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Abstract: In this study, a wavy microchannel heat sink with grooves using water as the working fluid
is proposed for application to cooling microprocessors. The geometry of the heat sink was optimized
to improve heat transfer and pressure loss simultaneously. To achieve optimization goals, the average
friction factor and thermal resistance were used as the objective functions. Three dimensionless
parameters were selected as design variables: the distance between staggered grooves, groove
width, and groove depth. A modified Latin hypercube sampling (LHS) method that combines the
advantages of conventional LHS and a three-level full factorial method is also proposed. Response
surface approximation was used to construct surrogate models, and Pareto-optimal solutions were
obtained with a multi-objective genetic algorithm. The modified LHS was proven to have better
performance than the conventional LHS and full factorial methods in the present optimization
problem. A representative optimal design showed that both the thermal resistance and friction factor
improved by 1.55% and 3.00%, compared to a reference design, respectively.

Keywords: microchannel heat sink; wavy microchannel; groove; heat transfer performance; laminar
flow; multi-objective optimization; LHS; full factorial methods

1. Introduction

Microprocessors generate high heat flux and thermally interact with their surround-
ings. Because they are composed of many integrated components, their efficiency and
performance are significantly influenced by temperature. The temperature must be kept
between 363 K and 383 K to maintain the best performance [1]. Therefore, it is essential
to develop an effective cooling system to maintain a proper temperature even with high
heat generation.

Cooling systems are being made less noisy and smaller, and it is estimated that heat
sinks capable of cooling at more than 1000 W/cm2 will be required in the near future [2].
Both air and water can be used for cooling systems, but as the heat generation increases with
the development of microprocessors, air cooling systems have a limitation in maintaining
effective cooling performance [1]. In addition, to increase air-cooling performance, the fan
speed must be increased, which increases noise.

Water-cooling microchannel heat sinks have been widely used to reduce noise and
meet increased requirements for cooling. Numerical and experimental studies on these
heat sinks have been actively conducted. Tuckerman and Pease [3] experimented with a
microchannel heat sink consisting of straight channels with heat flux of 790 W/cm2 using
water as a coolant. They confirmed that the water had great heat transfer characteristics.
Wang et al. [4] carried out experiments and numerical analyses on a microchannel heat sink
consisting of straight channels with ribs and grooves. They found that secondary flows
occurring behind the ribs and grooves prevented the formation of the thermal boundary
layer and promoted fluid mixing and heat transfer.

Ansari et al. [5] and Farhanieh et al. [6] investigated the cooling performance of
straight microchannels with grooves. They found that the interfacial area of heat transfer
is increased by the grooves, thereby increasing the cooling performance. Ansari et al. [5]
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suggested that high local Nusselt numbers are obtained near the upstream and downstream
regions of the groove structures. Farhanieh et al. [6] confirmed that although the heat
transfer performance was low due to recirculating flow in the grooved area, the groove
structure prevented the formation of the thermal boundary layer, enhancing the overall
heat transfer performance.

Greiner et al. [7] evaluated the friction coefficient and cooling performance of flow
paths with triangular grooves through experimental and numerical analyses. In the case
of laminar flow, the friction coefficient decreased as the hydraulic diameter was increased
by the grooves. As the Reynolds number increased, the flow over the triangular grooves
became more complex. Consequently the heat transfer performance improved. Xie et al. [8]
confirmed that in the case of grooved channels, the heat transfer performance improved in
the area, where the fluid velocity increased due to the narrowed channel.

Recently, some studies were performed on curved microchannel heat sinks [9,10].
Gong et al. [9] proposed wavy microchannels for a heat sink and studied its cooling
performance. They found that the wavy microchannel heat sink caused a vortex at the
trough and crest sections in each cycle, resulting in a significant improvement in cooling
performance compared to a straight-microchannel heat sink. The pressure losses did not
increase significantly. Sui et al. [10] investigated a wavy microchannel heat sink for various
flow conditions and amplitudes. They compared three-dimensional numerical analyses
and experiments in all cases. The numerical results of the cooling performance and friction
coefficient were reliable, and vortices were developed at the trough and crest sections in
each cycle.

With the rapid development of computing power, optimization designs that can
handle a huge amount of data have become practical [11–13]. In particular, optimization
based on a surrogate model has been widely used to reduce the computing time [14–16]. A
surrogate model is constructed using sample data at several selected points in the design
space. Design of experiments (DOE) is used to extract the sample data. The prediction
accuracy of surrogate models is affected by the sample data, so DOE should be carried out
carefully [17]. DOE can typically be classified into two categories according to the extraction
method: factorial design [18] based on orthogonal extraction and Latin hypercube sampling
(LHS) [19], which uses random extraction.

