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Abstract: This study focuses on using a facile method for the green preparation of activated carbon
(AC) from palm tree fiber (PTF) waste. The synthesized cost-effective AC was investigated for the
removal of an anionic dye (Congo red, CR) and a cationic dye (Rhodamine B, RhB) from wastewater.
The morphological and structural characterization of the synthesized AC were performed by scanning
electron microscopy (SEM), transmission electron microscopy (TEM), surface area, Fourier transform
infrared spectroscopy (FTIR), total pore volume, average pore diameter and pore size distribution,
zeta potential, and zero-point charge. To investigate the adsorption efficiency, different parameters
such as adsorbent dosage, solution pH, initial dye concentration, and duration were applied using
the batch experiments. Various adsorption isotherm and kinetics models were applied to study the
adsorption mechanism and dynamics. The results showed that chemical activation with a weak acid
(H3PO4) at 400 ◦C for 30 min is a fast method for the activation of each precursor and produces a high
yield. The result of analysis showed an increase in the adsorption capacity at pH 2. The maximum
adsorption capacity was 9.79 and 26.58 mg g−1 at 30 min for CR dye and RhB dye, respectively. The
optimum adsorbent dosage for the activated carbon from palm tree fiber (PTFAC) was 0.15 g with
a high percentage removal of CR (98.24%) and RhB (99.86%) dyes. The adsorption isotherm and
kinetic studies were found to be favorable and feasible for assessing the adsorption of dyes with
the Langmuir model and pseudo-second-order reaction, respectively. In addition, the AC showed
reusability up to five cycles. The results showed that the synthesized AC was environmentally
friendly and successfully removed dyes from wastewater.

Keywords: activated carbon; adsorption; anionic and cationic dyes; palm tree fiber wastes; recycles

1. Introduction

The continuous growing population and their requirements have seriously contam-
inated water with several undesirable materials, for example, artificial dyes [1]. Syn-
thetic dyes obtained from organic or inorganic compounds are mainly composed of two
compounds—chromophores and auxochromes. The chromophore produces the color of
dye, whereas the auxochrome is responsible for the intensity of color [2,3]. Before the
invention of artificial dyes in 1956, the natural dyes obtained from plant sources as roots,
berries, bark, leaves, wood, fungi, and lichens were used [4]. After 1956, artificial dyes
derived from petrochemicals were used as coloring agents for several products in the
market. Additional engaging colors have been introduced to various advanced industries
such as textiles, paper, animal skin tanning, food processing, plastic, cosmetic, and dye-
producing industries [5]. Synthetic dyes are usually carcinogenic, cause serious damage to
water resources, and contribute to environmental pollution. The environmental and health
concerns associated with the wastewater effluents have led scientists to search for simple,
inexpensive, and rapid solutions. The putrefaction of dyes from wastewater can be done
using three methods, namely physical, biological, and chemical methods [6]. These include
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precipitation, oxidation, coagulation, adsorption, and membrane separation [7–9]. Among
these methods, adsorption is a cost-effective, simple, and feasible technique for the removal
of organic dyes from wastewater. Many synthetic ingredients have been effectively used as
adsorbents for the elimination of contaminants from water [10–12].

Among them, activated carbon (AC) is considered as the most commonly used adsor-
bent in the industry for the removal of contaminants [13]. The pore structure of the AC
is quite developed with a high surface area and good adsorption capacity. The external
chemical functional groups and structural properties of AC make it suitable for many
applications used for the elimination of organic and inorganic contaminants from contami-
nated water [14,15]. However, the fabrication of marketable AC is costly; thus, research
attention has been paid to develop a low-cost and competent AC using several sources. The
production of AC from natural sources or agroindustry wastelands was considered because
they are renewable, highly available, and cost-effective, and they have good properties.
Thus, their disposal is required for a cleaner environment. In this regard, many researchers
have reported on the preparation of AC from various industrial denim fabric waste [16] and
agriculture waste (biomasses) such as coconut coir, apricot stones [17], Nigella sativa L [18],
palm shell [19], pecan shell [20], pine cone [21], tapioca peel [22], macadamia nutshell [23],
Mucuna pruriens and Manihot esculenta [24], snail shell [25], and tea leaves [26].

There are two methods to produce AC: physical and chemical activation. In physical
activation, raw material is carbonized and then activated with steam and carbon dioxide.
Chemical activation involves the impregnation of a chemical-activating agent in the pre-
cursor material followed by activation at temperatures between 400 and 700 ◦C under the
nitrogen atmosphere [27]. The advantages of chemical activation are the following: (a) it
occurs in a shorter time compared to that prepared by physical activation; (b) the produced
AC has a high surface area with high yield; and (c) the activating chemical agent influences
the breakdown of carbon and prevents the development of tar and volatile substance,
thereby increasing the yield of AC. In addition, in the case of chemical activation, the
process of dehydration and oxidation requires lower temperatures compared to that in the
physical activation [28]. In the chemical activation method, ZnCl2, KOH, and H3PO4 are
extensively used as chemical-activating agents for the activation of lignocellulosic materi-
als, which have not been carbonized. In addition, KOH is used for the activation of coal
precursors or chars. The most common of activating agents include KOH and ZnCl2 since
they provide microporous features, which restricts these materials’ applications for the
adsorption of high molecular weight molecules in aqueous solution [16]. Thus, attempts
were made toward the use of H3PO4 as a proper and low-cost activating agent for of AC as
reported earlier for many biosorbent lignocellulosic material [16]. In the literature, various
parameters were studied such as the concentration of activation agent, temperature, and
activation time [29–31].

