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Abstract: During recombinant protein production with E. coli, the integrity of the inner and outer
membrane changes, which leads to product leakage (loss of outer membrane integrity) or lysis
(loss of inner membrane integrity). Motivated by current Quality by Design guidelines, there is a
need for monitoring tools to determine leakiness and lysis in real-time. In this work, we assessed a
novel approach to monitoring E. coli cell integrity by attenuated total reflection Fourier-transform
infrared (ATR-FTIR) spectroscopy. Various preprocessing strategies were tested in combination with
regression (partial least squares, random forest) or classification models (partial least squares discrim-
inant analysis, linear discriminant analysis, random forest, artificial neural network). Models were
validated using standard procedures, and well-performing methods were additionally scrutinized
by removing putatively important features and assessing the decrease in performance. Whereas
the prediction of target compound concentration via regression was unsuccessful, possibly due to a
lack of samples and low sensitivity, random forest classifiers achieved prediction accuracies of over
90% within the datasets tested in this study. However, strong correlations with untargeted spectral
regions were revealed by feature selection, thereby demonstrating the need to rigorously validate
chemometric models for bioprocesses, including the evaluation of feature importance.

Keywords: bioprocess monitoring; ATR-FTIR spectroscopy; quality by design; process analytical
technology; chemometrics; machine learning

1. Introduction

Soluble expression of recombinant protein in Escherichia coli is often achieved by
translocation of the product to the periplasm, the space between the inner membrane
(IM) and outer membrane (OM). For successful bioprocessing aligned with Quality by
Design and process analytical technology principles, the integrity of both membranes
needs to be monitored in real-time to allow timely decision-making and control [1]. Protein
leakage through the OM to the extracellular space has a strong impact on the downstream
process, either as a way for selective product release and simplified primary recovery or as
unwanted loss of product. In any case, the ability to distinguish changes in OM integrity
(leakiness) from a loss of IM integrity (lysis) is paramount. Lysis does not only lead to
reduced productivity but also to the release of impurities, such as host cell protein (HCP),
DNA, and lipids, along with the product, thereby affecting the purification process.

A variety of technologies that have the potential for monitoring IM and OM integrity
exist and were recently reviewed [1]. However, actual use cases in E. coli bioprocesses are
still scarce. Apart from directly measuring membrane properties (dielectric spectroscopy)
or using dyes for assessing their permeability (flow cytometry), one approach to monitoring
IM and OM integrity entails measuring cytoplasmic compounds (protein, nucleic acids) or
membrane components in the culture supernatant as a proxy for lysis as well as periplasmic
protein (native or recombinant) as an indicator for leakiness.
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Mid-infrared (MIR; 2.5–25 µm or 4000–400 cm−1) spectroscopy is potentially appli-
cable to this purpose. Many biomolecules display specific spectral features in the MIR
range, particularly in the fingerprint region (900–1800 cm−1) [2,3]. Thus, on-line MIR spec-
troscopy provides valuable information for bioprocess monitoring [4], although up-stream
applications have mostly been focused on the quantification of small organic metabolites or
inorganic medium components so far [5–9]. However, the fact that the secondary structure
and amino acid composition affect the protein spectrum has been exploited to distinguish
the product from HCP in downstream applications [10–12]. Real-time sampling in the
bioreactor may be achieved by in-line attenuated total reflectance (ATR) probes. These
sensors can be inserted into the vessel for direct contact with the sample. Thus, no ad-
ditional liquid handling is necessary. Furthermore, they can be cleaned and sterilized in
place, reducing contamination issues. In an ATR element, the IR light is subjected to one or
multiple total reflections at the boundary layer of a crystal with high optical density, such as
a diamond, and the analyte solution [13,14]. At the reflection interface, an evanescent field
emerges and penetrates the sample, where absorbance occurs. Commonly, the penetration
depth is in the range of ~1–2 µm, and the absorbance decays exponentially with increasing
depth. Therefore, the contribution of biomass to the absorbance spectra is minimal when
using an ATR probe in a stirred culture [15,16]. This may facilitate monitoring of leakiness
and lysis of E. coli cultures by measuring changes in the composition of the culture super-
natant. On one hand, this may be achieved by predicting concentrations of specific marker
analytes by multivariate regression, such as extracellular periplasmic product for leakiness
or extracellular HCP or DNA for lysis. Alternatively, leakiness and lysis may be defined as
cell phases that serve as target variables in multivariate classification tasks.

Partial least squares regression (PLSR) is the most commonly employed method for
bioprocess monitoring [17], whereas non-linear models (such as support vector machines
with non-linear kernels, artificial neural networks (ANN), or random forest regression
(RFR)) have been used due to their ability to better capture the non-linearity of cell cul-
tures [18–21]. Supervised classification tasks are less common for real-time bioprocess
monitoring, but they have been applied for the detection of metabolic phases during yeast
fermentation [19,22]. Common classification models for spectral data comprise partial
least squares discriminant analysis (PLSDA), linear discriminant analysis (LDA), support
vector machines, random forest classifiers (RFCs), or ANN [22–24]. The optimization of
chemometric models usually consists of multiple iterations of data preprocessing, selection
of features, and model complexity, followed by appropriate validation procedures. General
components and workflows have been reviewed [17,24–29]. Model validation should
ultimately ensure robust predictions based on causal correlations [17]. Rigorous validation
is particularly important for bioprocess data due to high collinearity between multiple
process variables as well as process parameters and time, which may be reflected in the
spectral features [7]. Thus, feature selection may not only be used as a means for model
enhancement (i.e., removing unimportant features to reduce overfitting) but also for model
validation by removing putatively important variables and assessing whether prediction
performance decreases accordingly.