Factorial designs are experiments that combine all levels of each factor with all levels
of all other factors in an experiment [18]. This method is very intuitive, and the number of
sample data is determined by the number of design variables. Therefore, it is easy to use
because it can be applied without considering the distribution and number of sample data.
However, the features within the design space are considered less because the sample data
are focused on the boundaries of the design space.

LHS uses a random extraction method for sample points within the design space. This
method is widely used because the space-filling quality of the sampling points is good. In
addition, it can create any allotted number of sampling points [19]. However, since LHS
extracts sample data inside the design space, the boundary values of each design variable
are not considered. Therefore, a surrogate model based on LHS often makes predictions
that are too high at the bounds of design variables.

In the present work, a modified LHS that uses the advantages of orthogonal and
random extraction methods is proposed. The modified LHS extracts sample data by
applying LHS inside the design space and prevents excessive prediction of the surrogate
model by applying the three-level full factorial method to the boundaries of the design
space. A wavy microchannel heat sink improves the heat transfer efficiency compared with
straight microchannels. In this study, a wavy microchannel heat sink with grooves attached
to the channel walls is proposed. A numerical analysis of the laminar flow and heat transfer
in the microchannels was performed using three-dimensional Navier-Stokes equations.

Multi-objective optimization of the wavy microchannels was also performed to simul-
taneously enhance the heat transfer efficiency and reduce the pressure loss. The proposed
modified LHS was compared with conventional DOE methods to determine the effec-
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tiveness of the proposed sampling method in constructing surrogate models. For the
optimization, response surface approximation (RSA) [20] and a genetic algorithm [21] were
used as a surrogate model and searching algorithm, respectively.

2. Numerical Analysis

The computational domain and design variables are shown in Figure 1. The heat sink
consists of 62 wavy microchannels, and the computational domain includes one of them,
which is composed of 10 cycles. Two grooves are attached to each channel wall in one cycle
of the channel, as shown in Figure 1. The amplitude of the wavy channel is 138 µm, and
the total length (20P) is 25,000 µm. The thickness of the side wall (2t) is 193 µm, the channel
width (W) is 207 µm, and the height of the flow path (h) is 406 µm.
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Figure 1. Geometry of the wavy microchannel with grooves and computational domain comprising 10 cycles of wavy channel.

The information for the reference channel is shown in Table 1. In the reference channel,
the horizontal locations of grooves on both the walls are the same (D = 0). Grooves are
attached to crests and troughs when D = 0. As D increases, grooves on the left wall (located
at z = 400 µm in Figure 1) move in the −x direction, and grooves on the right wall (located
at z = 0 in Figure 1) move in the +x direction from a crest (or a trough).

Table 1. Dimensions of the reference wavy channel with grooves.

Parameter Value (µm)

Width of channel, W 207

Wall thickness of channel, 2t 193

Length of channel 25,000

Half of wave length, P 1250

Depth of groove, d 48.5

Width of groove, w 187.5

Distance between staggered grooves, D 0.0

Amplitude of channels 138

Height of flow path, h 406

Height of microchannel, H 502.5
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Conjugate heat transfer analysis was carried out on the flow channel and solid domain
for laminar flow in steady state using three-dimensional Navier-Stokes equations. The
commercial computational fluid dynamics code ANSYS CFX 15.0® (Version 15.0, ANSYS
Inc., Canonsburg, PA, USA, 2013) [22] was used for the analysis. The boundary conditions
are shown in Figure 2. The boundary conditions were used in the same way as in a
previous study [10]. The working fluid was water at 300 K, and the material of the solid
wall was copper.
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Figure 2. Boundary conditions.

The inlet Reynolds number (Re = ρUDh/µ) was 700, and the corresponding flow rate
was assigned at the inlet. The average velocity of water at the inlet is 1.992 m/s. The static
pressure was used as an exit boundary condition. Periodic conditions for temperature
were applied to both side boundaries (i.e., wavy surfaces) considering the neighboring
microchannels. Uniform heat flux conditions (50 W/cm2) were applied to the bottom
boundary (substrate), and the upper boundary was assumed to be adiabatic.