The present study focuses on the facile preparation of AC from biomass by chemical
and thermal activation methods. The vast number of date palm trees in Saudi Arabia is
about 23 million. Thus, palm tree fiber (PTF) is one of the greatest freely existing biomasses,
and it is common agricultural waste in Saudi Arabia. Therefore, PTF has been chosen
as the specific biomass in order to produce more economical Ac and easy accessibility
collection [32]. The parameters such as the activation agent, activation temperature, and
activation time were investigated for PTF activation in this study. Another goal of the study
was to use various analytical techniques to examine the efficiency of the prepared AC to
remove anionic dye Congo red (CR) and cationic dye rhodamine B (RhB) from polluted
water. The influence of initial concentration, duration, adsorbent dosage, and pH on the
adsorption of CR and RhB were studied. Performing equilibrium isotherm and kinetics of
adsorption for CR and RhB as well as exploring the re-generation of used activated carbon
from palm tree fiber (PTFAC) were also considered as the main objectives.
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2. Materials and Experimental Procedures
2.1. Instruments

The pH values of dyes and adsorbent powder were measured using a pH meter
(MP220; Mettler Toledo). A cyclone mill (CT 193 CyclotecTM; Mill Collection) was used to
ground the sample, and the sample was sifted by a KimLab ISO 3310 Std Test Sieve; the
required size was a 0.43 mm mesh size. The mixtures were agitated using a reciprocating
shaker (cat. no. 3006; GFL Shakers). The samples were carbonized in a muffle furnace
(A-550; Vulcan), and after washing, they were dried in an oven (FN 055/120 Dry Heat
Sterilizers). The spectroscopic reading was generated by using a UV-vis spectrophotometer
(UV-1650PC, Shimadzu). Transmission electron microscopy (TEM) was performed using
JEM-1230 (JEOL). The zeta potential of the PTFAC was measured by a Zetasizer (version
7.04, serial number MAL 1074157; Malvern Instruments). Scanning electron microscopy
(SEM) was performed by Quanta FEG250. Fourier transform infrared spectroscopy (FTIR)
was conducted by using a Spectrum Two FTIR Spectrometer (PerkinElmer) at the absorption
spectra range of 4000–400 cm−1.

2.2. Materials and Chemical Reagent

Palm tree fiber waste was collected from the locally available palm trees on the campus
of King Abdulaziz University, Jeddah, Saudi Arabia. The PTF was washed multiple times
with hot distilled water to eliminate dust and impurities and then dried in sunlight for a
few days. The dried palm fiber was crushed to powder form, sifted to the desired particle
size, and used to prepare the AC. The obtained granular particle size of the pulverized fiber
was approximately 0.43 mm. Raw materials and the prepared AC are shown in Figure 1.
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Figure 1. (a) Date palm tree, (b) Palm fibers, (c) Palm fibers powder, and (d) Activated carbon
powder.

Congo red anionic dye (HiMedia) and RhB cationic dye (Sigma Chemical) were used
as adsorbates (Table 1). Stock dyes solution (1000 mg L−1) was made by dissolving a suit-
able amount of dye powder, which was accurately weighed on an electronic balance using
deionized water. During the adsorption experiments, a diluted dye solution that had a con-
centration between 5 and 50 mg L−1 was prepared from the stock solution. The chemicals
reagents such as H3PO4, H2SO4, HCl, and KOH were supplied by Fisher Scientific.

2.3. Chemical and Thermal Activation of Carbon from Palm Tree Fiber

The activation was carried out by impregnation of the PTF with various chemical
agents as such as phosphoric acid (85%), sulfuric acid (98%), and potassium hydroxide
(2 M) with an impregnation ratio of chemical/biomass being 3:1. The duration of the
process was 24 h. The experiment was done under full safety precautions. Inside a fume
hood, the chemical agent was added gradually to PTF to obtain a mixture. Then, the slurry
was filtered, washed, and dehydrated in a dryer oven at 130 ◦C for 2 h. The designed
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samples of chemically activated carbon PTF were termed as CAPTF-H3PO4, CAPTF-H2SO4,
and CAPTF-KOH. The pyrolysis process was carried out to increase the efficiency of the
fibers activated by phosphoric acid (85%). The fibers were carbonized at 200, 300, 400,
500, 600, and 700 ◦C several times (30, 60, 120, and 180 min) in a muffle furnace using a
covered porcelain crucible for reduced oxygen. Then, they were cooled at room temperature
and soaked in 1.0 M NaOH for 2 h. After soaking, the obtained materials were washed
thoroughly with hot distilled water followed by cold distilled water to remove all free acid
until they attained a neutral pH. Then, they were oven-dried at 130 ◦C for 2 h. Finally, the
dried materials were milled into a fine powder and kept in a plastic bag until used. The
samples produced by activated carbon palm tree fiber were termed as PTFAC, as shown in
Figure 1.

Table 1. Properties of synthetic dyes.

Dyes Rhodamine B (RhB) Congo Red (CR)

Molecular formula C28H31N2O3Cl C32H22N6Na2O6S2

Molecular structure
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Molecular weight (g/mol) 479.02 696.66

Chemical/Dye class Xanthene dye Diazo dye

λmax (nm) 554 nm 496 nm

The adsorption process was performed by the batch-adsorption method. To select
the fiscal chemical-activating agent (i.e., H3PO4, H2SO4, or KOH), the best pyrolysis
temperature (200, 400, 600, or 800 ◦C), and suitable time (30, 60, 80, and 120 min) to remove
CR and RhB dyes, the synthesized PTFAC were conducted under the following conditions:
volume of dye solution = 20 mL, initial concentration = 25 mg L−1, contact time = 120 min,
temperature = 25 ◦C, adsorbent dose = 0.1 g, agitation speed = 300 rpm, pH = natural.

