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Abstract: Wind energy is a clean energy source and is receiving widespread attention. Improving 
the operating efficiency and economic benefits of wind power generation systems depends on more 
accurate short-term wind speed predictions. In this study, a new hybrid model for short-term wind 
speed forecasting is proposed. The model combines variational modal decomposition (VMD), the 
proposed improved seagull optimization algorithm (ISOA) and the kernel extreme learning ma-
chine (KELM) network. The model adopts a hybrid modeling strategy: firstly, VMD decomposition 
is used to decompose the wind speed time series into several wind speed subseries. Secondly, KELM 
optimized by ISOA is used to predict each decomposed subseries. The ISOA technique is employed 
to accurately find the best parameters in each KELM network such that the predictability of a single 
KELM model can be enhanced. Finally, the prediction results of the wind speed sublayer are summa-
rized to obtain the original wind speed. This hybrid model effectively characterizes the nonlinear and 
nonstationary characteristics of wind speed and greatly improves the forecasting performance. The 
experiment results demonstrate that: (1) the proposed VMD-ISOA-KELM model obtains the best per-
formance for the application of three different prediction horizons compared with the other classic 
individual models, and (2) the proposed hybrid model combining the VMD technique and ISOA op-
timization algorithm performs better than models using other data preprocessing techniques. 
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1. Introduction 
To achieve global clean energy development, reduce greenhouse gas emissions and 

prevent the crisis of the depletion of nonrenewable fossil energy reserves, the large-scale 
use of clean energy has become a global energy development trend [1,2]. Among the var-
ious widely used new energies, wind energy is used worldwide due to its wide energy 
distribution, pollution-free nature and sustainability, and it is of great significance to tap 
into the potential of wind energy to adjust the traditional energy structure. According to 
a report released by the Global Wind Energy Association (GWEC) in 2019, the global in-
stalled capacity of wind power in 2019 was 60.4 GW, reaching a total of 651 GW. As of the 
end of 2019, China’s cumulative installed wind power capacity reached 210 MW [3]. The 
chaotic, random and intermittent characteristics of wind speed pose considerable chal-
lenges to power systems. The violent fluctuation of wind power in a short period of time 
causes a short-term imbalance of the power system, which may cause the power system 
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to collapse. Therefore, accurate wind speed forecasting is critical to accurately predicting 
the output power of wind power and stabilizing the operating state of the power system. 

At present, wind speed prediction methods mainly include the following four meth-
ods: (i) the physical model method, (ii) the time series method, (iii) the spatial correlation 
method and (iv) the artificial intelligence method [4–6]. The physical model method 
mainly uses the physical parameters when the wind speed generates the background to 
construct complex mathematical equations, and uses numerical weather prediction 
(NWP) for simulation. Classic numerical simulation approaches include the high-resolu-
tion limited area model (HIRLAM) [7], the fifth-generation mesoscale model (MM5) [8] 
and the weather research and forecast model (WRF) [9]. However, physical methods have 
disadvantages such as a difficulty in obtaining physical data, the consumption of many 
computing resources and being unsuitable for short-term wind speed prediction [10]. The 
time series method uses the potential before and after information and correlation in the 
historical wind speed data to build a model. Common wind speed statistical models in-
clude autoregressive (AR) [11], autoregressive moving average (ARMA) [12], autoregres-
sive integrated moving average (ARIMA) [13] and autoregressive fraction moving aver-
age (ARFIMA) [14] models. Although time series approaches are simpler and more eco-
nomical when compared with physical model methods, they are also limited by the non-
linearity and nonstationarity of the wind speed time series. As a unique method, the spa-
tial correlation model starts from the relevant wind speed data around the wind speed 
center and selects appropriate sites to build a spatial model. Samalot et al. [15] successfully 
combined Kalman filtering and Kriging to reduce the bias of the weather research and 
forecasting (WRF) model. However, this method has strict measurement requirements 
and is difficult to implement. 

In addition, with the rise of artificial intelligence, artificial intelligence methods have 
shown strong advantages in the extraction of the nonlinear characteristics of wind speed 
fluctuations, and have gradually become a research hotspot in the field of prediction. 
Many methods including artificial neural networks (ANNs) [16,17], support vector ma-
chines (SVMs) [18,19] and fuzzy logic (FL) methods [20,21] have been applied to wind 
speed prediction. Monfared et al. [22] combined fuzzy logic with an artificial neural net-
work, which not only effectively reduced the rule base but also improved the accuracy of 
predicting wind speed. Li et al. [23] studied the application of adaptive linear elements 
(ALEs), back propagation (BP) and radial basis functions (RBFs) to these three neural net-
works in 1 -hour wind speed prediction and proposed that the best prediction model is 
related not only to the type of neural network but also to the data source. Guo et al. [24] 
proposed a backpropagation neural network wind speed prediction method to eliminate 
seasonal effects to predict daily average wind speed. This method can effectively eliminate 
seasonal effects from actual wind speed data. Zhang et al. [25] proposed a two-step 
method to determine the connection weight of the RBF network to predict the future wind 
speed interval. Compared with the traditional multilayer perceptron (MLP) method, this 
method can effectively increase the prediction interval. Compared with the traditional 
neural network, the extreme learning machine (ELM) has faster convergence speed and 
less human intervention, which leads to its strong generalization ability for heterogeneous 
datasets [26]. 