The fluid and solid computational domains consist of hexahedral and unstructured
tetrahedral meshes, respectively. Since the flow velocity changes near the groove, dense
meshes are placed there. Near the solid wall, dense meshes were also placed in anticipation
of large temperature and velocity gradients due to the boundary layer. Figure 3 shows
an example of the grid system. Convergence conditions were set so that the root-mean-
squared residual values of all parameters fell to 1.00 × 10−6. Each computation took about
5–6 h on a computer with an Intel Core i7–4790K 4GHz CPU.
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3. Optimization Procedure

The multi-objective optimization problem was formulated as follows:
Minimize: F(x) = [F1(x), F2(x)]
Design variable bound: LB ≤ x ≤ UB, x∈R,
where F(x) is the vector of real-valued objective functions, x is a vector of the design

variables, and LB and UB indicate the vectors of the lower and upper bounds, respec-
tively [23]. Figure 4 shows a flowchart for the multi-objective genetic algorithm (MOGA)
optimization process using a surrogate model. Firstly, the objective functions and con-
straints are defined according to the design goals. Secondly, the design variables and their
ranges are selected.
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Figure 4. Multi-objective optimization procedure.

The full factorial method, LHS, and modified LHS were used in DOE to select design
points (i.e., sample designs). Values of the objective functions were evaluated by numerical
analysis at these design points. Next, to approximate the objective functions, surrogate
models were constructed using these objective function values. A genetic algorithm (GA)
was used to find the global optima. Finally, Pareto-optimal solutions (a collection of non-
dominated solutions) were derived using MATLAB (Release 14, the Math Work Inc., Natick,
MA, USA, 2004) [24].

3.1. Design Variables and Objective Functions

For optimization, three geometric parameters were selected as the design variables
through a preliminary parametric study: the ratio of the groove depth to half of the side
wall thickness (d/t), the ratio of the groove width to half of the cycle length (w/P), and the
distance between staggered grooves on the opposite walls to half of the cycle length (D/P).
The depth and width of the grooves were expected to affect the vortices occurring around
the grooves and thus have sensitive effects on the heat transfer. The distance between
staggered grooves affects the disturbance of the main flow.

The average Nusselt number Nu is defined as follows [10]:

Nu =
hDh
kw

(1)
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where Dh is the hydraulic diameter of the microchannel, and kw is the thermal conductivity
of water. h is the average convective heat transfer coefficient, which is defined as follows:

h =
q

(Ab + 2As)(Tw − Tm)
(2)

where q is the heat flux, Ab and Ac are the bottom area and the side area of the flow channel,
and Tw and Tm are the average temperature at the solid wall and the average of the inlet
and outlet temperatures, respectively.

The friction factor f is defined as follows [10]:

f =
(dp/dx)Dh

0.5ρU2 (3)

where dp, ρ, and U are the pressure difference between the inlet and outlet, the density
of water, and the average velocity at the inlet, respectively. The thermal resistance Rth is
defined as follows [5]:

Rth =
Ts,max − Tf ,inlet

qA
(4)

where Ts,max and Tf,inlet are the highest temperature at the bottom substrate and the av-
erage temperature of the cooling fluid at the inlet, respectively, and A is the area of the
microchannel substrate. The local Nusselt number (Nux) is defined as follows:

Nux =
ql Dh(

Tw,l − Tf ,inlet

)
kw

(5)

where ql and Tw,l are the local heat flux and local temperature at the surface of the solid
wall, respectively.

Rth and f were selected as objective functions for the multi-objective optimization:
FRth = Rth and Ff = f. The thermal resistance Rth is related to the highest local temperature,
which affects the performance of micro devices. The friction factor f was used to reduce
the pressure drop through the microchannel. A parametric study was carried out for
the performance functions using three design variables: D/P, w/P, and d/t. Based on
the parametric study, the ranges of the three design variables were selected, as shown in
Table 2.

Table 2. Ranges of design variables.

d/t w/P D/P

Lower bound 0.1 0.05 −1.0

Reference 0.5 0.15 0

Upper bound 0.9 0.25 1.0

3.2. Modified LHS

Factorial design [18,25] is a classical DOE method that explores the design space.
2–level and 3–level full factorial designs are widely used to estimate interactions between
design variables. Figure 5 shows examples of 2– and 3–level full factorial designs for two
design variables. In the 2–level full factorial design, the sample points are located at the
ends of each boundary, as shown in Figure 5a. In the 3–level full factorial design, the sample
points are located at the ends and middle of each boundary, as shown in Figure 5b. In these
full factorial designs, the distribution and number of the sample points are determined
according to the number of design variables when the level is determined.
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Figure 5. Examples of the full factorial designs.