2.4. Characterization of AC

The specific surface area, total pore volume, average pore diameter, and pore size
distribution of the prepared AC were examined by Brunauer–Emmett–Teller (BET) N2
adsorption method. The presence of porosity, microanalysis, and surface morphology
of the PTFAC carbonized at 400 ◦C were studied by using the SEM and TEM. The FTIR
technique was used to study the effect of chemical treatment on biomasses and to recognize
various functional groups present on the surface of the materials. This technique was used
to examine the surface functional groups of the ACs.

Zeta potential measurement was used for determining the surface charge of AC
particles in the solution. In other words, the possible difference between the dispersion
medium and the stationary layer of fluid attached to the particle was measured by zeta
potential. The pH of the solution with distilled water was measured as follows: the mixture
was prepared in a ratio of 10 mL water to 1.0 g of carbon; this mixture was stirred, and the
pH was measured several times until a constant value was reached. The pH of zero-point
charge (pHzpc) for AC was determined by the batch equilibrium method. During the
measurement, the solid/liquid ratio was 1:1000; that is, 0.05 g AC was added to 50 mL of
water. This suspension was left for 48 h, and the pH was measured and found to be 3. In
another experiment, 0.05 g of AC was mixed with 50 mL of 0.1 M NaCl, and the pH of
solution was fixed between 2 and 12 by 0.1 M hydrochloric acid or 0.1 M sodium hydroxide.
The solution was stirred for 48 h on a shaker bath at an agitation speed of 120 rpm and at
room temperature (25 ◦C). Thereafter, the final pH values were recorded, and the difference
between the original and final pH values (∆pH = pHinitial − pHfinal) was calculated and
compared with the initial ones.
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2.5. Adsorption Processing

The adsorption of dyes onto PTFAC was assessed using batch adsorption experi-
ments. The procedure was performed as follows: First, a series of dye solutions with
initial concentrations of 5.0–50 mg L−1 was prepared. Second, dye solutions with different
pH values (2.0–12) were prepared. Finally, 20 mL of dye solution was added into 50 mL
volumetric flasks with different amounts of PTFAC adsorbent doses (0.05–0.25 g). Then,
the mixtures were stirred in a shaker at an agitation speed of 250 rpm at different times
(5.0–120 min) at room temperature. The solutions were filtered using the Whatman Quali-
tative Filter Paper Grade 2. The dye concentration was determined by using the UV-visible
spectrophotometer at wavelength 554 nm and 496 nm for RhB and CR dyes, respectively.
All the experiments were performed in triplicate, and the mean values were recorded. The
amount of all dyes adsorbed by the PTFAC and the removal percentage was calculated by
Equations (1) and (2), respectively:

Removal % =
Co − Ce

Co
× 100 (1)

qe =
(Co − Ce)

m
× V (2)

where qe is the quantity of adsorbed dye on 0.1 g of PTFAC (mg g−1), Co is the original dye
concentration (mg L−1), Ce is the residual concentration of the solution at equilibrium (mg
L−1), V is the volume of dye solution (L), and m is the amount of the adsorbent PTFAC (g).

2.6. Desorption Studies and Regeneration

To understand the sustainability of regenerating the AC and make the process more
economical, desorption trials were performed to determine the efficiency of the AC. The
traits of an excellent adsorbent should include not only high adsorption capacity but also
reduction of the overall cost of the adsorbent by possessing high desorption capacity.
Desorption studies of PTFAC were carried out using different concentrations of acetic
acid CH3COOH, sodium hydroxide NaOH, and different pH values of distilled water.
The R-PTFAC is a sample after adsorption used to study the regeneration and recycle.
Thereafter, 0.1 g R-PFAC was added to 50 mL desorption solutions (0.1, 0.5, 1.0 M NaOH;
0.1, 0.5, 1.0 M CH3COOH) and distilled water and the pH was adjusted (2.5, 4.5, 6.5, 8.5,
and 10.5). Then, it was stirred in a shaker at 250 rpm for 3 h at room temperature. After
desorption, R-PTFAC was washed with distilled water until it became neutral and was
reused for the removal of RhB and CR dyes from solution. The adsorption–desorption
studies were performed for five sequential cycles. The dye concentration in the filtrate was
examined by the UV–vis spectrophotometer. The effectiveness of the desorbed dye from
AC was evaluated by Equation (2).

2.7. Application of Real Water Samples

The real water samples were collected from the water sewage treatment plant and tap
water at King Abdulaziz University, Jeddah City. The well water and seawater samples
were collected from Rabigh City. The samples were applied by the adsorption of dyes onto
the PTFAC using batch experiment. Under the same condition of the adsorption process,
the removal percentage was calculated by Equation (2).

3. Results and Discussion
3.1. Physical Properties, Characterization, and Morphology of Synthesized PTFAC

Surface area, total pore volume, and mean pore diameter of the prepared AC, as
determined by adsorption/desorption isotherm of nitrogen, are shown in Figure 2a. As a
result, the prepared AC has a 648.90 m2 g−1 (BET) specific surface area and 2.83 cm3 g−1

total pore volume. It is noteworthy to mention that the specific surface area for the raw
material before activation was 9.0 m2 g−1 [33]. As per the results of adsorption/desorption
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isotherms presented in Figure 2a,b, the AC carbon follows type V isotherm of mesoporous
materials with a 0.79 nm mean pore diameter, and the process is proceeded with multilayer
adsorption. The data found are in line with the surface area value reported in the literature
based on the modification method such as chemicals, physical, or pyrolysis activation [17].
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Figure 2. (a) Adsorption/desorption isotherm and (b) pore size distribution of activated carbon from
palm tree fiber (PTFAC).

On the other hand, the zeta potential and zero-point charge of the prepared AC are
presented in Figure 3. The prepared PTFAC shows a zeta potential value of −28.3 mV
and has high surface electronegativity. The pH values for PTFAC in a solution and pHzpc
were 3.56 and 3, respectively. This means that the surface of PTFAC behaves as positively
charged under a pH value of 3 and negatively charged beyond a pH value of 3 [34]. In
addition, similar values of pHzpc have been reported for white pine sawdust (pHzpc
3.65) [35] and Virgin Granular AC activation by HNO3 (pHzpc 3.0) [36], which are close to
the value observed in this study.

