 50 µs pulse on time, and gap voltage
of 30–33 V. For pure Al, optimal solutions have been obtained for 9 A current, pulse on
time around 75 µs, and gap voltage of 33 V. Hence, we infer that upon adding Mg and
MoS2, the pulse on time can be reduced to obtain proper finishing of the samples. Because,
as the pulse on time and current increases, a large volume of heat energy is released
during machining, which results in deep craters, debris, voids, and micro-cracks, thereby
deteriorating the surface finish.

Both NSGA-II and MOPSO have provided almost the same range of machining
parameters for low values of kerf width and surface roughness for the different composite
materials. MOPSO takes lesser than 10 iterations to converge towards the Pareto-optimal
solutions. However, NSGA-II takes 200–400 iterations to converge to the Pareto-optimal
solutions. Hence, for this optimization of the WEDM process, MOPSO is much more
efficient than NSGA-II because of its lesser computation time.
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Table 3. Machining parameters range obtained using NSGA-II.

Sample Kerf Width Surface Roughness Current Pulse on Time Gap Voltage

Pure Al 0.251 ± 0.014 4.364 ± 0.160 9 72.970 ± 15.742 33.069 ± 1.545

Al-4%Mg 0.2895 4.611 ± 0.012 9.793 ± 0.666 50 30

Al-4%Mg-2%MoS2 0.289 ± 0.001 5.159 ± 0.027 10.746 ± 1.400 50 30

Al-4%Mg-4%MoS2 0.283 5.822 ± 0.001 12.413 ± 0.640 50 30

Al-4%Mg-6%MoS2 0.284 6.306 ± 0.002 10.914 ± 0.441 50 30

Table 4. Machining parameters range obtained using MOPSO.

Sample Kerf Width Surface Roughness Current Pulse on Time Gap Voltage

Pure Al 0.252 ± 0.002 4.374 ± 0.028 9.106 ± 0.007 73.454 ± 2.603 33.244 ± 0.410

Al-4%Mg 0.291 4.626 ± 0.001 9.552 ± 0.155 50.232 ± 0.069 32.016 ± 0.182

Al-4%Mg-2%MoS2 0.291 5.300 ± 0.004 10.463 ± 0.079 50.497 ± 0.134 33.314 ± 0.031

Al-4%Mg-4%MoS2 0.284 5.827 11.901 ± 0.045 50.126 ± 0.019 30.563 ± 0.001

Al-4%Mg-6%MoS2 0.288 6.362 10.573 57.644 ± 0.001 31.732

6. Validation of Predicted Results

To verify the results obtained from MOPSO and NSGA-II, the confirmatory experi-
ments are performed on the MoS2-reinforced Al-4%Mg samples, and the outcomes of the
same are represented and compared in Table 5.

Table 5. Comparison of Predicted and Confirmatory test results.

Factors/Samples
Predicted Value Confirmatory Test Value

Al-4%Mg-
2%MoS2

Al-4%Mg-
4%MoS2

Al-4%Mg-
6%MoS2

Al-4%Mg-
2%MoS2

Al-4%Mg-
4%MoS2

Al-4%Mg-
6%MoS2

Current (A) 10 12 10 10 12 10

Pulse on time (µs) 50 50 57 50 50 57

Gap voltage (V) 33 30 31 33 30 31

Kerf width (mm) 0.291 0.284 0.288 0.289 0.284 0.289

Surface roughness (µm) 5.289 5.827 6.362 5.294 5.825 6.359

Table 5 shows the confirmatory test results performed after optimization of the WEDM
parameters. It is found that confirmatory test values are almost nearer to the predicted
values as found through optimization using MOPSO. Thus, the optimized values can be
used to obtain the desired kerf width and surface roughness for the WEDM process.

7. Conclusions

Multi-objective optimization of process parameters of WEDM in the machining of
Al-Mg-MoS2 composite with varied wt. % of MoS2 using the Box–Behnken designs is
performed in this article. The kerf width and surface roughness were studied as a function
of process parameters. Both NSGA-II and MOPSO are used for finding the keys to the
declared problems. From the obtained results of the experiments, and analysis of WEDM
process parameters it can be noted that:

• MOPSO takes lesser than 10 iterations to optimize the WEDM for each sample when
compared to NSGA-II, which takes more than 200 iterations for each sample. Moreover,
MOPSO takes lesser computing time when compared with NSGA-II to produce the
optimal values.
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• For Al-Mg-MoS2 composite, current around 10–12 A, pulse on time of about 50–57 µs,
and gap voltage of 30–33 V can produce the required optimal solutions for kerf width
and surface roughness.

• Confirmatory tests also prove the validity of the solutions obtained through the
optimization algorithms.

Hence, the developed model can be effectively used to predict kerf width and surface
roughness for Al-Mg-MoS2 composite. As regards further research, the presented design of
experiments by utilizing NSGA-II and MOPSO may be in the future extended to optimize,
e.g., tribological properties.

As Al-Mg composites possess both the properties of resistance to corrosion and wear,
most of the automation industries are interested in developing and replacing the existing
Al-based composites with Al-Mg composites in automotive parts. Therefore, more parts
will be designated to produce, leading to mass sensing of automated production lines with
a very high data stream. Thus, the Industry 4.0 based production lines and the processes
carried out on them react badly to forcing parameter settings, significantly deviating from
stable process settings [32]. DOE methodology, when implemented in Industry 4.0, will
need to face challenges, such as large data streams, large data sets, large data dimensions,
non-Gaussian data distributions, and non-linear relationships between controlled factors.
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