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Abstract: The segregation process of a single large intruder in a vibrated bed of small particles has
been widely studied, but most previous studies focused on spherical intruders. In this work, the
discrete element method was used to study the effects of vibration conditions and intruder shape on
the dimensionless ascending velocity (va) of the intruder. The intruder was in a prolate shape with
aspect ratio varied but its equivalent diameter fixed. Three equivalent diameters, namely volume-
equivalent diameter, surface-area-equivalent diameter, and Sauter diameter, were used. It was found
that va increases and then decreases with the rise of the dimensionless vibration amplitude (Ad) and
the dimensionless vibration frequency (fd), and va increases with the decrease of the sphericity of
the intruder (Φ). Moreover, the porosity variation in the vibrated bed and the granular temperature
were analyzed, which can be linked to the change of va. It was further found that va can be uniformly
correlated to Ad· f 0.5

d , while the critical change of the response of va to Ad and fd occurs at Γ = 4.83,
where Γ is the vibration intensity. Based on these findings, a piecewise equation was proposed to
predict va as a function of Ad, fd, and Φ.

Keywords: non-spherical particle; ascending velocity; segregation; discrete element method

1. Introduction

The segregation of granular mixtures under vibration is often encountered in various
industrial processes [1–3]. A good understanding of the segregation mechanism can help
the optimization and control of the related processes. The research of such a phenomenon
often starts with the segregation of a single large intruder in an otherwise homogeneous
granular bed of small particles [4–6]. Under vibration, the large intruder normally ascends
in the granular bed. Based on the statistical analysis on the interaction between the intruder
and the surrounding small particles, several kinds of segregation mechanisms have been
proposed for such an ascending phenomenon, including void filling, global convection,
etc. [7–11]. In addition, in different experimental and numerical studies, the ascending
velocity, which is the average velocity of the intruder in its rising process from the bottom to
the top of the vibrated bed, was often modeled against different controlling variables [12].

The literature indicates the dependence of the ascending velocity on the following
variables: particle properties including the density ratio (ρr) [13–15] and the size ratio
(dr) [16,17]; particle bed features including the aspect ratio [18], friction [19], and filling
height [20]; and vibration conditions including vibration amplitude [21], frequency [12],
and intensity [10,22]. For particle properties, a general observation is that the increase of
the size ratio and density ratio both increase the ascending velocity [17,20,22]. The shape
of the container would affect the granular flow direction [18,23] and control the particle
convection [24]. In addition, with or without friction between particles and the wall, the
rise time of the intruder is rather different [25]. For vibration conditions, the increase of
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vibration amplitude (A) will increase the ascending velocity of the intruder [21], while the
increase of vibration frequency (f ) generally decreases the ascending velocity [26].

The previous studies, however, were focused on spherical intruders. The non-spherical
intruder has not been studied much yet. The intruder shape was once reported to have an
insignificant effect on the segregation of granular mixtures [26]. However, more recent stud-
ies show that the shape of particles is important to their motions in particle mixtures when
subject to shearing vibrations [27,28]. As listed in Table 1, there are different mathematical
models for the segregation rate of spherical intruders proposed in the literature. However,
similar models for non-spherical intruders have not been seen to the best of our knowledge.
Besides, in most models the vibration intensity Γ (Γ = 4π2Af 2/g) was assumed as a key
controlling variable, and under the same Γ, the influence of A and f on segregation rate
was shown to be monotonic. However, the non-monotonic response of segregation rate to
A and f was observed in some recent studies [29,30], which indicates that this segregation
should be studied in a wider range of vibration conditions and intruder shapes.

Table 1. List of models for the ascending of a spherical intruder in a vibrated bed of small particles.