Figure 4 shows the SEM image of the palm fiber carbonized at 400 ◦C and TEM
image of the AC after grinding. Figure 4a show that after thermal treatment, the fiber is
converted into a skeleton of carbon grains with a size range between 1 and 4 µm. The
TEM image of PTF shows a rough surface and porosity (Figure 4a). Meanwhile, the SEM
image of raw biomass PTF is reported in ref. [33]. The PTF has a rough surface with no
evidence of porosity and is covered by arrays of protrusions, which can be Si particles.
The porosity of carbon is due to the decomposition of lignin, cellulose, and hemicellulose
during carbonization, resulting in the formation of micropores and mesopores [37,38].
The cell structure of the PTFAC can be seen clearly by TEM. After grinding, the particles
were converted into rounded and edged grains with a size range of 20–50 nm (Figure 4b).
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Furthermore, the TEM image of raw biomass PTF indicates that the cell wall structure of
the fiber is almost round [36].
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The examination of the prepared AC before and after the adsorption of dyes by FTIR
can give better insight into the expected attraction forces between the PTFAC and dyes.
Figure 5 shows the FTIR spectra of the PTF and after the adsorption of CR and RhB dyes
by PTFAC. As shown in Figure 5, the following function groups are detected in the spectra:
the band observed at around 3335 cm−1 in the fiber and PTFAC spectra was attributed to
the O–H stretching of the hydroxyl group of alcohol present in cellulose and lignin, and
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the band at 1625 cm−1 was attributed to O–H bending of adsorbed water [39,40]. The band
at 2900 cm−1 was ascribed to the unsaturated C–H stretching vibration of the alkene or
aromatic groups [39]. The band observed at around 2925 cm−1 in the spectrum of fiber
was attributed to C–H vibration of organic matters in the fiber, which had nearly vanished
in the PTFAC, indicating that most of the elements such as hydrogen and oxygen are
removed after activation [16,41]. The bands at around 1605–1620 cm−1 were attributed to
the C=C stretching vibration in the aromatic rings [42]. The bands between 1238.81 cm−1

and 1032.31 cm−1 were attributed to the C–O stretching in carboxylic groups present in
cellulose, typically originating from the oxidized carbon [18,20]. The FTIR spectrum of
PTFAC demonstrates significant change by lowering peaks intensities when contrasted
to the PTF spectrum. The bands between 1220 and 1118 cm−1 can also ascribed to phos-
phorous species, such as hydrogen-bonded P=O, stretching vibrations O–C in P–O–C of
aromatic, P=OOH, and polyphosphate chain P–O–P [29,31]. In addition, the band around
1032.31 cm−1 assigned to the silicon atom initially attached to the oxygen atom Si–O [43].
The bands observed at around 470 cm−1, the spectra of carbons, were assigned to the
siloxane Si–O–Si group [43]. When the surface of PTFAC was covered by dyes, most of
its characteristic bands disappeared or mostly evanesced due to the adsorption of dye
on its surface. For example, O–H, C=C, and C–O bands and all types of phosphorous
species bands and Si–O–Si groups disappeared. This observation enhances the electrostatic
attraction forces between the adsorbent and adsorbed dyes through noncovalent interac-
tions, which may include dipole–dipole interaction, intermolecular forces, and hydrogen
bonding interaction.Processes 2021, 9, x FOR PEER REVIEW 9 of 21 
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Figure 5. The comparison of Fourier transform infrared spectroscopy (FTIR) spectra of palm tree
fiber (PTF) before and after the activation and after adsorption of Rhodamine B (RhB) and Congo red
(CR) dyes by PTFAC.

3.2. Optimization of Preparation Conditions for PTFAC

To optimize the preparation conditions of PTFAC, adsorption trial tests were carried
out using PTF activated with different chemical agents such as H3PO4 (85%), H2SO4
(98%), and KOH (2 M) with an impregnation ratio of 3:1 (chemical/biomass). In addition,
adsorption trial tests were conducted on the AC prepared at different temperatures at
various times. Figure 6 shows the removal percentage of CR and RhB dyes by PTF activated
by H2SO4, H3PO4, and KOH. From the mentioned dyes, the fiber activated by H2SO4
showed the highest removal percentage; hence, the H2SO4 is considered a strong oxidizing
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and dehydrating agent. As a result of the strong acid and base, H2SO4 and KOH exert a
high corrosive effect on the precursor that produces weight loss of the precursor, which
is less than that of the raw material. Indeed, the activation of AC by H3PO4 improves
the pore structure during the thermal treatment, which improves the porosity in terms of
macropores and mesopores of the PTFAC [8,44]. Thus, the activation by H3PO4 is highly
recommended for functionalization of the surface of the used bioadsorbent that has an
environmentally friendly in nature and easy to recover and recycle properties [17,45].Processes 2021, 9, x FOR PEER REVIEW 10 of 21 
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Figure 6. The removal percentage of CR and RhB dyes on the synthesized PTFAC with different (a)
chemical activation reagents, (b) activation temperature of CA-PTF-H3PO4, and (c) activation times
of CA-PTF-H3PO4 at 400 ◦C.

The removal percentage of dyes, adsorbed on PTFAC prepared at different tempera-
tures and times, are shown in Figure 6b,c, respectively. Thermal treatment data revealed
the chemical activation of AC with H3PO4 at 400 ◦C for 30 min in a facile and fast short
analytical time process for AC activation. Thus, it can be concluded that the cellulose
and hemicellulose in the PTF gradually decompose at 400 ◦C, resulting in a high specific
surface area. On the other hand, a long activation time causes degradation and decreases
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the surface area and porosity of carbons, damaging the pores because of the excessive
reaction with other activated agents. Hence, chemical activation with H3PO4 at 30 min is
adopted in the subsequent study for dyes removal in batch mode.