This work assessed the applicability of in-line attenuated total reflection Fourier-
transform infrared (ATR-FTIR) spectroscopy for real-time monitoring of the OM and IM
integrity of E. coli during recombinant protein production. After exploring the spectra
of various defined samples off-line (e.g., of pure medium components), we performed
in-line measurements of six controlled lab-scale fed-batch bioprocesses and analyzed
the spectra with various computational and chemometric methods. These included (i)
different preprocessing strategies, (ii) multivariate regression by PLSR and RFR, as well
as (iii) classification by PLSDA, LDA, RFC, and ANN. Standard validation metrics were
employed, and well-performing models were additionally scrutinized by feature selection.
Whereas regression did not yield results viable for monitoring, classification by RFC had
high apparent prediction accuracies of over 90%. However, feature selection revealed that
predictions were strongly based on spurious correlations. This demonstrated that such
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feature selection steps should be implemented in validation procedures to question the
performance of chemometric models for bioprocessing.

2. Materials and Methods
2.1. ATR-FTIR Off-Line Spectra

A ReactIR 45m spectrometer and a 1.5 m silver halide optical fiber ATR probe with a
diamond tip (Mettler Toledo, Columbus, OH) were used to record MIR spectra between
650 and 3000 cm−1 at a resolution of 4 cm−1. A matching software to record data was
employed (iC IR 4.2, Mettler Toledo). The detector was cooled with liquid nitrogen,
and the spectrometer was constantly purged with dry air in order to minimize water
vapor artifacts. Off-line spectra of medium components, cell suspensions (whole and
lysed), culture supernatant, and bovine serum albumin (BSA) were recorded by immersing
the ATR probe into a stirred beaker with the respective solutions at room temperature.
Additionally, the spectrum of biomass was determined by allowing cells to settle on the
surface of the ATR probe in an upright position. The cell dry weight concentration of cell
suspensions was 29 g/L. Lysis was performed at 1000 bar for 3 passages in a PandaPLUS
2000 high-pressure homogenizer (GEA, Düsseldorf, Germany). A spectrum of water
and/or buffer was taken directly before measuring the relevant solution in order to account
for changes in baseline between replicates, as small alterations in the orientation of the
fiber conduit can impact the measurement.

2.2. Bioreactor Cultivations and In-Line ATR-FTIR Measurements

Six bioreactor experiments were performed in the course of this study, named LC1,
LC2, LC3, LC4, LC5, and LC6. The used strain was E. coli X-press, a proprietary strain
developed by enGenes Biotech [30,31], harboring a plasmid containing the sequence for
recombinant staphylococcal protein A (SpA) [32]. The strain was cultivated as previously
described [32]. Briefly, a 500 mL pre-culture was grown overnight in a semi-defined
medium, and a 100 mL aliquot was used to inoculate 900 mL defined minimal medium with
20 g/L glucose in a DASGIP system (Eppendorf, Hamburg, Germany) with 2 L working
volume kept at 37 ◦C. Dissolved oxygen was kept above 30% by adjusting addition of pure
oxygen. The stirrer speed was constant at 1200 rpm. After the initial glucose was depleted,
minimal feed medium with 400 g/L glucose was fed to the culture exponentially to reach
biomass concentrations of ~30 g/L. Then, expression of SpA was induced by adding IPTG
and L-arabinose to final concentrations of 0.5 and 100 mM, respectively. L-arabinose is
needed for the decoupling of growth and recombinant protein production in E. coli X-press,
whereas IPTG induces the plasmid-based expression [30]. The temperature was reduced to
30 ◦C during the induction phase, and a constant feed rate was set to achieve a theoretical
specific growth rate of 0.05 for LC4 and LC6 or 0.1 h−1 for all other runs, assuming a
constant yield coefficient YX/S of 0.4 g g−1.

For the in-line ATR-FTIR measurements, background spectra were acquired in the air
once the probe was in its final orientation. A spectrum was recorded every five minutes
with 256 scans each.

2.3. Reference Off-Line Measurements

Extracellular SpA and activity of extracellular alkaline phosphatase (AP) were quanti-
fied as indicators of leakiness, whereas extracellular DNA was measured as a proxy for
lysis. The analysis methods have been described elsewhere [32]. Samples were taken (i)
after inoculation, (ii) at the end of the batch phase, (iii) directly before and after induction,
and (iv) subsequently in intervals between one and three hours until the end of the process.
A total of 67 reference samples were collected (18 pre-induction, 49 post-induction samples)
(Figure S1).