Reference Methodology Investigated Parameters Mathematical Model

Liffman et al. [22] Experiment 2D
A = 15 mm
f = 4–5 Hz
Γ = 0.6–11

νa = Γad

√
ρd ap g

2
√

6βρb [cy2+b|y|+a]

Jiang et al. [31] Experiment 3D f = 60 Hz
Γ = 2.5–11 Tseg = K Hbed f 3

g2(Γ2−1)2 + ϕ

Peng et al. [32] Experiment 3D f = 60 Hz
Γ = 1.5–11 Tseg = a

bΓ+c

Liu et al. [33] Experiment 3D f = 60 Hz
Γ = 2–11 Tseg =

4π2 Hbed f 2

k·ρratio ·g·(Γ−Γc)

Tseg—total segregation time; va—ascend velocity of intruder; Γc—minimum vibration intensity; Γ—vibration intensity; ad—radius of disk;
ρb—bulk density of bed; β—granular friction coefficient; ap—average radius of bulk particles; ρd—the mass density of the disk; K, k, ϕ, c, a,
b—correction coefficient; Hbed—bed height; f —vibration frequency; ρratio—density ratio of the large particle to the small particle.

In this paper, the segregation process of a single non-spherical intruder is studied by
the discrete element method (DEM). The effects of vibration amplitude and frequency on
the defined dimensionless ascending velocity are investigated. Based on the simulation
results, an equation is proposed to uniformly link the ascending velocity to the vibration
conditions and the shape of the intruder, and particularly the non-monotonic change of the
ascending velocity with the vibration conditions is also uniformly considered. These results
provide new insights into particle segregation under vibration and new dimensionless
models to predict the segregation speed, which could be useful for modeling powder
mixing and segregation.

2. Materials and Methods
2.1. Model Description

The discrete element method (DEM) has been proven as an effective technology to
study granular mixtures at a particle scale [34–37]. Considering computational efficiency
and successful experience according to previous literature, the typical Hertz–Mindlin
particle contact model is adopted in this work. Based on Newton′s laws of motion, the
translational motion and rotational motion of particle i are, respectively, determined by

mi
dvi
dt

= mig +
ni

∑
j=1

(
Fn,ij + Ft,ij

)
(1)

Ii
dωi
dt

=
ni

∑
j=1

(
Tt,ij + Tr,ij

)
(2)
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where vi, ωi, and Ii are the translational and angular velocities, and the moment of inertia
of particle i, respectively; g is the gravitational acceleration and t is time; mi is mass of
particle I; ni is the total number of particles in contact with particle i; Fn,ij is the normal
contact force, including the normal-contact force and the normal-damping force. Ft,ij is the
tangential contact force, including the tangential contact and the tangential damping force.
The commercial software EDEM 2018 (DEM Solutions Ltd., Edinburgh, United Kingdom)
was used to conduct the DEM simulations, and the details of the force models can be found
in the manual [38].

2.2. Simulation Conditions and Validation

A 3D cuboid “container” without physical walls was adopted in this research, as
shown in Figure 1a. The bed size was 20 × 20 × 60 mm and periodic boundary conditions
(PBCs) were applied along the X-axis and Y-axis directions, which can prevent granular
convection induced by the side wall during the vibration [24,39] and its effect on the
ascending of the intruder [29]. The initial undisturbed bed consisted of one single non-
spherical large intruder in an otherwise homogeneous spherical granular bed with the total
bed height Hbed ≈ 30·ds, where ds is the diameter of small particles. The parameters used in
the simulations are given in Table 2. Continuous and sinusoidal vibrations with wide range
of frequency f and amplitude A were applied to the bottom wall along the Z-axis. The
non-spherical intruder was in a prolate shape and was initially placed with its long axis
aligning with the Z-axis direction. According to our observations, the orientation of the
intruder had slight changes during the ascending process, and the average angle between
its long axis and the vibration direction was less than 15 degrees, as shown in Figure 1b.

It should be noted that there are different ways to consider the size of a non-spherical
particle. In the present research, the equivalent diameter of a non-spherical intruder
was calculated in three ways; namely, volume equivalent diameter (dVol), area equivalent
diameter (dArea), and Sauter diameter (dSau), which are respectively given by

dVol =
3
√

6V/π (3)

dArea =
√

S/π (4)

dSau= dVol
3/dArea

2 (5)

where V and S are, respectively, the volume and surface of the non-spherical intruder. The
axial sizes of the non-spherical intruders of different sphericities are listed in Table 3.
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Table 2. List of parameters used in the simulations.