3.3. Influence of Parameters on the Adsorption Process (pH, Duration, Initial Concentration,
Adsorbent Dosage)

The batch experiment was done to study the influence parameters using Co = 25 mg
L−1, PTFAC mass = 0.1 g, V = 20 mL, t = 25 ◦C). In the adsorption process, the charge on the
adsorbent and the characteristics of adsorbate in solution are determined by the pH, which
has a radical impact on the adsorption ability. Figure 7a shows the effect of pH between
(2.0–12) on the removal percentage of CR and PhB dyes by PTFAC. Upon increasing the
pH values, the removal percentage declined slightly from 98.3% to 95.2% in the case of
CR and from 99.9% to 99.6% for RhB; apparently, the maximum adsorption is observed at
pH 2.0. As the zero-point charge of the adsorbent is at pH 3, it means that the adsorption
is high when pH is less than pHzpc and low when pH is more than pHzpc. However,
the cation dye (RhB) and anion dye (CR) at different pH values show high percentage
removal, which makes the PTFAC significant in the removal of wastewater, because dyes
in wastewater are usually in a wide pH range. It is well known that the adsorption of
dyes by the AC can proceed by van der Waals, electrostatic, and H-bonding interactions.
The CR is a dipolar molecule; it exists in an anionic form with red color at basic pH and
in a cationic form with blue color at acidic pH. It is also observed that the surface of AC
is covered by phenolic and carboxylic groups due to oxidation from the atmosphere and
water medium [46]. At lower pH, protonation of phenolic (PhOH) and carboxylic acid
(COOH) groups occurs on the surface of PTFAC, which leads to an increase in electrostatic
interactions with the cationic CR dye; therefore, the adsorption of CR on the AC surface is
higher. However, at a higher pH, the carboxylic and phenolic groups on the surface of AC
are expected to be completely ionized to carboxylate (COO−) and phenoxide (PhO−) ions.
Thus, the electrostatic repulsion between the anionic–CR and anionic–AC surface decreases
the adsorption capacity. In the case of RhB, the pH has no significant effect on the removal
percentage. The RhB may exist in cationic, laconic, or zwitterionic forms depending on
the pH of the solution medium. At lower pH, the RhB dye ions are cationic and present
in a monomeric molecular form that could easily enter the pore structure of the carbon,
resulting in higher adsorption. At higher pH, the RhB dye ions are zwitterionic and present
in dimer molecular form. The electrostatic interaction between the carboxylate ion and
xanthene groups in zwitterionic results in the formation of dimers of bigger molecular
forms that cannot easily enter the pores of carbon, resulting in lower adsorption. The
adsorption at all pH values in both the dyes shows a very insignificant variation, indicating
no ion exchange has occurred. So, the physical forces such as van der Waals, hydrogen
bonding and dipole–dipole interactions might participate in this developed adsorption [30].
Similar studies on the effect of pH at acidic media in removing RhB and CR dyes by other
adsorbents reported that RhB and CR dyes have maximum adsorption at pH 3.0 [47].

The duration plays an important role in the adsorption process of RhB and CR dyes
by PTFAC. Figure 7b shows that the removal percentage increases with the increase in
the duration, with high values of percentage between the range (5.0–120 min). The dyes
recorded a high absorption rate; their values were between 95.1% at 5 min and 99.5% at
120 min for CR dye, whereas they were 99.7% at 5.0 min and 99.9% at 120 min for RhB dye.
It indicated that the PTFAC has a high efficiency in removing both adsorbed dyes. This
is because of the very rapid adsorption that was found during the first 5.0 min, and even
then, the amount of the adsorbate increased with time and reached a constant value of
the maximum adsorption at 120 min. However, the availability of vacant active sites on
the surface of the PTFAC is the result of the rapid increase in adsorption during the initial
stage. Eventually, the process slows down due to the diffusion of dyes into the pores of
the PTFAC, because the external sites were fully occupied [8]. A similar study reported an
increase in the quantity of adsorption dyes with increased contact time. Using an initial
concentration of 1.0 g L−1, it was found that Raphia hookerie fruit epicarp could adsorb
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312 mg/g RhB dye at acidic pH, and equilibrium was attained at 40 min for an initial dye
concentration of 400 mg L−1 [47].
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Figure 7. Influence of (a) pH, (b) contact time, (c) initial concentration, and (d) adsorbent dosage on
elimination the RhB and CR dyes from solution by PTFAC (test conditions: T = 298 K, V = 20 mL).

The effect of the initial concentration parameter is significant in determining the
effectiveness of the adsorbent. The influence of initial dye concentration 5.0 to 50 mg L−1

on the adsorption capacity of PTFAC is shown in Figure 7c. The adsorption capacities (qe)
were increased with the increase in the initial dye’s concentration from 5.0 to 50 mg L−1.
The adsorption capacities were between 0.99 and 9.99 mg g−1 and 9.51 and 26.83 mg g−1

for CR and RhB days, respectively. After 25 mg L−1 initial concentration, no significant
change was observed in the adsorption capacity; thus, the adsorption process reached
the equilibrium. Initially, the adsorption process starts from the boundary layer; then, it
diffuses into the adsorbent surface, and finally diffuses into the porous structure of the
adsorbent [8]. In a similar study, an increase in the quantity of the dye adsorbed was
observed on increasing the initial concentration of 1.0 g L−1 of R. hookerie fruit epicarp
for adsorption capacity with 43.5 mg g−1 of RhB dye for an initial dye concentration of
50 mg L−1, while it can have a high adsorption of 312 mg g−1 of RhB dye for an initial dye
concentration of 400 mg L−1 [47].