Processes 2021, 9, 422 4 of 17

2.4. Programming

Data analysis was performed in Python 3.8. Tools for basic signal processing and
statistical analyses were available via SciPy v.1.5.2 [33] and NumPy v.1.19.2 [34]. Dimension
reduction, classification, and regression were performed with scikit-learn v.0.23.2 [35] and
the Keras API upon TensorFlow v.2.3.0 [36,37].

2.5. Preprocessing and Validation Split

The fingerprint region (1700–850 cm−1) was selected, and spectra were further pre-
processed using various strategies. The first and second derivatives of the raw spectra
(denoted d1 and d2, respectively) were taken via the Savitzky–Golay smoothing process
with third-order polynomials and a window length of 11. To accommodate for between-
process variability in the collected backgrounds, baseline-corrected spectra were generated
by smoothing the spectra with a Savitzky–Golay filter (without derivative, d0) and subse-
quently subtracting the mean of the first five spectra from all spectra of the corresponding
process. Additionally, the first and second derivatives of the baseline-corrected spectra
were taken. Finally, the baseline-correction strategy with and without derivatives was
applied exclusively to spectra recorded after induction. In summary, nine sets of processed
spectra were candidates for subsequent modeling: (i) raw [d0] (as reference); (ii) raw [d1];
(iii) raw [d2]; (iv) baseline-corrected [d0]; (v) baseline-corrected [d1]; (vi) baseline-corrected
[d2]; (vii) baseline-corrected (post-induction) [d0]; (viii) baseline-corrected (post-induction)
[d1]; and (ix) baseline-corrected (post-induction) [d2].

Principal component analysis (PCA) was used to explore the effect of the preprocessing
methods on within-run and between-run variability and select a preprocessing strategy
suitable for further modeling. Prior to PCA, the spectra were mean-centered and scaled to
unit variance.

For subsequent regression and classification tasks, the data were split six-fold using
five of the six runs for training and holding out the remaining run for external validation.
This ensured independence of the validation set by accounting for between-run variability.

2.6. Multivariate Regression

Regression was performed by PLSR (PLS1, NIPALS-algorithm) and RFR for the pre-
diction of extracellular SpA, AP, and DNA. Whereas SpA may accumulate in amounts
that can be detected by the ATR-FTIR spectrometer (several grams per liter), it was ac-
knowledged that AP and DNA could merely serve as proxies for released periplasmic
and cytoplasmic/cellular compounds, respectively, since their mass concentration in the
medium is likely below the detection limit. Only the spectra recorded at times when
reference samples were taken were used for regression. For PLSR, the spectra and reference
data were centered, scaled, and the tested number of components ranged from one (lowest
complexity) to 20 (highest complexity). For RFR, the number of trees in the forest was
set to 200, and the pruning parameter was varied between 0.0 (highest complexity) and
0.3 (lowest complexity) in steps of 0.03. The normalized root mean square error (NRMSE)
was used as the validation metric (Equation (1)).

NRMSE =

√
∑n

i=1
(ŷi−yi)

2

n
ymax − ymin

(1)

n, number of samples; ŷ, predicted value; y, measured value; ymax, maximal measured
value; ymin, minimal measured value.

The root mean square error is a common metric for regression and min-max normaliza-
tion allows comparison between differently scaled variables [7,17]. The number of samples
was equal to all available samples from all runs. Hence, the NRMSE was averaged over
all six external validation splits by concatenating the respective vectors of measured and
predicted values.
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2.7. Classification

Supervised classification was completed by first assigning the labels normal, leaky,
or lysis to the spectra based on the reference data (Figure S1). Cells were assumed leaky
when the measured concentration of extracellular SpA exceeded 0.5 g/L and assumed to
lyse when extracellular DNA concentration exceeded 15 mg/L. Due to a large data gap
in run LC5, the threshold for lysis was estimated by linear interpolation. The employed
classification methods were PLSDA, LDA, RFC, and ANN. Between 1 and 50 components
were tested for PLSDA (PLS2, NIPALS-algorithm) and 11 equidistant shrinkage values
between 0 and 1 for LDA. The RFC contained 250 trees, and 11 equidistant pruning
parameters between 0 and 0.3 were tested. The ANN (a multilayer perceptron with
backpropagation) consisted of an input layer and a normalization layer (for centering and
scaling the data), a varying hidden layer structure with relu activation functions, and an
output layer activated by the softmax function. Hyperparameter tuning entailed (i) testing
different hidden layer structures with one, two, or three hidden layers and 10, 50, 100,
200, or 400 nodes each (totaling 15 structures); (ii) varying the number of iterations over
the training data (epochs: 25, 50, 75, 100, 200, or 400); and (iii) testing the parameter α for
weight penalization (l2 regularization) with values 10–10, 10−8, 10−6, 10−4, and 10−2. The
adam optimization algorithm and the log loss function were employed for training the
ANN, and the batch size for each epoch was set to 32.