The neural network improves the prediction accuracy of wind speed series to a cer-
tain extent. However, the instability of the wind speed sequence and the corresponding 
noise also create considerable interference in the neural network model training process. 
In the end, the model training effect is not good, and the wind speed prediction error is 
large. Therefore, to solve the random interference of the wind speed sequence, various 
preprocessing technologies have been developed. Liu et al. [27] used wavelet transform 
(WT) preprocessing technology to decompose the original sequence into multiple wind 
velocity subsequences, and then made predictions through the echo state network. Niu et 
al. [28] used empirical mode decomposition (EMD) to decompose the original signal and 
then predicted each subsequence through the general regression neural network (GRNN) 



Processes 2021, 9, 387 3 of 21 
 

 

optimized by the fruit fly algorithm (FOA), which improved the accuracy of wind predic-
tion. EMD cannot effectively decompose the original wind speed series due to its disad-
vantages such as end effects and modal aliasing. After that, Ren et al. [29] studied the 
prediction model based on EMD, its improved version and two intelligent algorithms, and 
finally suggested complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN)and support vector regression (SVR) as the best wind speed prediction 
method. Zhou et al. [30] proposed a hybrid framework for multilevel wind speed predic-
tion based on variational model decomposition (VMD) and convolutional neural net-
works. Furthermore, chaos theory has increasingly attracted attention. Multifractal pat-
terns of wind speed can be obtained through chaotic characteristics analysis. Jiang et al. 
[31] employed a hybrid linear-nonlinear modeling method based on chaos theory to cap-
ture the linear and nonlinear factors hidden in wind speed time series, which contained 
VMD technology to remove the noise in original data. The experimental results showed 
that the hybrid model was more accurate compared with other models. 

Based on the analysis above, artificial intelligence methods have been the most ex-
tensive and successful approaches to short-term wind speed prediction, but the prediction 
ability of a single artificial intelligence method is limited. Hybrid approaches have shown 
better performance than single models. Therefore, it has gradually become a popular 
trend to apply data preprocessing techniques before sending wind speed data into fore-
casting models.  

In this study, a novel hybrid strategy is proposed that includes three portions: data 
preprocessing, optimization and forecasting. Specifically, based on the decomposition 
and integration strategy, VMD decomposition is used to decompose the original wind 
speed series into several variational modes to filter out the noise in the original wind 
speed time series. Then, the KELM prediction network is applied to the problem of wind 
speed forecasting. At the same time, the improved seagull optimization algorithm is used 
to optimize the kernel parameters of the KELM network, thereby forming a hybrid model. 

The main contributions and innovations of this research are as follows: (1) data pre-
processing technology is included to reduce the volatility and randomness of wind speed 
series and improve the accuracy of prediction. VMD decomposes the original wind speed 
series into a set of relatively stable modes. (2) In the prediction phase, the kernel function 
is added to ELM to map the one-dimensional wind speed sequence to the high-dimen-
sional space for prediction, which reduces the difficulty of prediction. (3) An improved 
seagull optimization algorithm (ISOA) is proposed to determine the two best parameters 
in KELM simultaneously. In the prediction phase, ISOA continuously searches for the two 
parameters of the kernel function in KELM. At the same time, each search can retain the 
optimal approximate solution, so that the KELM network can be optimized, and the pre-
diction accuracy and stability of the prediction are improved. (4) A systematic assessment 
system is established to evaluate the forecasting ability of our developed hybrid model. 
Four multistep prediction experiments and three performance indicators are included in 
this study to compare and analyze the forecasting capacity of the proposed hybrid model 
in each case. 

2. Methods 
The technologies used in the hybrid strategy are introduced in this section, including 

the data preprocessing technology (VMD), the KELM network and the improved seagull 
optimization algorithm. In the last part, the workflow of the hybrid strategy is presented. 

2.1. Variational Mode Decomposition (VMD) 
VMD is a novel signal decomposition method that was proposed by Dragomiretskiy 

and Zosso in 2014 [32], which decomposes a one-dimensional signal into a limited number 
of modes with a center frequency bandwidth through an iterative search. VMD has good 
adaptive ability and can overcome modal aliasing. It can decompose nonstationary wind 
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speed time series into subseries called intrinsic mode functions (IMFs). Each subseries 
contains rich information. The mathematical model of VMD can be expressed as follows: 
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where f  is the signal to be decomposed, ( )tδ  is the impulse function and ku  and kω  
are the k -th mode component and the corresponding center frequency, respectively. 

To solve the optimization problem of formula 1, we introduce the terms of the La-
grange multiplier operator λ  and quadratic penalty factor α : 
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The following shows the whole process of VMD decomposition: 
Step 1: Set the initial values of 1ˆ{ }ku , 1{ }ωk , 1ˆ{ }λ and n, where＾uses the Parse-

val/Plancherel Fourier equidistant transform for conversion to the frequency domain. 
Step 2: Use Equation (3), (4) and (5) to update 1ˆ{ }ku , 1{ }ωk and 1ˆ{ }λ , respectively; 
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Step 3: Go to step 2. until the iterative stop condition of Equation (6) is satisfied and 
output the result. 
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2.2. Kernel Extreme Learning Machine 
KELM is a single hidden layer feedforward neural network (SLFN). Traditional feed-

forward neural network training speed is slow and easily falls into local minimums, and 
the selection of the learning rate is sensitive. ELM randomly generates the connection 
weight between the input layer and the hidden layer and the threshold of the hidden layer 
source to obtain a unique optimal solution. For N arbitrarily distinct samples ( , )i ix o , 
where 1 2[ , , , ]= ∈ T n

i i i imx x x x R  and 1 2[ , , , ]= ∈ T m
i i i imo o o o R , the output of an ELM with 

L  hidden neurons can be expressed as 

1
( ) ( ) ,  1,2, , ,

L

i i i
i

x g b j Nβ
=

Θ = ⋅ + = = i j ja x o  (7) 
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where ( )⋅g represents the activation function of the hidden layer, 1 2[ , , , ]=  T
i i i ima a a a  is the 

input weight vector, 1 2[ , , , ]ιβ β β β=  T
i i im  is the output weight vector and ib  is the bias. 