The influence of adsorbent dosage (0.05 to 0.25 g) is shown in Figure 7d. The figure
shows that the removal amount of RhB and CR dyes by PTFAC increased with the increase
in the adsorbent dosage. Then, the equilibrium was attained after 0.1 g of PTFAC. There was
not much increase in the removal percentage of the dye. The percentage adsorbed of CR dye
increased from 97% (9.69 mg g−1) for the adsorbent dosage of 0.05 g to 99% (1.99 mg g−1)
for the adsorbent dosage of 0.25 g. The adsorption capacity of RhB dye increased from
99.6% (9.96 mg g−1) to 99.9% (1.99 mg g−1) with an increase in the adsorbent dosage of
0.05 to 0.25 g, respectively. The high removal efficiency with a high amount of adsorbent
(0.05–25 g) is due to the availability of binding sites for adsorption. The adsorption capacity
(qe) of the adsorbent was found to decrease with an increase in the adsorbent dosage, which
could be due to the interaction of adsorbent particles such as aggregation or agglomeration,
resulting in the decrease of the total surface area [8]. A similar study reported the increase
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in the percentage of adsorbed dye on increasing the adsorbent dosage [48]. Another
study reported the RhB dye concentration to be 100 mg L−1; at acidic pH, the percentage
adsorption of RhB dye increased from 85.19% to 88.88% as the adsorbent dosage increased
from 1.0 to 5.0 mg L−1 [47].

3.4. Adsorption Isotherms

Adsorption isotherm studies are very important as they describe how the adsorbed
molecules are distributed between the PTFAC and the CR and RhB dyes in the solutions at
equilibrium. They offer essential designing of the adsorption process by evaluating the
adsorption effectiveness of the adsorbent. In this work, adsorption equilibrium data of CR
and RhB dyes on PTFAC were analyzed by Langmuir and Freundlich adsorption isotherm
models. The Langmuir isotherm model is the most extensively used system, which is based
on a perfect hypothesis that adsorption occurs on the adsorbent at exact homogeneous
sites and can be useful for monolayer adsorption [49]. The linear equation of the Langmuir
isotherm model is presented below Equation (3).

Ce

qe
=

1
q Kl

+
1

qmax
Ce (3)

where qmax is the maximum adsorption capacity and Kl (L/mg) is the Langmuir constant.
qmax and Kl can be calculated by drawing Ce/qe (specific adsorption) against Ce (Figure 8a).
An additional important factor of Langmuir isotherm is the dimensionless separation factor
(Rl), which provides an understanding on the favorability of the adsorption process. This
has been given in Equation (4).

Rι =
1

1 + Kι Co
(4)

In the adsorption process, the separation factor Rl specifies whether the adsorption
isotherm is unfavorable (Rl > 1), satisfactory (0 < Rl < 1), irreversible (Rl = 0.0), or linear
(Rl = 1.0) [6,15]. The Freundlich isotherm model measures the adsorption capacity and
intensity of the adsorbate on heterogeneous surfaces, but it does not predict the maximum
adsorption [50]. The linear form of the Freundlich isotherm is expressed by Equation (5).

log
(
qe
)
= log (K f ) +

1
n

log (Ce) (5)

As Kf and 1/n are the Freundlich constants, they help calculate the capacity and
strength of adsorption, respectively. Kf and n can be obtained from the intercept and slope
by drawing log qe versus log Ce, respectively (Figure 8b). The n value gives the degree
of nonlinearity between the concentration of the solution and adsorbent. When n = 1.0,
the adsorption is linear, whereas n < 1 suggests that the adsorption process is chemical.
However, if n > 1, it means that the physical adsorption is satisfactory [15].

The Langmuir and Freundlich isotherms selected to explicate the interaction of CR
and RhB dyes with PTFAC are shown in Figure 8. Figure 8a shows the Langmuir isotherm;
as the linear correlation coefficient value (R2) represents the accuracy of the model, it is
found near the unity. The R2 values for the CR were 0.996, and for RhB, these were 0.980.
The Freundlich isotherm in Figure 8b shows R2 values for CR and RhB to be 0.8575 and
0.8541, respectively. Thus, this suggests that the adsorption values of CR and RhB dyes
are the best fit to the Langmuir adsorption model [49]. Based on the calculated data, the
coefficients of Langmuir and Freundlich isotherms models are illustrated in Table 2. The
Langmuir model shows a maximum adsorption capacity for CR dye at 10.4 mg g−1 and for
RhB dye at 26.5 mg g−1 by PTFAC. The dimensionless separation factor (Rl) value found for
CR dye was 0.04 and that for RhB dye was 0.034, indicating a favorable adsorption [6,15].
In addition, the highest value of the constant Kl for CR was 81.91 L mg−1, and for RhB,
it was 1264.5 L mg−1, which indicates a strong bonding of dyes onto PTFAC [30]. In this
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study, the value of n for RhB adsorption was above unity, indicating favorable physical
adsorption, but the value of n for CR was below unity, indicating chemical adsorption.
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Figure 8. Adsorption isotherms: Langmuir model of (a) CR dye; (b) RhB dye and Freundlich model for the adsorption of (c)
CR dye; (d) RhB dye by PTFAC (reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g, V = 20 mL, shaking
time = 120 min).

Table 2. Adsorption isotherm parameters calculated for RhB and CR dyes adsorbed by PTFAC*.

Adsorption Isotherm Parameters CR RhB

Langmuir

qmax (mg g−1)/Co (25 mg L−1) 10.4 26.5
Kl (L mg−1) 81.91 1264.5

Rl 0.04 0.034
R2 0.996 0.980
χ2 0.013 1 × 10−3

Freundlich

Kf (mg g−1) (mg L−1) 0.24 3.07 × 102

1/n −1.43 1.357
R2 0.857 0.854
χ2 4.131 3 × 10−3

* Reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g/ 20 mL, shaking time = 120 min.