Two validation metrics were used for all classification models: firstly, the accuracy
score, which expresses the overall fraction of correct classifications; secondly, the F1 score,
which is a balanced performance metric combining precision and recall for every class [38].
Accuracy was averaged over all runs and weighted by the number of samples in each run.
The F1 score for each class was averaged over all runs and weighted by the class frequency
in each run (Table S1).

For RFC models, feature importance was assessed by the mean decrease (Gini-
)impurity (MDI) after choosing the pruning parameter resulting in the highest classification
performance. The MDI describes how much a variable contributes to a reduction in node
impurity (in this case, the Gini impurity) in all trees of the random forest. For a detailed
explanation of the MDI, the reader is referred to reference [39]. The MDI for all features (i.e.,
wavenumbers) was compared to known spectral features of pure components (e.g., amide
bands, carbohydrate fingerprint), if available. To investigate the importance of certain
spectral regions for model accuracy, subsets of features were then selected manually after
preprocessing (Table 1). In general, features with the highest MDI and a putative link to
known analytes (e.g., protein, lysed cells, carbohydrates) were removed, whereas others
were retained. The spectral window was then narrowed down further in several steps to
remove features that displayed smaller MDI values. After each feature selection step, LDA,
RFC, and ANN models were trained and evaluated again.

Table 1. Feature selection strategies.

Subset Name Retained Features
(Wavenumbers (cm−1)) Comment

ref 850–1700 reference; whole fingerprint region

sel-1 1505–1700 retain only amide I and II region

sel-2 1080–1700 remove part of carbohydrate, phosphate, and lysed cells fingerprint

sel-3 850–1505 remove amide I and II region

sel-4 1080–1505 sel-2 and sel-3 combined

sel-5 1190–1450 remove amide I and II region, full carbohydrate and phosphate
fingerprint

sel-6 1190–1360 sel-5 and remove putative amino acid band
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Table 1. Cont.

Subset Name Retained Features
(Wavenumbers (cm−1)) Comment

sel-7 1255–1450 based on MDI only

sel-8 1255–1360 retain only putative amide III region

sel-9 1360–1450 retain only putative amino acid band

3. Results
3.1. Off-Line Spectra

The concentration of medium components (phosphate buffer, sugars), cells, and pro-
tein changes during fermentation. To determine the spectral features corresponding to
these compounds and thus aid subsequent analysis of in-line recorded spectra, ATR-FTIR
spectra were first collected off-line. Spectra of the major medium components (water,
L-arabinose, glucose, and phosphate) are depicted in Figure 1. The absorption of water
dominates the fingerprint region with strong peaks between 1500 and 1700 cm−1 as well as
below 1000 cm−1. The bands of the medium components overlap significantly between 950
and 1200 cm−1. Strong absorption of these compounds may impede modeling attempts, es-
pecially since phosphate and L-arabinose are both diluted at a constant rate after induction,
introducing spectral variability that is proportional to process time.

Processes 2021, 9, x FOR PEER REVIEW 6 of 18 
 

 

3. Results 
3.1. Off-Line Spectra 

The concentration of medium components (phosphate buffer, sugars), cells, and pro-
tein changes during fermentation. To determine the spectral features corresponding to 
these compounds and thus aid subsequent analysis of in-line recorded spectra, ATR-FTIR 
spectra were first collected off-line. Spectra of the major medium components (water, L-
arabinose, glucose, and phosphate) are depicted in Figure 1. The absorption of water dom-
inates the fingerprint region with strong peaks between 1500 and 1700 cm−1 as well as 
below 1000 cm−1. The bands of the medium components overlap significantly between 950 
and 1200 cm−1. Strong absorption of these compounds may impede modeling attempts, 
especially since phosphate and L-arabinose are both diluted at a constant rate after induc-
tion, introducing spectral variability that is proportional to process time. 

 
Figure 1. Off-line spectra of major medium components: water, L-arabinose (Ara; 100 mM), glucose 
(Glc, 55 mM), and phosphate (Pi, 130 mM). Air was subtracted as background. 

The spectral contribution of cells was also assessed in off-line experiments. After 
placing a drop of cell suspension on the sensor in an upright position, the cells settled 
quickly onto the ATR crystal. This revealed distinct absorbance at the amide I and II bands 
(1655 and 1550 cm−1, respectively) as well as at 1077 cm−1, which may be attributed to cel-
lular carbohydrates [16] (Figure 2A). The increase in absorption across the whole spectral 
range is attributed to scatter effects. In contrast to the spectra of settling cells, the impact 
of biomass was much weaker when the spectra were recorded with the ATR probe im-
mersed in a stirred cell suspension (Figure 2B). This was as expected since the penetration 
depth of the evanescent field, in which absorbance occurs, is only ~0.05–2 µm and thus 
too small for a large number of suspended cells to be close enough to the ATR element 
and significantly affect the signal. The results indicate that the in-line ATR probe facilitates 
quantification of analyte changes in the extracellular space to monitor leakiness and lysis. 

Figure 1. Off-line spectra of major medium components: water, L-arabinose (Ara; 100 mM), glucose
(Glc, 55 mM), and phosphate (Pi, 130 mM). Air was subtracted as background.