Equation (7) can be simplified as 

,β =H T  (8) 

where 

1 1 1 1 1

1 1

( ) ( ) ( )
= ,

( ) ( ) ( )

L L

N N L N L N L

x g b g b

x g b g b
×

   ⋅ + ⋅ + 
   =   
   ⋅ + ⋅ +   


   



h a x a x
H

h a x a x
 (9) 

1
T

T
L L m

β
β

β
×

 
 =  
 
 

 and 
1

,

T

T
L L m

Τ

×

 
 =  
 
 


t

t
 (10) 

where H  is called the ELM hidden layer output matrix. Training a network of ELMs can 
be understood as finding a suitable set of â, b̂and β̂  satisfying: 
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The regularization coefficient C is introduced and the regularized least square solu-
tion is obtained: 

1ˆ= ( ) ,T TCβ −+H I HH T  (12) 

Thus, the output function of the ELM model is transformed into: 
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KELM combines the ELM algorithm with a kernel function. The idea of the kernel 
function is to map the input spatial sample data to the high-dimensional feature space, 
and replace the inner product operation in the transformed high-dimensional space with 
the kernel function operation in the original input space. 

In the KELM, the THH  of Equation (12)is constructed as follows: 
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where ( , )K ⋅ ⋅  denotes the kernel functions. It can be seen that KELM’s output function 
( )xΘ  and the output layer β  are as follows: 
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It is worth noting that the Gaussian kernel function is employed in this paper accord-
ing to the Mercer theorem as follows: 
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where 2γ  represents the parameter of the kernel function. Therefore, there are two pa-
rameters that need to be adjusted in KELM, and the accuracy of KELM can be improved 
by adjusting C  and γ . 

2.3. The Proposed ISOA Algorithm 
2.3.1. Seagull Optimization Algorithm 

An increasing number of scholars have become committed to the design and devel-
opment of new intelligent optimization algorithms. Dhiman G and Kumar V[33] devel-
oped a new type of bioinspired optimization algorithm, the seagull optimization algo-
rithm, by studying the biological characteristics of seagulls. Seagulls live in groups, using 
their intelligence to find and attack their prey. The most important characteristics of sea-
gulls are migration and aggressive behavior. The mathematical expression of the natural 
behavior of seagulls is as follows. 

During the migration process, seagulls move from one position to another and meet 
three conditions: 
• Avoid collision: To avoid collisions with other seagulls, variable A  is employed to 

calculate the new position of the search seagull. 

( ) ( ),s sC t A P t= ×  (18) 

where ( )sC t  represents a new position that does not conflict with other search seagulls, 
( )sP t represents the current position of the search seagull, t represents the current itera-

tion and A  represents the motion behavior of the search seagull in a given search space. 

( ( / )),c c iterationA f t f Max= − ×  (19) 

where 0,1,2, , iterationt Max=  , cf  can control the frequency of the variable, and its value 
drops from 2 to 0. 
• Best position: After avoiding overlapping with other seagulls, seagulls will move in 

the direction of the best position. 

( ) ( ( ) ( )),s bs sM t B P t P t= × −  (20) 

where ( )sM t  represents the positions of the search seagull. B is the random number re-
sponsible for balancing the global and local search seagull. 

22 ,dB A r= × ×  (21) 

where dr  is a random number that lies in the range of [0,1]. 
• Close to the best search seagull: After the seagull moves to a position where it does 

not collide with other seagulls, it moves in the direction of the best position to reach 
its new position. 

( ) ( ) ( ) ,s s sD t C t M t= +  (22) 

where ( )sD t  represents the best fit search seagull. 
Seagulls can constantly change their attack angle and speed during their migration. 

They use their wings and weight to maintain height. When attacking prey, they move in 
a spiral shape in the air. The motion behavior in the x , y  and z  planes is described as 
follows: 
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cos( ),x r θ= ×  (23) 

sin( ),y r θ= ×  (24) 

,z r θ= ×  (25) 

,vr u eθ= ×  (26) 

where r  is the radius of the spiral and θ  is a random angle in the range of [0,2 ]π . u  
and v  are the correlation constants of the spiral shape, and e  is the base of the natural 
logarithm. The attack position of seagulls is constantly updated. 

( ) ( ) ( ),s s bsP t D t x y z P t= × × × +  (27) 

where ( )sP t  saves the best solution and updates the position of other search seagulls. 

2.3.2. Improved Seagull Optimization Algorithm (ISOA) 
The SOA algorithm has the advantages of solving large-scale constrained problems, 

low computational cost, and fast convergence speed. Compared with other optimization 
algorithms, it has strong advantages. However, the global optimization search process of 
SOA is linear as shown in Equation (19). This linear search method means that the global 
search capability of SOA cannot be fully utilized. Therefore, we propose a nonlinear 
search control formula as shown in Equation (28), which can target the seagull group ex-
ploration process stage and improve the speed and accuracy of the algorithm. 

4

4

1 ,

iteration

c
t

Max

A f

e
 

⋅  
 

= ×  (28) 

where e  represents the base of natural logarithm. 
The specific implementation procedures of the proposed ISOA are shown as below: 
Step 1: Set the initial parameters of the SOA, including A , B , iterationMax , 2cf = , 

1u =  and =1v . 
Step 2: Initialize the seagull population. 
Step 3: Use the calculated fitness function to calculate the fitness value of each seagull 

and select the current best seagull position. 
Step 4: Choose different strategies to update seagull migration and attack positions 

according to the description in Section 2.3.2. 
Step 5: Repeat steps 3 and 4 to update the best seagull position and fitness value until 

the maximum number of iterations is reached. 
Step 6: Obtain the final best seagull position and fitness value. 

2.4. Workflow of the Hybrid Model 
Through decomposition-based data preprocessing technology, VMD, SOA and 

KELM were combined to establish a hybrid method for wind speed prediction. To im-
prove the prediction accuracy and search speed, an improved seagull algorithm was used 
to synchronously search the optimal parameters C  and 2σ  of KELM. The root mean 
square error was used as the fitness function. The workflow of this study is provided in 
Figure 1 and detailed explanations are given below. 