LHS [19] is one of the most popular DOE methods for random sample distributions.
To allocate p samples using LHS, the range of each parameter is separated into p bins, which
yields a total number of pn bins for n design variables in the design space. The samples are
randomly chosen in the design space, each sample is randomly arranged inside a bin, and
for all one-dimensional projections of the p samples and bins, there is exactly one sample in
each bin, as shown in Figure 6. Therefore, LHS is relatively incapable of handling samples
at the boundaries of the design space compared to the full factorial designs.
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Since the surrogate model is built using the data at the sample points, the distribution
of the sample points has a very significant influence on the prediction accuracy of the
surrogate model. Therefore, when using LHS with sample points concentrated inside
the design space, it is possible to predict the interaction well inside the design space, but
predictions that are too high may occur at the boundaries where there are no data. On the
other hand, in the full factorial design, the sample points are focused on the boundaries of
the design space, so it is possible to make a relatively accurate prediction at the boundaries,
but there is a problem in the prediction inside the design space.

To solve this problem, a modified LHS is proposed. In the modified LHS, sample
points are extracted using the 2–level full factorial method at the boundaries of the design
space, and the LHS method is used to select sample points inside the design space. An
example of the modified LHS for two design variables is shown in Figure 7. In this method,
the surrogate model does not show high predictions at the boundaries of the design space.
Furthermore, by selecting the sample points inside the design space, the shortcomings of
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the full factorial design can be overcome. MATLAB [24] was used to extract the sample
points. Three–level full factorial design, LHS, and the modified LHS were tested for the
same optimization problem. Twenty-seven sample points were extracted for all these
DOE methods.
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3.3. Surrogate Model and Searching Algorithm

The surrogate model was configured based on the sample points obtained using DOE
methods. Response surface approximation (RSA) [20] was used as the surrogate model.
MOGA coupled with the RSA model was used to obtain Pareto-optimal solutions [24].

The RSA model is multivariate polynomial model, and a continuous response y(x) is
usually modeled as follows [20]:

y(x) =
N

∑
j=1

β j f j(x) + ε, E(ε) = 0, V(ε) = σ2 (6)

where x is a vector of design variables, f j(x) (j = 1, . . . , N) are the terms of the model, βj (j =
1, . . . , N) are the coefficients, and the error ε is assumed to be uncorrelated and distributed
with a mean of 0 and constant variance [20]. A second-order polynomial is used for the
RSA model, and the model can be expressed as follows:

y(x) = β0 +
N

∑
i=1

βixi +
N

∑
i=1

βiix2
i +

N

∑
i<j

βijxixj (7)

The model involves an intercept, linear terms, quadratic interaction terms, and squared
terms (from left to right). R2 and Radj

2 are used to decide the goodness of the fit and should
be close to 1 for a good fit [20].

GA is a random global search technique that solves problems based on natural evo-
lution. An initial population of individuals is defined to represent a part of the solution
to a problem [21]. Before starting the search, a set of chromosomes is randomly selected
from the design space to obtain the initial population. Through subsequent computations,
the individuals adapt in a competitive way. The initially selected set of chromosomes is
called the parental generation, and the subsequent selected set of chromosomes is called
the child generation. In this process, genetic search operators (selection, mutation, and
crossover) are used to obtain chromosomes that are superior to the previous generation [21].
MATLAB [24] was used to invoke the GA for multi-objective optimization.



Processes 2021, 9, 373 9 of 19

4. Results and Discussion
4.1. Grid Dependency Test and Validation of Numerical Results

A grid dependency test was carried out for the reference shape based on Richardson’s
extrapolation method and grid convergence index (GCI), which represents numerical
uncertainty by estimating the discretization error according to the procedure presented by
Roache [26] and Celik and Karatekin [27].

Table 3 shows the results of calculating the discretization error for Nu. The number of
grid nodes was adjusted by setting the grid segmentation index to 1.3, and three different
grid systems were analyzed. When N2 was used, the extrapolation error (e21

ext) was about
0.3%, and GCI21

f inewas about 0.4%, which indicate small numerical uncertainty. Therefore,
N2 was selected as the optimal grid system.

Table 3. Analysis of grid convergence index.