The spectral contribution of cells was also assessed in off-line experiments. After
placing a drop of cell suspension on the sensor in an upright position, the cells settled
quickly onto the ATR crystal. This revealed distinct absorbance at the amide I and II bands
(1655 and 1550 cm−1, respectively) as well as at 1077 cm−1, which may be attributed to
cellular carbohydrates [16] (Figure 2A). The increase in absorption across the whole spectral
range is attributed to scatter effects. In contrast to the spectra of settling cells, the impact of
biomass was much weaker when the spectra were recorded with the ATR probe immersed
in a stirred cell suspension (Figure 2B). This was as expected since the penetration depth of
the evanescent field, in which absorbance occurs, is only ~0.05–2 µm and thus too small for
a large number of suspended cells to be close enough to the ATR element and significantly
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affect the signal. The results indicate that the in-line ATR probe facilitates quantification of
analyte changes in the extracellular space to monitor leakiness and lysis.
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Figure 2. Off-line spectra of cells settling on the sensor (A) and in a stirred cell suspension (B). Cells
were suspended in exhausted culture medium, and cell dry weight was 29 g/L. Water was subtracted
as background.

Spectra of BSA solutions (ranging between 0 and 20 g/L) were recorded to assess the
method’s sensitivity to dissolved protein as well as important spectral features (Figure 3A).
The most distinct peaks can be attributed to the amide bands I and II (1655 and 1550 cm−1),
which are known as the most prominent regions of protein spectra [40,41]. Moreover, the
weaker amide III band can be identified at 1310 cm−1. The remaining bands might be
caused by IR-active amino acid side chains (e.g., carboxyl groups in Asp and Glu absorb
around 1400 cm−1 [40]). However, it should be considered that IR spectra can vary from
protein to protein. This is not only due to the different side chains but also because the
secondary structure has an impact on the amide bands [40]. This explains the different
positions of the amide I bands of BSA (1655 cm−1; Figure 3A) and the settling biomass
(1644 cm−1; Figure 2A). Therefore, distinguishing periplasmic from cytoplasmic protein in
the supernatant might be possible, thereby detecting leakiness or lysis. Still, the overlap of
the amide bands with the much stronger water peak may reduce method sensitivity. The
absolute absorption values of the amide peaks were rather low compared to peaks at lower
wavenumbers (e.g., phosphate or carbohydrate peaks). Furthermore, noise introduced
by the absorption of water was particularly visible in the amide I band, which displayed
almost the same intensity for samples containing 2 and 5 g/L BSA, respectively. In contrast,
the amide II band increased proportionally to BSA concentration.
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Figure 3. (A) Off-line spectra of varying concentrations of BSA in phosphate buffer (130 mM). (B) Off-
line spectra of suspensions of whole cells, lysed cells, or a 1:1 mix of whole and lysed cells. Water
was subtracted as background.

In order to assess whether cell lysis can be detected by IR spectroscopy, measurements
of whole cells (29 g/L CDW), lysed cells (29 g/L CDW), and of a 1:1 mixture were per-
formed (Figure 3B). Unexpectedly, the amide I band at 1640 cm−1 showed lower absorption
in the lysed cell sample compared to whole cells. The reason for this remains unclear,
though interference of a high amount of solutes with the water peak is possible. The lysed
cells displayed distinct absorption at 1048 cm−1, likely attributed to C-O/C-O-C vibrations
from released membrane components [42,43]. Despite the characteristic fingerprint of
artificial cell lysate of relatively high concentration (~15–30 g/L CDW), detection of minor
levels of cell lysis during fermentation may be hampered by the overlap of spectral features
with the medium components (Figure 1).

3.2. Preprocessing

The main goal of spectral preprocessing was to remove the between-run variability
(e.g., stemming from measurement artifacts or slight deviations in the measurement setup)
and to preserve the within-run variability associated with specific process events, such
as leakiness or lysis, for detection by regression or classification models. Unsupervised
clustering by PCA was initially used to illustrate the effects of the preprocessing strategies
(Figure 4).
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Figure 4. Principal component analysis (PCA) of raw spectra (A), baseline (BL)-corrected spectra (B), and BL-corrected
post-induction spectra (C). The left column contains undifferentiated spectra (d0), the center column first-derivative spectra
(d1), and the right column second-derivative spectra (d2). The top panel of each sub-figure (A–C) shows the PCA scores
with the percentage of variance explained by the respective principal component given in parentheses. The center panel
shows the PCA loadings, and the bottom panel the IR spectra. Colors represent the different runs.