2.4.1. Data Preprocessing 
The original wind speed sequence was volatile and random. At this stage, VMD tech-

nology was used to decompose the complex wind speed data. The modes decomposed by 
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VMD had their own center frequencies, which were stable relative to the original wind 
speed time series. 

2.4.2. Hybrid Models Forecasting 
The KELM model was used as the basic predictive model of the system because of its 

advantages of fast learning and a super-nonlinear description ability. The decomposed 
subseries were respectively predicted by the KELM model. ISOA was used to find the two 
best parameters of KELM at the same time in the subseries prediction process to ensure 
that the prediction of each subseries was optimal. The two parameters of each subseries 
reached the optimal value when the number of iterations reach the maximum. Then, the 
forecasting results of these models were combined together to obtain the final wind speed 
forecasting result. The ISOA-KELM process is shown in Figure 1. 

2.4.3. Multi-Step ahead Forecasting 
The developed combined model was employed in this study to forecasting short-

term wind speed. One-step, two-step and three-step forecasts were included in this study. 
Multi-step forecasting was conducted to evaluate the predictive ability of the proposed 
strategy. The description of multi-step ahead forecasting is as follows: assume that the 
input datasets are { }( 5), ( 4), ( 1), ( )x t x t x t x t− − −  and the output datasets are { }( )x t l+ , 
where t  donates a certain moment and l  donates the forecast horizon. When l  is equal 
to a positive integer, set the output data to ˆ( ) ( )y l x t l= + . At this time, ˆ( )y l  is the l -step 
ahead forecast value of the original ( )x t l+ . 

 
Figure 1. Flow chart of the proposed model. VMD: variational modal decomposition; KELM: kernel extreme learning 
machine; ISOA: improved seagull optimization algorithm. 

3. Experimental Design 
3.1. Data Description 

The experimental data for this study were taken from the Shanghai (SH) wind farm, 
which possesses rich wind energy resources. These data sets were collected on April 8, 
July 4, October 20 and January 15, 2019. All data sets included 1006 points, which were 
recorded every 10 minutes and lasted approximately a week. The first six datasets were 
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used for preheating, and the entire dataset was divided into a training set and a test set 
before the experiment. The first 80% was used for training, and the last 20% was used for 
testing. The maximum (Max.), minimum (Min.), mean, median (Med.), standard deviation 
(SD), kurtosis (Kurt.) and skewness (Skew) of the four data sets were also recorded, as 
shown in Table 1. 

Table 1. Statistical indicators of the four datasets. 

Dataset Period 
Statistics Indicator 

Max. 
(m/s) 

Min. 
(m/s) 

Mean 
(m/s) 

SD 
(m/s) Skew. Kurt. 

Spring 8–14 April 15.17 0.37 6.97 2.79 0.19 2.31 
Summer 4–10 July 21.39 0.12 7.36 4.32 1.27 4.14 
Autumn 20–26 October 12.58 0.76 5.63 2.14 0.25 2.77 
Winter 15–21 January 12.34 0.93 6.45 1.97 −0.11 3.07 

3.2. Performance Metrics 
The value predicted by the model often had an error with regard to the true value. 

The performance indicator evaluates the prediction effect of different models by evaluat-
ing the error between the observed value and the predicted value. Different evaluation 
indicators have different evaluation capabilities. In this study, the mean absolute error 
(MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) were 
calculated. The calculation methods of MAE and RMSE offset the positive and negative 
prediction errors, taking into account the average degree of error between the predicted 
value and the observed value. MAPE is the average value of absolute error and is the most 
widely implemented indicator used to reflect the effectiveness and reliability of apro-
posed new model. To explain the performance indicators more clearly, Table 2 lists the 
definitions and specific formulas of the four error indicators. Here ( )oY i  and ˆ ( )pY i  rep-
resent the actual value and the predicted value, respectively, and N  is the sample size. 

Table 2. Three error metrics. 

Metrics Definition Equation 

MAE Mean absolute error 
1

1 ˆ( ) ( )
N

o p
i

MAE Y i Y i
N =

= −  

RMSE Root-mean-square error ( )2

1

1 ˆ( ) ( )
N

o p
i

RMSE Y i Y i
N =

= −  

MAPE Absolute percentage error 
1

ˆ( ) ( )1 100%
( )

N
o p

i o

Y i Y i
MAPE

N Y i=

−
= ×  

4. Different Experiments and Relative Analysis 
In this section, a detailed evaluation and analysis of the proposed model are carried 

out. Two sets of experiments are designed, and the graphs and tables visually show the 
corresponding prediction results and evaluation indicators. The experimental setup and 
results are as follows. 

4.1. Experimental Setup 
Two sets of comparative experiments were used to compare the forecasting ability 

between the proposed model and other comparable models. Experiment 1 compared the pro-
posed combined model with five independent models to investigate its prediction perfor-
mance. Experiment 2 compared the forecasting accuracy between the proposed model and 
models using various data preprocessing technologies. The four data sets were tested by all 
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models. The results of multistep ahead forecasting further illustrated the forecasting capability 
of different models. Three error evaluation indicators were used to quantify the predictive 
ability. The smaller the value of error criteria, the better the predictive performance. 

In Experiment 1, we selected five widely used individual models (BP, SVM, LSTM, 
ELM and KELM) as the control group of the comparative experiment. In order to compare 
the developed strategy with the prediction ability based on different data preprocessing 
technologies, such as discrete wavelet transform (DWT), EMD and complementary en-
semble empirical mode decomposition (CEEMD), we conducted experiment 2. 

4.2. Experiment I: Comparison with Other Individual Models 
Table 3 shows the comparison of the results of the proposed model and the other 

individual models in the four seasons datasets. Figures 2–4 show the forecasting results 
of individual forecasting models in SH in April. At the top of the chart, the predicted re-
sults versus 10 min interval sampling points for all forecasting models are shown. Below, 
the error distribution diagram of forecasting and the scatter diagram of each individual 
model are presented. 