In addition, the chi-square test was considered to calculate the best fitted model and
validation of adsorption kinetics [51], using Equation (6).

χ2 =
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where qe,exp and qe,cal are the experimental and calculated data of adsorption capacity at 
equilibrium (mg g−1) for each model. This error equation is used to express the distributed 
error among the calculated and experimental values of the isotherm model. When the er-
ror is minor, it proves that the isotherm model is well fitted. According to the χ2 analysis, 

(
qe,exp − qe,cal

)2

qe,cal
(6)

where qe,exp and qe,cal are the experimental and calculated data of adsorption capacity at
equilibrium (mg g−1) for each model. This error equation is used to express the distributed
error among the calculated and experimental values of the isotherm model. When the error
is minor, it proves that the isotherm model is well fitted. According to the χ2 analysis, it
was found that the Langmuir isotherm model showed a lower χ2 value for CR dye (0.013)
and RhB dye (0.001), as depicted in Table 2, suggesting that the adsorption of both dyes
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was monolayer type. The previous study reported that the acid-activated red mud can
adsorb the CR dye, and the Langmuir isotherm model is the best fit because the chi-square
was low [52].

3.5. Adsorption Kinetics

Kinetic investigations offer an important indication to realize the adsorption dynamics
or adsorption mechanism using pseudo-first-order and pseudo-second-order models. The
mathematical term of the pseudo-first-order model [53] is expressed in Equation (7).

log
(
qe − qt

)
= log qe −

k1

2.303
t (7)

where qt (mg g−1) and qe (mg g−1) are the quantities of dyes adsorbed at time t and at
equilibrium, respectively. k1 is the rate constant of the pseudo-first-order model (min−1).
The plot of log (qe – qt) versus t for the adsorption of CR and RhB dyes on PTFAC results
in linear graphs with a negative slope (Figure 9a); k1 and qe are determined from the slope
and intercept, respectively. In this case, the calculated qe (CR 0.408, RhB 0.006 mg g−1)
values of both dyes were considerably different from the qexp values. This suggests that
the data do not fit well with the first-order model.
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Figure 9. Adsorption kinetics: pseudo-first-order model of (a) CR dye; (b) RhB dye and pseudo-second-order model for the
adsorption of (c) CR dye; (d) RhB dye by PTFAC (reaction conditions: T= 298 K, pH = 2.0, Co = 25 mg L−1, mass = 0.15 g, V
= 20 mL).

The pseudo-second-order model describes that the adsorption process is a chemical
process. It describes the proportion between the rate constant and the engaged active sites.
The linear equation of the pseudo-second-order rate model is given in Equation (8).

t
qt

=
1

K2 qe2 +
t

qe
(8)
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where k2 is the pseudo-second-order model adsorption rate constant. The drawing of t/qt
against t provides linear graphs. The values of qe and k2 can be determined from the slope
and intercept of the PTFAC graph (Figure 9b).

The pseudo-first-order model in Table 3 shows that the calculated qe value is 0.408 mg/g
for CR dye and 0.006 mg g−1 for RhB dye. The values vary significantly lower than the
experimental qe values, which are 4.972 mg g−1 for CR dye and 4.999 mg g−1 for RhB dye.
However, with the pseudo-second-order model, the calculated qe values are 4.992 mg g−1

for CR dye and 4.998 mg g−1 for RhB dye, which are similar to the experimental qe values.
In addition, the obtained R2 values are very close to ones for the pseudo-second-order
kinetics adsorption process, which were 0.999 and 1.0 for CR dye and RhB dye, respectively.
The χ2 test was used to validate the kinetics models [47,54]. As χ2 values are generally
found to be low, the value for CR dye was 7.74 × 10−5, and for RhB dye, it was 2.01 × 10−8.
This indicated that the adsorption kinetics data obey the pseudo-second-order model. This
is similar to a report on the adsorption of RhB dye onto the area-modified R. hookerie
epicarp [47].

Table 3. Adsorption kinetics parameters calculated for RhB and CR dyes adsorbed on PTFAC*.

Kinetic Models Parameters CR RhB

Pseudo first order

qe,cal (mg g−1) 0.408 0.006
k1 (1/min) −0.031 −0.023

R2 0.90 0.72
χ2 51.05 3732.3

Pseudo second order

qe,cal (mg g−1) 4.992 4.998
k2 (g mg−1 min−1) 1.35 × 10−3 9.75 × 10−3

R2 0.999 1
χ2 7.744 × 10−5 2.011 × 10−8

qe,exp 4.972 4.999

* Reaction conditions: T = 298 K, 0.15 g/20 mL, Co = 25 mg L−1.

The adsorption of CR and RhB dyes on PTFAC is an intricate process that involves
physical forces acting through pores contained and chemical bonding derived from the
active groups on the PTFAC adsorbent [43,54]. Activation by phosphoric acid also enhances
the acidic-containing functional groups on PTFAC, resulting in better dye removal from
the aqueous solution by the used adsorbent [33]. FTIR analysis revealed the existence of
hydrogen bonds between CR, RhB, and the surface of PTFAC. The H bonding interaction
occurred between hydroxyl groups at the PTFAC surface and nitrogen-containing func-
tional groups of CR and RhB in acidic medium in addition to the specific attraction between
negatively charged COO− and SO3

− groups of CR dye and the positively charged PTFAC
surface [47,55]. Protonation of –OH and –COOH groups present at the PTFAC surface in
addition to the van der Waals force also enhances the uptake of the used analytes [47,55].