Large between-run variability was visible in the raw spectra of the different cultiva-
tions, as their baselines were offset vertically. This resulted in an almost uniform loading
vector of the first principal component and a clear separation between the processes in
the PCA score plot. These baseline offsets were eliminated by first- and second-order
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derivatives. However, the different cultivations were still separated, and particularly, run
LC6 was distinct from the other runs due to more pronounced differences in the spec-
tral background. Only by applying the baseline-correction strategy (Figure 4B) could we
significantly enhance the within-run variability in relation to the between-run variances,
especially in combination with the first derivative. Furthermore, each process displayed
two main clusters, one before and one after induction. This is due to the addition of
100 mM L-arabinose and a temperature shift upon induction. This large shift in the spectra
may particularly hamper classification tasks since most of the spectra labeled normal were
recorded before induction, and thus the spectral shift would introduce bias. Therefore, we
additionally assessed the baseline-correction strategy on the post-induction spectra alone.
As shown in Figure 4C, this resulted in a further decrease of the between-run variability,
and within-run variability was largely explained by the first principal component. How-
ever, clear separation of the spectra attributed to the different cell states normal, leaky, and
lysis did not occur, and the transition between these states was rather smooth (Figure 5).
This indicates that most variability was caused by other process-related changes of the
spectral fingerprint, which may complicate subsequent modeling efforts.
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3.3. Regression

Both regression models, PLSR and RFR, were trained with baseline-corrected spectra,
either from the whole process or post-induction, for the prediction of extracellular AP, SpA,
and DNA. The external validation strategy using independent runs for testing ensured
that the models did not learn the potential between-run variability of the test set. The
NRMSE values of models with an optimized number of components (PLSR) or pruning
parameter (RFR) are summarized in Table 2. Either strategy resulted in high errors between
0.10 and 0.35, rendering regression unsuitable for monitoring purposes. This was likely
due to the scarcity of the reference data (67 and 49 samples for the whole process and
post-induction, respectively) and the necessary reduction of the spectral dataset for training
the models. Furthermore, the sensitivity to target analytes was likely diminished by the
spectral interference of water and medium components.
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Table 2. Prediction errors for partial least square regression (PLSR) and random forest regression
(RFR) models.

Baseline-Corrected Baseline-Corrected
(Post-Induction)

d0 d1 d2 d0 d1 d2

PLSR

Components 6 2 5 6 2 2

NRMSE
AP 0.13 0.11 0.10 0.18 0.24 0.22

SpA 0.28 0.35 0.23 0.22 0.27 0.26
DNA 0.14 0.13 0.15 0.21 0.20 0.18

RFR

Pruning 0 0 0 0 0 0

NRMSE
AP 0.18 0.12 0.11 0.17 0.15 0.14

SpA 0.28 0.21 0.22 0.32 0.25 0.21
DNA 0.16 0.12 0.12 0.21 0.15 0.15

3.4. Classification

The issue of data scarcity was not given for the classification tasks since all spectra
could be assigned to classes depending on whether thresholds in the reference data were
exceeded. PLSDA, LDA, RFC, and ANN models were built for the supervised classification
of normal, leaky, and lysing cells. Due to the high variance introduced by the spectral shift at
the start of induction, only the baseline-corrected, post-induction spectra were used to train
the models. The results for the initial grid-search assessing a wider set of parameters for the
ANN model (hidden layer structure, number of epochs, weight penalization parameter) are
summarized in Figure S2. For further analysis, ANN models with two hidden layers and
10 nodes each were trained for 75 epochs on the d0 and d1 dataset, and ANNs with two
hidden layers and 200 nodes each were trained for 400 epochs on the d2 dataset. Figure 6
shows the results of the screening for the optimal regularization parameters for all models
and each derivative applied during preprocessing. Among the linear models PLSDA and
LDA, the latter showed significantly better performance with accuracies and F1 scores for
all classes above 0.8 when high shrinkage was applied. ANN models in combination with
the first derivative performed slightly better than LDA, whereas the best overall scores
were achieved with RFCs in combination with the first and second derivatives (d1, d2).
They each achieved accuracies of above 0.93 and F1 scores above 0.90 over a wide range of
applied regularization parameters (Figure 6, Figure S3). Interestingly, the least regularized
RFC and ANN models did not result in drastic performance reduction from overfitting,
which could be well observed in LDA models. Nonetheless, regularization was applied to
RFCs trained on d1 or d2 data for further analysis by setting the pruning parameter to 0.06.

To translate the classification performance of the RFC models to the domain of process
time, the correct and false classifications of each spectrum from the respective test set
were visualized in Figure 7. The timeframe in which wrong predictions were made
varied between a few minutes (e.g., run LC3) and approximately an hour (runs LC4, LC5)
and was similar between RFCs trained on the first or second derivative data. However,
misclassifications occurred mostly during the transitions between normal, leaky, or lysis.
As shown by PCA (Figure 4), this is likely due to smooth transitions in the spectra between
the different cell phases, complicating classification tasks. Furthermore, the true labels
were created by manual assignment based on absolute thresholds of the reference data
(SpA and DNA concentration), which were collected in intervals between one and two
hours. Particularly for run LC6, the threshold for lysis was estimated by interpolation due
to a large gap in the reference data between five and eight hours after induction. Hence,
any bias introduced by the manual label assignment is also reflected in the results.



Processes 2021, 9, 422 12 of 17Processes 2021, 9, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 6. Classification performance of the different models trained and tested with the baseline-corrected post-induction 
spectra vs. different degrees of complexity. The x-axes are oriented such that the least complex model is on the left side 
and the most complex on the right side. The evaluation metrics were averaged over the six data splits (one for each run), 
weighted by the number of samples in each run (accuracy) or the frequency of classes in each run (F1 score). 