For SH Apr, in the one-step forecasting, the proposed model showed the best MAE, 
RMSE and MAPE scores at 0.315, 0.408 and 6.606% respectively, followed by the KELM 
model, whose values for MAE, RMSE and MAPE were 0.888, 1.190 and 17.373% respec-
tively. The worst was the BP neural network, with MAE, RMSE and MAPE scores of 1.247, 
1.642 and 30.167%, respectively. When the model forecasting was two-step, the developed 
model had the best accuracy with an RMSE of 0.436. In the three-step, the proposed model 
still had the best predictive ability with an RMSE of 0.496, but the second most accurate 
model was the BP network. Figures 4–6 shows the prediction results of the proposed 
model and the individual model in the spring experimental series (SH Apr). 

 

Figure 2. The results of each prediction model in one-step prediction in SH Apr. 
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Figure 3. The results of each prediction model in two-step prediction in SH Apr. 

For SH July, when the forecasting is one-step, the proposed VMD-ISOA-KELM hy-
brid model achieves the highest accuracy with a MAPE value of 3.140%. Comparatively, 
the individual models have fairly lower MAPE values of 9.792%, 7.434%, 8.561%, 7.355% 
and 7.342%, respectively. In the two-step and three-step forecasting, the developed com-
bined model is more effective than the other methods for wind speed forecasting. Mean-
while, KELM has the lowest MAPE values at 7.342% and 9.883% in the one-step and two-
step among the remaining four individual models. 

 
Figure 4. The results of each prediction model in three-step prediction in SH Apr. 
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For SH Oct, according to the evaluation criteria shown in Table 3, the proposed model 
still outperformed the individual models in the three steps, with MAPE values of 2.367%, 
2.541% and 2.844%. According to the obtained MAPE, long short-term memory (LSTM) is 
ranked as the second most effective model in the three forecasts, with lower MAPE values 
of 7.731%, 10.557% and 11.753%. 

For SH Jan, in all forecasting steps, the developed combined model exceeded the five 
benchmark models with MAPE values of 3.894%, 4.276% and 4.737%. In the two-step and 
three-step forecasting, the five individual models performed poorly, and their RMSE val-
ues were all over 1. 

Table 3. Comparison of forecasting performances of the proposed model and other independent models. BP: backpropa-
gation; SVM: support vector machine; LSTM: long short-term memory; ELM: extreme learning machine; KELM: kernel 
extreme learning machine. 

Datasets Models 
One-Step Two-Step Three-Step 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
(m/s) (m/s) (%) (m/s) (m/s) (%) (m/s) (m/s) (%) 

SH Apr 

BP 1.247 1.642 30.167 1.273 1.747 33.836 1.274 1.713 31.622 
SVM 0.919 1.248 23.690 1.202 1.648 31.104 1.338 1.796 35.701 

LSTM 1.014 1.331 21.583 1.496 1.919 29.888 1.516 1.961 36.335 
ELM 0.954 1.303 21.051 1.340 1.890 35.802 1.576 2.281 46.062 

KELM 0.888 1.190 17.373 1.156 1.568 23.916 1.270 1.731 29.056 
Proposed 0.315 0.408 6.606 0.330 0.436 6.837 0.378 0.496 7.512 

SH Jul 

BP 0.677 0.864 9.792 0.770 0.961 11.105 1.002 1.228 14.638 
SVM 0.519 0.678 7.434 0.687 0.858 9.956 0.767 0.931 11.197 

LSTM 0.638 0.819 8.561 0.761 0.946 11.168 0.765 0.952 10.830 
ELM 0.521 0.684 7.355 0.693 0.856 9.931 0.787 0.969 11.431 

KELM 0.515 0.672 7.342 0.680 0.839 9.883 0.739 0.900 10.853 
Proposed 0.221 0.270 3.140 0.226 0.276 3.205 0.237 0.288 3.361 

SH Oct 

BP 0.676 0.886 8.966 1.055 1.326 13.731 0.853 1.120 11.471 
SVM 0.749 1.079 8.763 0.937 1.243 11.468 1.070 1.393 13.285 

LSTM 0.616 0.823 7.731 0.823 1.073 10.557 0.937 1.221 11.753 
ELM 0.671 0.947 8.184 0.897 1.219 11.145 1.045 1.396 12.996 

KELM 0.750 1.018 8.981 0.941 1.210 11.672 1.056 1.348 13.268 
Proposed 0.182 0.235 2.367 0.198 0.257 2.541 0.223 0.287 2.844 

SH Jan 

BP 0.809 1.095 11.848 0.880 1.179 13.159 0.985 1.347 14.676 
SVM 0.629 0.903 9.066 0.828 1.112 12.333 0.942 1.262 14.244 

LSTM 0.655 0.940 9.485 0.875 1.161 12.714 0.902 1.223 13.556 
ELM 0.739 1.120 10.279 0.970 1.374 14.066 1.092 1.539 15.869 

KELM 0.632 0.891 9.179 0.823 1.104 12.239 0.916 1.239 13.783 
Proposed 0.252 0.333 3.894 0.280 0.372 4.276 0.314 0.418 4.737 

4.3. Experiment II: Comparsion with Other Models using Different Data Preprocessing Methods 
This experiment demonstrated the forecasting performance of the wind speed time 

series by comparing the VMD-ISOA-model with models using different data prepro-
cessing methods, namely DWT, EMD and CEEMD. The comparison results are listed in 
Table 4 and Figures 5–8. More details of the experiment are given below: 

For SH Apr, in the one-step forecasting, the proposed model showed the best perfor-
mance with a MAPE value of 6.606%. In comparison, the model after pretreatment of VMD 
ranked as the second most effective model among the other data preprocessing technolo-
gies, with MAPE values of 7.089%, 7.412% and 8.340%, respectively, from one-step to three-
step forecasting. Correspondingly, the DWT-Model showed the worst forecasting accuracy 
with MAPE values of 18.12%, 28.585%, and 36.064% from one-step to three-step forecasting. 
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Figure 5. Forecasting performance of decomposed models in one-, two- and three-step ahead forecasting for the spring 
dataset. 