Parameters Value of Parameter

Poisson’s ratio of particles 0.25

Poisson’s ratio of container base 0.29
Young’s modulus of particles (Pa) 2.01 × 105

Young’s modulus of container base (Pa) 2.55 × 1010

Coefficient of restitution: particle–particle 0.5
Coefficient of static friction: particle–particle 0.5

Coefficient of rolling friction: particle–particle 0.01
Coefficient of restitution: particle–base 0.5

Coefficient of static friction: particle–base 0.5
Coefficient of rolling friction: particle–base 0.01

Intruder equivalent diameter, dl (mm) 6.0
Intruder shape Ellipsoid, spherical

Intruder aspect ratio, a/b varies in [1.0, 5.75]
Diameter of small particles, ds (mm) 2

Diameter ratio, dr = dl/ds 3.0
Particle density: Large (Intruder), ρl (kg/m3) 2500

Particle density: Small, ρs (kg/m3) 2500
Density ratio, ρl/ρs 1.0

Number of large particles (intruder) 1
Number of small particles 15,200

Vibration amplitude A (mm) 1–5 (0.5·ds–2.5·ds)
Vibration frequency f (Hz) 20–80

Table 3. Axial sizes of non-spherical intruders used in simulation.

Equivalent Ways
(dl = 6 mm)

Axial Size
(mm)

Sphericity, Φ

0.97 0.93 0.89 0.85 0.81 0.78 0.73 0.70

dVol
a 3.93 4.76 5.53 6.24 6.91 7.56 8.77 9.63
b 2.62 2.38 2.21 2.08 1.97 1.89 1.75 1.67

dArea
a 3.88 4.59 5.20 5.74 6.23 6.68 7.50 8.06
b 2.59 2.30 2.08 1.91 1.78 1.67 1.50 1.40

dSau
a 4.04 5.13 6.24 7.38 8.52 9.67 11.98 13.72
b 2.69 2.57 2.50 2.46 2.43 2.42 2.40 2.39

The simulation time step was set to 9.06 × 10−5 s, which is 20% of the Rayleigh time
step. The simulation time for each case was over 25 s. To validate the model, the simulated
results were compared to the literature. The simulated ascending process is shown in
Figure 2. It can be seen that the height–time curve simulated by our model is in good
agreement with that of the physical experiments [11], as shown in Figure 2a. In addition,
as shown in Figure 2b, the simulated total ascending time as a function of the vibration
amplitude is in good agreement with the experiment results [11]. The good agreement can
validate the DEM model.
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2.3. Evaluation Indexes

In this research, the ascending velocity of the intruder, va, is defined as the average
vertical displacement of the intruder per oscillation cycle [29]:

va =
∆H/ds

T
(6)

where ∆H is the vertical distance traveled by the intruder in the ascending process, mm; ds
is the size of small particles; T is the number of oscillation cycles in the ascending process.
It is worth noting that va obtained in Equation (6) is an average value but is reasonable to
represent the ascending behavior. As shown in Figure 3, with different vibration ampli-
tudes, the ascending height is generally in linear dependence to the vibration time, and the
fluctuations are observed only when the height of the intruder is close to the top of the bed.
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3. Results and Discussion
3.1. Effects of Vibration Amplitude on va

As shown in Figure 4a,b, va of a non-spherical intruder increased first and then
decreased with dimensionless vibration amplitude Ad (Ad = A/ds), and the critical change
occurred at Ad = 1.5. In addition, va of the non-spherical intruder of aspect ratio a/b = 3.0
was larger than that of a/b = 2.0. Additionally, regardless of which equivalent diameter
was used, the non-spherical intruder’s ascending velocity was much higher than that of a
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spherical intruder (a/b = 1.0), and the velocity difference increased with the increase of the
aspect ratio, as shown in Figure 4c.
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From Figure 3, it can be seen that in the ascending process of the intruder, the intruder
actually experiences an alternating rise and fall. This is understandable as in each vibration
cycle, the bed is lifted in the first half cycle, then the bottom wall moves downwards and so
the particles also fall. Therefore, the filling of small particles in the void region underneath
the big intruder is acknowledged as one of the major mechanisms for the overall ascending
of the intruder [21], and the change of va with Ad is probably also related to this mechanism.
The increase of va with increasing Ad has also been observed for a spherical intruder by
Ahmad et al. [26] and by Rosato et al. [21]. As explained by Rosato et al., such an increase
can be attributed to the fact that larger vibration amplitude will cause more voids which
promote the filling of small particles beneath the large intruder, and thus accelerate the
ascending. This explanation is also applicable to the ascending of a non-spherical intruder.