Figure 6. Classification performance of the different models trained and tested with the baseline-corrected post-induction
spectra vs. different degrees of complexity. The x-axes are oriented such that the least complex model is on the left side
and the most complex on the right side. The evaluation metrics were averaged over the six data splits (one for each run),
weighted by the number of samples in each run (accuracy) or the frequency of classes in each run (F1 score).



Processes 2021, 9, 422 13 of 17
Processes 2021, 9, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 7. Correct and false classifications of the random forest classifiers (RFCs) in the time domain. Models were evalu-
ated with the first and second derivatives (d1 and d2) of baseline-corrected post-induction spectra. The pruning parameter 
was set to 0.06. 

The feature importance of the RFC models (Figure 8A) using the whole fingerprint 
region (850–1700 cm−1) indicated that the amide I and II bands at 1655 and 1550 cm−1 
strongly contributed to classification. Moreover, bands at ~1000 and 1050 cm−1 had a large 
impact as well. This points toward interference by spectral changes caused by the contin-
uous dilution of medium components, especially L-arabinose, during the cultivation, alt-
hough the distinct spectral feature of lysed cells at 1048 cm−1 (Figure 3B) may have influ-
enced the model as well. However, the prediction accuracy of the RFC was robust against 
feature selection (Figure 8B). Only retaining the amide I and II regions (sel-1) or removing 
the spectral ranges attributed to L-arabinose (sel-2), the amide I and II bands (sel-3), or 
both of these ranges (sel-4) did not result in a significant reduction of the classification 
accuracy. Even after extreme feature exclusion (sel-9; leaving only wavenumbers between 
1360 and 1450 cm−1), the model still classified approximately 80% of samples correctly. 
Feature selection was also applied to LDA and ANN models, where similar behavior was 
observed (Figure S4). This robustness against the removal of (apparently important) fea-
tures shows that classification is strongly relying on correlations between the cell states 
(normal, leaky, lysis) and untargeted process dynamics reflected in the spectra. 

4. Discussion 
In applications of in-line ATR sensors for bioprocessing, the small penetration depth 

of the evanescent field into the sample has been a hurdle in the quantification of biomass 
since cells barely reside in the absorbing volume close to the sensor surface without com-
plex modification of the probe [15,16,44,45]. For monitoring leakiness and lysis, however, 
this property of the ATR sensor is advantageous, as it provides more selectivity toward 
changes in the culture supernatant, such as leaked periplasmic protein or cellular mole-
cules released upon lysis. Our off-line experiments comparing the spectra of suspended 
and settling cells underlined this advantage. However, the sensitivity toward target com-
pounds, most importantly protein, is severely hampered by the strong adsorption of wa-
ter in the fingerprint region. This is a disadvantage of ATR-FTIR compared to Raman 
spectroscopy [17], although the spectral contribution of biomass is higher for conventional 
Raman spectroscopy, and probe modifications are required to ensure the separation of 
cells and medium. This was recently achieved with synthetic particles by ultrasound-en-
hanced in-line probes [46], but applicability to E. coli cells has not yet been shown. The 
strong absorption of medium components and their spectral overlap with lysed cells was 
another potential obstacle in the present work. Continuous dilution of the medium com-
ponents by the fed-batch strategy introduces correlation with target analytes, possibly 
leading to predictions by chance [7]. Whereas the preprocessing steps employed in this 
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The feature importance of the RFC models (Figure 8A) using the whole fingerprint
region (850–1700 cm−1) indicated that the amide I and II bands at 1655 and 1550 cm−1

strongly contributed to classification. Moreover, bands at ~1000 and 1050 cm−1 had a
large impact as well. This points toward interference by spectral changes caused by the
continuous dilution of medium components, especially L-arabinose, during the cultivation,
although the distinct spectral feature of lysed cells at 1048 cm−1 (Figure 3B) may have
influenced the model as well. However, the prediction accuracy of the RFC was robust
against feature selection (Figure 8B). Only retaining the amide I and II regions (sel-1) or
removing the spectral ranges attributed to L-arabinose (sel-2), the amide I and II bands (sel-
3), or both of these ranges (sel-4) did not result in a significant reduction of the classification
accuracy. Even after extreme feature exclusion (sel-9; leaving only wavenumbers between
1360 and 1450 cm−1), the model still classified approximately 80% of samples correctly.
Feature selection was also applied to LDA and ANN models, where similar behavior
was observed (Figure S4). This robustness against the removal of (apparently important)
features shows that classification is strongly relying on correlations between the cell states
(normal, leaky, lysis) and untargeted process dynamics reflected in the spectra.
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MDI averaged over the six different data splits (one for each run) for RFC trained on first derivative
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listed in Table 1. Significant difference in average accuracy to the reference (ref) is denoted by * (p <
0.05) or + (p < 0.01).