3.6. Desorption and Regeneration Studies

Desorption studies help to explain the adsorption mechanism in the recovery of the
adsorbent and to investigate the possibility of regeneration of used PTFAC loaded with RhB
and CR dyes. Table 4 shows that the desorption using distilled water by adjusting pH to 2.5,
4.5, 6.5, 8.5, and 10.5 has a high desorption efficiency and is very close (in percentage) to the
CH3;COOH and NaOH (0.1, 0.5, and 1.0 M). Thus, the PTFAC loaded with RhB dye showed
a high stability in the adsorption process. The desorption percentage at pH values of 2.5,
4.5, 6.5, 8.5, and 10.5 was 99.88%, 99.84%, 99.84%, 99.81%, and 99.77%, respectively, whereas
in the desorption of CR loaded on PTFAC, the percentage decreased with increasing the
pH from 2.5 to 10.5, which was 98.68%, 97.36%, 96.1%, 93.42%, and 93.42%, respectively.
Hence, the optimum desorption percentage of CR and RhB was observed at pH 2.5 using
distilled water as a green desorption reagent. This indicates that the adsorption of the
dyes is mainly due to the Van der Waals, electrostatic, and H-bonding interactions, and
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chemisorption mechanism [48]. In addition, the regeneration study of the adsorbent might
yield an efficient economical treatment process. Figure 10 shows the regeneration cycle of
PTFAC with CR and RhB dyes. It has no significant change of percentage removal in CR
dye. The removal percentage was between 98.68 and 96.1%, which indicated that the use of
PTFAC could be increased to more than five cycles. Thus, PTFAC showed high resistance
to adsorption efficiency after five regeneration cycles, whereas there was a decrease in
percentage removal in RhB dye with the increase of the number of cycles from the first
cycle (99.88%) to the fifth cycle (54.49%). That was due to the effect of the repeated use of
the PTFAC on the adsorption process. These dyes loaded on the PTFAC surface can change
superficial structures and result in the loss or blockage of the adsorption sites in the AC.
The magnetic lignosulfonate FCS studied two regeneration cycles for CR, and removal was
83% after five cycles [56]. It can be concluded that PTFAC is an efficient high-potential
adsorbent for the removal of cationic and anionic dyes and can be recycled several times.

Table 4. Desorption percentage of CR and RhB dyes by PTFAC with different desorption reagents.

Desorption Reagent Desorption, %

CR RhB

CH3;COOH (0.1 M) 90.78 99.69
CH3;COOH (0.5 M) 92.10 99.73

CH3;COOH(1 M) 89.47 99.65
NaOH (0.1 M) 93.42 99.77
NaOH (0.5 M) 92.10 99.81
NaOH (1 M) 92.10 99.84
H2O (pH 2.5) 98.68 99.88
H2O (pH 4.5) 97.36 99.84
H2O (pH 6.5) 96.05 99.84
H2O (pH 8.5) 93.42 99.81

H2O (pH 10.5) 93.42 99.77
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Figure 10. Regeneration cycle of PTFAC after adsorption by RhB and CR dyes.

3.7. Environmental Water Treatment

This study investigated the efficiency of PTFAC as an environmental application by
determining the highest percentage removal of CR and RhB dyes. The environmental
water samples were filtrated through No. 2 Whatman Qualitative filter paper; then, the
spike method was used by obtaining a 15 mg L−1 dyes concentration. Table 5 shows the
percentage removal of CR and RhB dyes from contaminated water. Thus, the percentage
removal values for RhB dye were 99.8% for tap water, 99.3% for well water, 99.4% for
seawater, and 98.3% for sewage water from the treatment plant. The percentage removal
values for CR dye were 99.8% for tap water, 94.4% for well water, 93.3% for seawater,
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and 92.3% for sewage water from the treatment plant. This indicates the PTFAC has high
stability to remediate water from CR and RhB dye. The removal percentages from the
highest to the lowest are tap water > well water > seawater > sewage water from the
treatment plant. These results confirmed that PTFAC could be used to treat RhB and CR
wastewater in the environmental application without adjusting the pH of the wastewater.
Thus, the PTFAC has high removal efficiency in the remediation of contaminated water
from anion and cation dyes.

Table 5. Adsorptive percent removal of CR and RhB dyes from real water samples by PTFAC.

Tap Water Well Water Seawater Sewage Water
Treatment PlantDyes

% Removal of RhB 99.8 99.3 99.4 98.3

% Removal of CR 99.8 94.4 93.3 92.3

4. Conclusions

In the current study, palm fiber was successfully used as solid waste for the production
of AC activated by H3PO4 at 400 ◦C after 30 min. The established method is a facile and fast
method that can be used as an efficient adsorbent for the elimination of anionic and cationic
dyes from wastewater. The texture and surface characteristics of the prepared PTFAC
showed 648.90 m2g−1 surface area, 2.83 cm3g−1 total pore volume, and 0.79 nm mean pore
diameter with a zeta potential value of −28.3 mV and point of zero charge (pHzpc) equal
to 3. The FTIR study indicated the presence of various functional groups. The results of
the adsorption process of the prepared PTFAC showed that pH, adsorbent dosage, contact
duration, and initial dye concentration have a dominant effect on the adsorption of CR and
RhB dyes. The Langmuir isotherm showed a maximum monolayer CR and RhB adsorption
capacity of 10.4 mg g−1 and 26.5 mg g−1, respectively, of an initial concentration 25 mg L−1

at pH 2.0, 25 ◦C, 120 min, and 0.1 g/20 mL adsorbent dose of AC. The kinetic studies
showed that the adsorption process fits in with the pseudo-second-order kinetics. The
desorption and regeneration studies of adsorbent were found to be effective until the fifth
regeneration cycle by using distilled water an eco-friendly desorption reagent at pH 2.5,
suggesting that the adsorbent could be regenerated and reused. Hence, the investigation
concludes that the PTFAC prepared from PTF is a cost-effective and promising adsorbent
toward dyes from environments.
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