However, when A > 1.5·ds, a further increase of vibration amplitude led to a decrease
of va. Such critical change can be linked with the structural changes in the vibrated bed.
For spherical particles, Hsiao et al. [30] found that the segregation rate of a group of large
intruders in a vibrated bed of small particles undergoes a nonmonotonic change with
increasing vibration intensity. The primary cause for the critical change is that a too high
vibration intensity can create very large voids, which let larger intruders fall down rather
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than ascend. When vibration intensity is too high, the bed stops further expanding and the
voids are so large that the probabilities for the larger intruder and smaller particles to fall
down are equal, thus segregation no longer occurs. In addition, a later study [29] on the
segregation of a single spherical intruder further proved that the ascending velocity has a
strong dependence on the porosity variation of the particle bed.

Therefore, the non-monotonic response caused by Ad for a non-spherical intruder can
be linked to the variations of bed porosity (ε), which was investigated here. The porosity
was calculated by dividing the particle bed into several horizontal layers with vertical
thickness of 3.5·ds, and the porosity of each layer was calculated. The porosity variation
(∆ε) is defined as the difference between the maximum and minimum of the bed porosity
within one oscillation period, and the value is averaged over ten full-oscillation cycles.
Figure 5 shows the porosity variation for different layers. Generally, ∆ε increased first and
then decreased with the continuous increase of Ad, and the critical changes occurred when
Ad = 1.5. The comparable change of va to that of ∆ε hints that increasing the vibration
amplitude would cause a larger ∆ε, which gives small particles more opportunities to fill
voids beneath the intruder, thus accelerating the ascending. However, when vibration is too
extensive, ∆ε reduces and the void filling becomes less efficient, and hence the ascending
slows down.
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Similarly, the increase of va with the increase of the aspect ratio of the intruder can also
be linked to the change of porosity variation at different bed heights. Figure 6a shows that
∆ε varied significantly with bed height, and higher layers showed smaller ∆ε. Therefore,
when the centers of intruders with different aspect ratios are at the same height, as shown
in Figure 6b, the elongated shape of the non-spherical intruder enables its lower-end to
reach a deeper bed, where the void filling is more efficient. The more efficient void filling
brings the non-spherical intruder of a larger aspect ratio a faster rise.

3.2. Effects of Vibration Frequency on va

Similar to the effect of vibration amplitude, Figure 7 shows that, for both the spherical
and the non-spherical intruders, the ascending velocity also increased and then decreased
with increasing dimensionless vibration frequency. Comparably, non-spherical intruders
have much higher va than that of the spherical intruder. Here the dimensionless frequency
is defined as fd = f ·(2·ds/g)0.5.
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Figure 7. The influence of fd on va for the spherical intruder (dl = 6 mm) and the non-spherical
intruder (dSau = 6 mm, a/b = 3.0).

Such a non-monotonic dependence was also observed in our previous research on
binary mixtures, when A is fixed, and f varies [40]. The previous explanations of the
influence of f were based on its impact on granular convection intensity [12,40]. However,
as shown in Figure 8, there is no granular convection in the present research.

Similar to the above discussion on the effect of vibration amplitude, the non-monotonic
change of va may also be related to the change of bed porosity. As shown in Figure 9a, ∆ε of
bed layer at a height of 20·ds increased first and then decreased with fd, which is consistent
with the trend of va. The change in ∆ε has a significant influence on filling interstices for
small particles, and an increase or decrease of ∆ε would accordingly promote or suppress
the ascending velocity. Besides, it is worth noting that the small particles can change from a
disordered structure to an ordered structure under certain vibration conditions, which has
been reported in our recent studies [41,42]. This can also impose an important influence on
the intruder’s ascending behavior and deserves further studies.
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where Tgx, Tgy, and Tgz represent the granular temperature in x, y, and z directions, respec-
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average velocities, respectively. Figure 9b shows that the variation of Tg with the change 
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In addition, according to [43], the influence of fd could also be linked to the change in
the external energy input efficiency. The “granular temperature” that has been widely used
to describe the kinetics of particle flow is linked with the random motion of particles [44,45].
Here the granular temperature (Tg) in the squared vicinity of the intruder was measured,
and Tg is given by [46]