4. Discussion

In applications of in-line ATR sensors for bioprocessing, the small penetration depth of
the evanescent field into the sample has been a hurdle in the quantification of biomass since
cells barely reside in the absorbing volume close to the sensor surface without complex
modification of the probe [15,16,44,45]. For monitoring leakiness and lysis, however, this
property of the ATR sensor is advantageous, as it provides more selectivity toward changes
in the culture supernatant, such as leaked periplasmic protein or cellular molecules released
upon lysis. Our off-line experiments comparing the spectra of suspended and settling cells
underlined this advantage. However, the sensitivity toward target compounds, most im-
portantly protein, is severely hampered by the strong adsorption of water in the fingerprint
region. This is a disadvantage of ATR-FTIR compared to Raman spectroscopy [17], al-
though the spectral contribution of biomass is higher for conventional Raman spectroscopy,
and probe modifications are required to ensure the separation of cells and medium. This
was recently achieved with synthetic particles by ultrasound-enhanced in-line probes [46],
but applicability to E. coli cells has not yet been shown. The strong absorption of medium
components and their spectral overlap with lysed cells was another potential obstacle
in the present work. Continuous dilution of the medium components by the fed-batch
strategy introduces correlation with target analytes, possibly leading to predictions by
chance [7]. Whereas the preprocessing steps employed in this study could reduce the
between-run variance, the within-run variance was still dominated by these correlated
process dynamics.

In addition to detection of the onset of leakiness and lysis, predicting the concentra-
tions of target analytes, such as extracellular protein or DNA, by in-line spectroscopy can
facilitate advanced, model-based process control [1]. PLSR is a well-established chemomet-
ric tool for MIR spectroscopy and has been frequently used for the quantification of small
organic metabolites or inorganic medium components in bioprocesses [5–9]. In the present
study, however, PLSR performed poorly for the prediction of extracellular SpA, AP, or DNA
and was therefore not found suitable for monitoring. RFR, which was recently applied to
the monitoring of animal cell cultures with Raman spectroscopy [47], did not achieve better
results. The limited success of regression can be attributed to several factors. Firstly, the
absorption of water greatly interferes with the amide bands. Hence, the sensitivity for pro-
tein is reduced, and any noise in the water spectrum produces an error in the prediction of
protein concentration [48]. Moreover, AP and DNA were not directly predicted since their
concentrations were likely too low to be detected. Thus, their concentration profile may
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not correlate well with changes in the spectral fingerprint, and their prediction is largely
based on correlation with other process dynamics. Lastly, the number of samples was too
low for building a powerful statistical model given the complex sample matrix. Extending
the calibration set with external synthetic samples [7] or implementing on-line reference
analyses [6] are possible solutions to data scarcity—especially in academic settings, where
usually less process data is generated compared to industry.

The problem of data scarcity could be circumvented by the classification of all avail-
able spectra based on thresholds in the reference data. The non-linear classifiers RFC and
ANN showed overall better performance than the linear methods, which agrees with previ-
ous studies employing non-linear techniques on spectral data from bioprocesses [18–21].
Although the timeframe in which the RFC yielded wrong classifications was mostly under
20 min, in some cases, it was up to approximately one hour. Hence, the investigated
method did not always provide faster results than available at-line techniques, such as
high-performance liquid chromatography or colorimetric assays [49]. Furthermore, the
caveats of using machine learning for the classification of in-line ATR-FTIR spectra were
demonstrated. Despite removing the features deemed important for the task of predicting
leakiness and lysis, and even after removing almost all available features from the data,
classification models still displayed relatively high prediction accuracy. As discussed above,
the correlation of the target variables, respectively class labels, with untargeted process
dynamics can produce misleading results [7]. Thus, whereas the method performed well
on the dataset used in this study, the transferability to a different process is questionable
(e.g., a fermentation without leaky or lysing cells or a process with a different feeding
strategy). To provide more confidence in the predictions of the classifiers and tackle the
issue of strong correlation with process time rather than target features, the models would
need to be presented with data from runs with a wider variety of process parameters
(and thus more variation in process dynamics) or with synthetic, defined samples, e.g., by
spiking a fermentation sample with cell lysate or product [7].

5. Conclusions

In summary, this study presents a novel approach to monitoring cell integrity during
recombinant protein production with E. coli via in-line ATR-FTIR spectroscopy. Whereas
regression models performed poorly due to low amounts of reference data and a possible
lack of sensitivity, classification with LDA, RFC, and ANN resulted in high apparent
prediction accuracy. RFCs achieved the best results and were able to predict changes in
cell integrity in a timeframe between ~10 and up to ~70 min. However, classification
results were strongly influenced by correlations with untargeted, time-dependent changes
in the spectra. This demonstrates the need for rigorous model validation (including feature
selection) to avoid misinterpretation of spectral data from bioprocesses, as well as the
necessity for appropriate datasets with high variability in the targeted features. Further
research may explore the potential of Raman spectroscopy, possibly in combination with
ultrasound manipulation of cells, for monitoring E. coli cell integrity.
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ANN models, Figure S3: Magnification of Figure 6 in the main text, Figure S4: Classification accuracy
of LDA and ANN after feature selection.
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