For SH July, according to the evaluation criteria shown in Table 4, the proposed 
model still outperformed the individual models in one-step forecasting, with the lowest 
MAE, RMSE and MAPE values of 0.221, 0.270 and 3.140%. According to the obtained 
MAPE, LSTM ranked as the second most effective model in the three forecasting, with 
lower MAPE values of 7.731%, 10.557% and 11.753%. 

For SH Oct, when the forecasting was one-step, the proposed VMD-ISOA-KELM hy-
brid model achieved the highest accuracy with a MAPE value of 3.140%. Comparatively, 
the DWT-Model, EMD-Model, CEEMD-Model and VMD-Model had MAPE values of 
5.981%, 6.744%, 3.452%, 7.355% and 7.342%, respectively, which wereinferior to our de-
veloped hybrid model. The comparison results of our forecasting strategy and DWT-
Model, EMD-Model and CEEMD-Model are shown in Figure 7. 

For SH Jan, when the model forecasting is one-step, the prediction accuracy of the 
hybrid model, which has the lowest MAE, RMSE and MAPE values of 0.252, 0.333 and 
3.894% respectively, was still superior compared to the other models using different pre-
processing methods. In addition, the CEEMD -Model showed a better forecasting perfor-
mance than EMD, with MAPE values of 6.807%, 7.601% and 8.246% respectively when the 
model forecasting changed from one-step to three-step. 
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Figure 6. Forecasting performance of decomposed models in one-, two- and three-step ahead forecasting for the summer 
dataset. 

 
Figure 7. Forecasting performance of decomposed models in one, two and three-step ahead forecasting for the autumn 
dataset. 
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Figure 8. Forecasting performance of decomposed models in one, two and three-step ahead forecasting for the winter 
dataset. 

Table 4. Comparison of forecasting performances of the combined model and other models using different data prepro-
cessing methods. DWT: discrete wavelet transform; EMD: empirical mode decomposition; CEEMD: complementary en-
semble empirical mode decomposition; VMD: variational mode decomposition. 

Datasets Models 
One-Step Two-Step Three-Step 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
(m/s) (m/s) (%) (m/s) (m/s) (%) (m/s) (m/s) (%) 

SH Apr 

DWT 0.639 1.074 18.12 1.121 1.532 28.585 1.377 1.808 36.064 
EMD 0.606 0.768 13.779 0.764 0.999 19.892 0.856 1.156 23.910 

CEEMD 0.552 0.731 14.308 0.634 0.860 14.796 0.699 0.951 16.466 
VMD 0.331 0.437 7.089 0.353 0.471 7.412 0.404 0.528 8.340 

Proposed 0.315 0.408 6.606 0.330 0.436 6.837 0.378 0.496 7.512 

SH Jul 

DWT 0.427 0.589 6.116 0.649 0.825 9.301 0.759 0.917 11.002 
EMD 0.441 0.555 6.031 0.494 0.630 6.817 0.531 0.671 7.346 

CEEMD 0.288 0.374 4.114 0.334 0.436 4.682 0.388 0.503 5.464 
VMD 0.289 0.353 4.098 0.248 0.302 3.533 0.279 0.340 4.002 

Proposed 0.221 0.270 3.140 0.226 0.276 3.205 0.237 0.288 3.361 

SH Oct 

DWT 0.521 0.848 5.981 0.875 1.206 10.587 1.043 1.388 12.927 
EMD 0.505 0.677 6.744 0.565 0.768 7.452 0.635 0.844 8.293 

CEEMD 0.266 0.372 3.452 0.350 0.485 4.559 0.410 0.561 5.412 
VMD 0.251 0.316 3.114 0.337 0.423 4.154 0.365 0.458 4.529 

Proposed 0.182 0.235 2.367 0.198 0.257 2.541 0.223 0.287 2.844 

SH Jan 

DWT 0.416 0.701 6.016 0.780 1.042 11.552 0.917 1.216 13.738 
EMD 0.51 0.672 7.569 0.579 0.764 8.661 0.634 0.838 9.448 

CEEMD 0.442 0.596 6.807 0.489 0.669 7.610 0.531 0.727 8.246 
VMD 0.273 0.364 4.200 0.308 0.410 4.690 0.336 0.445 5.077 

Proposed 0.252 0.333 3.894 0.280 0.372 4.276 0.314 0.418 4.737 
  



Processes 2021, 9, 387 16 of 21 
 

 

5. Discussion 
This section presents an insightful discussion of the experiment results, namely the 

main contributions, the performance of the employed optimization algorithm, the effec-
tiveness of the proposed model and improvements of the proposed model. The concrete 
details are as follows. 

5.1. Main Achievements and Results 
Considering the noisy and highly nonlinear features of real wind speed data, this 

paper mainly proposes an optimized hybrid forecasting strategy based on VMD, KELM 
and ISOA for short-term wind speed forecasting. VMD decomposition technology has ad-
vantages in terms of weakening the non-stationarity of wind speed data, which were 
found by comparing and analyzing the experimental results of VMD-KELM, EMD-KELM, 
CEEMD-KELM and DWT-KELM techniques. With regard to wind speed forecasting, 
KELM is used as a powerful regression core to characterize the relationship between the 
samples in each subsequence and the expected output. Experiment 1 showed that KELM 
has a certain advantage in several widely used individual models. However, the predic-
tion accuracy of KELM is sensitive to parameters. For this purpose, a novel algorithm ISOA 
was proposed to solve optimization issues, transforming the global optimization strategy 
from linear to non-linear. In order to further improve the prediction, the two parameters of 
KELM were optimized by the proposed ISOA algorithm. The superiority of the proposed 
prediction strategy was shown through relative experiments and contrastive analysis. 