Tg =
Tgx + Tgy + Tgz

3
(7)

Tgx =
∑

Ni
i=1(vix−vx)

2

Ni

Tgy =
∑

Ni
i=1(viy−vy)

2

Ni

Tgz =
∑

Ni
i=1(viz−vz)

2

Ni

 (8)

where Tgx, Tgy, and Tgz represent the granular temperature in x, y, and z directions,
respectively; i refers to the ith particle and Ni is the total number of particles of interest; vix,
viy, and viz denote the triaxial velocities of the ith particle and vx, vx, and vx are ensemble-
average velocities, respectively. Figure 9b shows that the variation of Tg with the change of
fd is similar to that of va, suggesting a correlation between Tg and va. This indicates that an
increase of fd will increase the random motion of small particles, which enhances the filling
process and thereupon promotes the percolation.
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To the best of our knowledge, for the ascending of a single intruder in a vibrated bed,
the non-monotonic dependence of the ascending velocity to vibration frequency has never
been reported before. This may be due to the limited range of vibration frequency used
in previous studies. For example, in the research by Khan Ahmad [26], only the cases
of f > 50 Hz were investigated. Additionally, frequencies ranging in 4.07–4.99 Hz were
investigated by Liffman et al. [22], who only found a positive effect of f on va when A is
fixed. On the other hand, some studies only presented the effect of vibration frequency on
va with fixed Γ [26,31], which simply showed a negative correlation of f on va.

These comparisons show that the effects of A and f on va are more complicated than
previously reported, therefore they can be considered in a wider range and their individual
influence can be more carefully examined. Thus, a phase diagram of va as a function
of Ad and fd for our simulated results is presented as Figure 10, where the intruder is
of dSau = 6 mm and a/b= 3.0. Note that the cases with extreme large Ad and fd were not
included because the bed oscillates too violently to determine the position of the intruder.
It can be seen that the phase diagram shows the symmetrical distribution of va with Ad
and fd. Generally, a larger va can be obtained when Ad ∈ [1.25, 2.0] and fd < 0.6. The phase
diagram also shows qualitative agreement with the variation trend of va against fd in [31],
which reported that ascending velocity decreases with vibration frequency when Γ = 3.83
and Γ = 3.75.
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vibration conditions used in [31].

3.3. Modeling of Ascending Velocity

It is shown in the above discussion that the inflection points in non-monotonic re-
sponse curves (va-A and va-f ) may vary with A and f simultaneously. Thus, before model-
ing, the critical change condition should be identified first. Several series of data with either
A or f varied are selected to be analyzed together, which are listed in Table 4. Previously,
Fernando et al. [29] found that for a spherical intruder, the critical change of va can be
linked with the vibration velocity amplitude Vb, given by Vb = 2πAf (ds·g)−0.5. In particular,
va increases with Vb when Vb < 2.8, but decreases with Vb when Vb > 2.8. Similarly, the
maximum va occurs when Vb = 2.75 for some of our series of results, as shown in Figure 11a.
However, this is not always the case for other simulation results, as shown in Figure 11a.
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Instead, it is found that Γ = 4.83 can more uniformly identify the critical change of va for
our simulation results, as shown in Figure 11b.

Table 4. Parameters used in cases in Figure 11.

No. fd Ad dl/ds a/b

1 0.40 [0.5, 2.25] 3 (dSau) 2.0
2 0.40 [0.5, 2.25] 3 (dArea) 2.0
3 0.40 [0.5, 3.50] 3 (dSau) 4.0
4 0.40 [0.25, 2.25] 3 (dArea) 3.0
5 [0.20, 1.61] 0.5 3 (dSau) 3.0
6 [0.20, 1.61] 1.0 3 (dSau) 3.0
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Figure 11. Response of va to: (a) Vb; (b) Γ. The conditions for the curves are listed in Table 4.