5.2. Performance of the Employed Optimization Algorithm 
In this subsection, eight typical benchmark functions were used to measure and ver-

ify the proposed ISOA algorithm, including three unimodal functions and five multi-
modal functions. The unimodal function was used to test the development ability, and the 
multimodal function was used to test the development ability and avoid falling into the 
local optimum. These benchmark functions are shown in Table 5. Peak donates the fea-
tures of the function, Dim donates the dimension of the function, Range donates the defi-
nition domain of the function and minf  donates the optimal value of the function. 

Table 5. Description of unimodal, multimodal and fixed-dimension benchmark functions. 

Function Peak  Dim Range minf  
2
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In addition, seven classic optimization algorithms were selected for comparison with 
the new algorithm, namely particle swarm optimization (PSO), differential evolution 
(DE), seagull optimization algorithm (SOA), gray wolf optimizer (GWO), sine cosine al-
gorithm (SCA), moth flame optimization (MFO) and the multiverse optimizer (MVO). All 
algorithms were run 50 times on each benchmark function and with a maximum of 200 
iterations. Figure 9 shows the convergence curve of ISOA and other comparison algo-
rithms with the same dimensions. Compared with SOA, ISOA was closer to the optimal 
value with the same number of iterations. Among all comparative functions, ISOA had 
the fastest convergence speed, reflecting ISOA’s efficient exploration capability. In order 
to measure the experimental results, the average value (AVG) and standard deviation 
(STD) were used to evaluate the results. Note that the best results are presented in bold. 
The data in Table 6 demonstrate that the optimization result of ISOA was the best among 
all optimization algorithms. At the same time, the STD values of the solutions were still 
the smallest, indicating the stability of the ISOA. 

 
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. Convergence curves of ISOA, seagull optimization algorithm (SOA), particle swarm optimization (PSO), differ-
ential evolution (DE), gray wolf optimizer (GWO), sine cosine algorithm (SCA), moth flame optimization (MFO) and mul-
tiverse optimizer (MVO) tested on various benchmark functions. (a) F1; (b) F2; (c) F5; (d) F8; (e) F9; (f) F10; (g) F11; (h) F15. 

Table 6. Test results of 50 trials of ISOA and other algorithms. 

ID Metric ISOA SOA PSO DE GWO SCA MFO MVO 
F1 AVG 1.80 × 10−96 9.18 × 10−72 3.90 × 10−1 2.64 × 10−6 8.70 × 10−9 6.87 × 102 3.98 × 104 8.41 × 100 

 STD 1.27 × 10−95 6.49 × 10−71 2.75 × 10−1 2.15 × 10−6 8.14 × 10−9 7.40 × 102 5.13 × 103 2.60 × 100 
F2 AVG 9.45 × 10−68 9.40 × 10−63 1.23 × 100 1.05 × 10−4 5.61 × 10−6 1.50 × 100 3.95 × 101 4.28 × 101 

 STD 4.51 × 10−67 3.97 × 10−62 4.62 × 10−1 3.42 × 10−5 2.91 × 10−6 1.41 × 100 1.90 × 101 8.35 × 101 
F5 AVG 2.88 × 101 2.88 × 101 4.17 × 102 3.17 × 101 2.78 × 102 2.05 × 106 5.54 × 106 1.07 × 103 

 STD 2.95 × 10−2 4.62 × 10−2 5.17 × 102 1.84 × 101 7.76 × 101 4.70 × 106 1.91 × 107 1.59 × 103 
F8 AVG −1.25 × 104 −1.25 × 104 −3.40 × 103 −4.18 × 103 −5.81 × 103 −3.51 × 103 −8.31 × 103 −7.51 × 103 

 STD 5.07 × 101 7.95 × 101 5.23 × 102 3.57 × 101 1.16 × 103 2.71 × 102 8.04 × 102 5.74 × 102 
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F9 AVG 0.00 × 100 0.00 × 100 1.08 × 102 4.72 × 100 1.47 × 101 1.03 × 102 1.73 × 102 1.35 × 102 
 STD 0.00 × 100 0.00 × 100 3.25 × 101 2.11 × 100 8.63 × 100 4.94 × 101 2.72 × 101 3.23 × 101 

F10 AVG 8.89 × 10−16 8.89 × 10−16 1.51 × 100 7.09 × 10−4 1.67 × 10−6 1.47 × 101 1.57 × 101 2.70 × 100 
 STD 0.00 × 100 0.00 × 100 5.16 × 10−1 3.08 × 10−4 9.73 × 10−6 7.21 × 100 4.69 × 100 5.79 × 10−1 

F11 AVG 0.00 × 100 2.02 × 10−2 5.96 × 100 9.69 × 10−2 1.03 × 10−2 6.89 × 100 2.55 × 101 1.07 × 100 
 STD 0.00 × 100 1.43 × 10−1 3.09 × 100 5.57 × 10−2 1.48 × 10−2 5.44 × 100 3.35 × 101 1.98 × 10−2 

F15 AVG 3.70 × 10−4 4.40 × 10−3 9.10 × 10−4 3.67 × 10−2 4.20 × 10−3 1.10 × 10−3 1.90 × 10−3 6.70 × 10−3 
 STD 2.90 × 10−4 4.80 × 10−3 2.19 × 104 4.24 × 10−2 7.71 × 10−3 3.96 × 10−4 4.00 × 10−3 8.81 × 10−3 

5.3. Effectiveness of the Developed Strategy 
To investigate the different effectiveness of the developed model and other compar-

ison models, the Diebold-Mariano (DM) test was employed, which is a statistical hypoth-
esis test. The null hypothesis 0H  and alternative hypothesis 1H  are written as follows: 

( ) ( )1 2
0 : i iH E F e E F e   =     (29) 

( ) ( )1 2
1 : i iH E F e E F e   ≠     (30) 

where F is the loss function of forecasting errorsand 1
ie  and 2

ie  are forecasting errors 
between actual values and forecasted values of the different forecasting models. Then, 
implementing statistical reasoning by DM test statistics, the DM test statistic values can 
be computed by 

( )1 2
1 2

2

( ) ( )
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n
i ii

F e F e n

n
τ

τ
=

−
=


 (31) 

where 2τ  denotes the estimation for the variance of 1 2( ) ( )i iF e F e− . 
Table 7 lists the mean DM values from one- to three-step forecasting. Regardless of 

the DM values for one-step, two-step and three-step forecasting, the DM values of the nine 
comparison models were all obviously significant. For some classic individual models, all 
DM values were much larger than the upper limits at a 1% significance level. Moreover, 
when comparing with models applying different data pretreatment technologies, the pro-
posed hybrid model similarly obtains showed a improvement. 

Table 7. Diebold–Mariano (DM) test of different models. 

Model 1-Step 2-Step 3-Step 
BP 7.9252 8.6438 8.6631 

SVM 6.3969 7.9864 8.4509 
LSTM 7.0239 8.2106 8.6123 
ELM 6.9602 7.0022 7.3714 

KELM 6.6534 8.1960 8.7345 
DWT 6.3367 6.6578 7.5850 
EMD 4.2412 6.6594 6.8246 

CEEMD 5.5755 5.4812 5.6415 
VMD 3.6386 4.6848 4.1407 
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5.4. Improvements of the Proposed Model 
To further discuss and evaluate the degree of improvement in forecasting when com-

paring a selected model with the proposed mode, we adopted an improvement percent-
age of the MAPE criteria ( MAPEP ), which enabled a comprehensive analysis of the pro-
posed hybrid model. It is defined as 

1 2
MAPE

1

MAPE MAPE
100%

MAPE
P

−
= ×  (32) 

According to the definition of MAPEP , the larger the MAPEP , the better the forecasting 
accuracy of our developed model relative to the selected models. Table 8 presents the im-
provement percentages of MAPE for the proposed model and other forecasting models. 
From further analysis of the results shown in Table 8, we are able to state the following. 
1. The improvement ratios of the evaluation indicators of the proposed strategy com-

pared with individual models are greater than 50%. Among the classic individual 
models, the maximum improvement percentages of MAPE for the three steps fore-
casting are 78.01% (SH Apr, one-step), 81.49% (SH Oct, two-step) and 83.69% (SH Jan, 
three-step), which shows the developed model’s significant improvements to multi-
step forecasting. 

2. Similar to previous research, when compared with other models using different data 
preprocessing technologies, the improvements in the forecasting effectiveness of the 
proposed model are fairly evident. For instance, in comparison with DWT-KELM, 
EMD-KELM, CEEMD-KELM and VMD-KELM, the proposed model leads to 63.54%, 
52.06%, 53.83% and 6.81% reductions for  one-step forecasting, respectively. Thus, 
the developed combined model can obtain satisfactory forecasting effectiveness. 

3. These results show that there is still much room for individual models to improve 
forecasting accuracy. Adding a data preprocessing technique can significantly im-
prove the forecast precision. However, the use of optimization algorithms can further 
improve the accuracy and stability of short-term wind speed forecasting. 

Table 8. Improvement percentages of the proposed model. 

Model 
SH April SH July SH October SH January 

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 
BP 78.10 79.79 76.24 67.93 71.14 77.04 73.60 81.49 75.21 67.13 67.51 67.72 

SVM 72.11 78.02 78.96 57.76 67.81 69.98 72.99 77.84 78.59 57.05 65.33 66.74 
LSTM 69.39 77.12 79.33 63.32 71.30 68.97 69.38 75.93 75.80 58.95 66.37 65.06 
ELM 68.62 80.90 83.69 57.31 67.73 70.60 71.08 77.20 78.12 62.12 69.60 70.15 

KELM 61.98 71.41 74.15 57.23 67.57 69.03 73.64 78.23 78.56 57.58 65.06 65.63 
DWT 63.54 76.08 79.17 48.66 65.54 69.45 60.42 76.00 78.00 35.27 62.98 65.52 
EMD 52.06 65.63 68.58 47.94 52.99 54.25 64.90 65.90 65.71 48.55 50.63 49.86 

CEEMD 53.83 53.79 54.38 23.68 31.55 38.49 31.43 44.26 47.45 42.79 43.81 42.55 
VMD 6.81 7.76 9.93 23.38 9.28 16.02 23.99 38.83 37.20 7.29 8.83 6.70 

Note: The units of all values revealed in the table are (%). 

6. Conclusions 
To follow the trend of clean energy development, strive to achieve low-carbon envi-

ronmental protection, and vigorously develop wind energy resources, this paper pro-
poses a hybrid forecasting model based on VMD, an improved seagull optimization algo-
rithm and KELM. Firstly, VMD is applied to decompose the given non-stationary wind 
speed data into several subseries with various scales. Then, KELM is used as a powerful 
regression core to characterize the relationship between the samples in each subsequence 
and the expected output. To enhance the prediction performance, the proposed ISOA is 
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designed by including a nonlinear formula, which controls the population migration pro-
cess and attack process of SOA. Subsequently, the proposed ISOA algorithm is applied to 
the simultaneous optimization of two parameters in the KELM model. Finally, the final 
predicted value is obtained by summing the results of all subseries. Furthermore, to eval-
uate the effectiveness and applicability of the developed combined model, different fore-
casting models are implemented on four datasets. The selected forecasting models in-
cludes five classic individual models and four hybrid models. The experimental results of 
the three metrics show that (1) the VMD is effective in improving the accuracy and stabil-
ity of the wind speed predictions; (2) compared with the common ANN and SVM models, 
the KELM models show advantages in capturing the nonlinear characteristics of the wind 
speed time series; (3) regardless of the forecasting step or the observation datasets, the 
proposed combined strategy was superior to all of the selected methods with average 
MAPE values of 3.865%, 4.213% and 4.614% for one- to three-step forecasting. 
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