Even the critical point at Γ = 4.83 is identified, and one can see that the data points do
not collapse into one curve either in Figure 11a,b, indicating both Vb and Γ cannot be used
as a single vibration parameter to model va. Comparing Vb and Γ, it can be noticed that they
are both in proportion to Afn, but with different n values. Therefore, in our previous study,
we have searched n for the best correlation between va and Ad · f n

d in a binary system
of spherical particles, and it was shown that Ad · f 0.5

d can be used to model va uniformly.
Here, it is applied to our simulation results and other experiment results. Figure 12 shows
that Ad · f 0.5

d can always be used to uniformly describe va for a set of data with different
vibration conditions, though the dependency is different in different sets, which should be
due to the differences in other parameters, such as different particles used [22,31–33].

In addition, Figure 13a shows that the shape of the intruder has a significant impact
on its ascending. This seems to be different from the conclusion in [26] that the shape of the
intruder has little effect. The reason is probably because that in the experiments in [26] there
was strong convection in the vibrated bed, but in our simulations with PBCs the convection
was not formed. In such conditions, the shape of the intruder should be considered. In fact,
as shown in Figure 13a, va is proportional to Φ γ, where Φ is the sphericity of the intruder
and γ is the exponent.
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tion data.

Based on the above discussion, a model is proposed to predict the ascending velocity
of a non-spherical intruder in a vibrated bed of small mono-size spherical particles:

va =

{
K1·Ad· f 0.5

d ·Φγ+ε1, Γ < 4.83
K2·Ad· f 0.5

d ·Φγ+ε2, Γ > 4.83

}
(9)

where K1 and K2 are proportionality coefficients, ε1 and ε2 are correction coefficients,
respectively. These coefficients can be fitted for a given granular system. As shown in
Figure 13b, the better fitting of our simulation results can be obtained when K1, K2, ε1,
and ε2 are 0.095, −0.04, −0.1, and 0.23, respectively. As the ascending velocity may be
changed when using different equivalent diameters, here γ for using dSau, dArea, and dVol
are respectively given as γSau = −6.74, γArea = −6.01, and γVol = −6.31. It can be seen that
there is a slight difference between γSau, γVol, and γArea, and va calculated with the same
sphericity but different equivalent diameters have the highest value when dSau is used,
while the lowest value when dArea is used.
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To further test the model, the experimental results for a single spherical intruder
(Φ = 1.0) in [31–33] were also fitted by our Equation (9). The predicted values by the fitting
equations were compared to the experimental data in Figure 14. The predictions are in
good agreement with the experimental values, showing the model has general applicability.
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4. Conclusions

In this paper, the segregation of a large intruder of different shapes in a vibrated bed
of small particles was investigated by a DEM model. Several important conclusions can be
drawn from the results.

Firstly, the ascending velocity (va) of a non-spherical intruder increases first and then
decreases with the rising of the dimensionless vibration amplitude (Ad). There is a similar
variation trend of va with increasing dimensionless vibration frequency (fd). An intruder of
larger aspect ratio rises faster under the same vibration conditions.

Secondly, under both the influences of Ad and fd, the change of the porosity variation
of the vibrated bed during a vibration period (∆ε) is similar to that of va. This indicates that
the changes of va can be primarily attributed to the change in void filling of small particles,
as in our simulations the convection was not generated, and the percolation mechanism
dominated the segregation. This can also be used to explain the effect of intruder shape, as
a more elongated intruder can make void filling more efficient, resulting in a larger va. The
change of granular temperature (Tg) also shows a link to the change of va.

Thirdly, not only for current simulations but also for the experimental data in the
literature, Ad · f 0.5

d is shown to be an appropriate combined parameter to characterize the
influence of A and f on va. Additionally, va is related to the negative nth power of the
intruder’s sphericity Φ. Based on these findings, a piecewise equation has been proposed
to model va as a function of Ad, f d, and Φ. The equation can be well fitted with all our
simulation results and the experimental results in the literature. The coefficients in the
equation are dependent on other particle properties, which deserve further study.
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