Parameter Value

Number of cells
N1
N2
N3

2.58× 106

2.37× 106

2.22× 106

Grid refinement factor r 1.3

Computed efficiency (Nu ) corresponding to N1, N2, N3

Nu 1
Nu 2
Nu 3

20.09
20.02
19.88

Apparent order P 2.90

Extrapolated values ϕ21
ext 20.15

Approximate relative error e21
α 3.35× 10−1%

Extrapolated relative error e21
ext 2.93× 10−1%

Grid convergence index GCI21
f ine 3.68× 10−1%

To verify the numerical results, they were compared with experimental data obtained
by Sui et al. [10] for the Nusselt number and friction factor in a wavy microchannel under
the same boundary conditions, as shown in Figure 8. As shown in Figure 8, the numerical
results for the friction factor show good agreement with the experimental data, except
at the lowest Reynolds number. The numerical results for the Nusselt number deviate
slightly from the experimental data over the whole Re range but show the same qualitative
tendency. At Re = 300, the errors are relatively large because the pressure drop and the flow
rate are relatively small, as discussed by Sui et al. [10].
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4.2. Heat Transfer Performance Enhancement by Grooves

Table 4 shows the comparison of the performance parameters between the smooth
and reference wavy microchannels. In the wavy channel with grooves, Nu increased by
about 8.34%, and Rth decreased by about 2%, but the friction factor f also increased by
about 1.25% in comparison with the smooth wavy channel. This means that the grooves
largely enhance the heat transfer but with less increase in the friction. This improvement in
the heat sink performance with grooves is expected to be further increased by optimization.

Table 4. Performance comparison between reference and smooth wavy microchannels.

Performance Function

Nu Rth (K/W) f

Reference microchannel 20.02 4.58 1.61× 10−1

Smooth microchannel 18.48 4.67 1.59× 10−1

The temperature distributions on the wavy wall on the right side of the reference
and smooth microchannels are shown in Figure 9. In the case of the reference design, it
can be seen that the temperature increase in the flow direction is smaller than that of the
smooth microchannel, resulting in lower maximum temperature. This shows improved
heat transfer performance on the sidewalls and confirms the results shown in Table 4.

Processes 2021, 9, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 9. Temperature distributions on a right side wall: (a) smooth microchannel and (b) refer-
ence design. 

 
Figure 10. Local Nusselt number distributions on wavy walls: (a) smooth microchannel and (b) 
reference design. 

 
Figure 11. Velocity vectors on x–z plane and y–z plane (a) velocity vectors on the x–z plane (y/H = 
0.6) (b) velocity vectors on the y–z plane. 

Figure 11b shows the velocity vectors in the y–z plane. Vortices are found near the 
top and bottom of the flow channel in the crest. In the case of the reference design with 
grooves, a complicated flow structure is found near the left wavy wall at the edge of a 
groove (x/2P = 5.875) due to the upward flow escaping from the groove, which promotes 
mixing of the fluid (and thereby heat transfer) in these regions. This is due to sudden 
contraction of the flow area just downstream of a groove and provides a reason for the 
high Nux regions downstream of the grooves shown in Figure 10b. Even though the 
grooves are at the same locations on both the wavy walls, the flow fields shown in Figure 
11b are not symmetric in the z direction because the main flow upstream of the groove 
proceeds in the +z direction. 

Figure 12 shows the temperature distributions in the y–z plane at the inflection point 
of the wavy channel (x/2P = 6). The temperature gradient is relatively small near the upper 
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The local Nusselt number (Nux) distributions on the wavy side walls are shown in
Figure 10. High Nux regions are found between the crest and the trough (e.g., x/2P = 5.75–6.25)
on the left wall, but they are found between a trough and crest (e.g., x/2P = 6.25–6.75) on
the right wall. In addition, most of the high Nux regions are distributed near the top and
bottom of the flow path. In the case of the smooth microchannel, a low Nux region is found
near the middle height of the flow path immediately after each crest (e.g., x/2P = 5.75). In
the reference design, the high Nux regions are found just downstream of the grooves, and
the total area of the high Nux regions is larger than that of the smooth channel. This results
in high Nu in the grooved microchannel, as shown in Table 4.
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Figure 11 shows the flow fields of the reference design and the smooth wavy mi-
crochannel. Figure 11a shows that the velocity gradients near the left wall are larger than
those near the right wall between a crest and trough (x/2P = 5.75–6.25), but vice versa
between the trough and crest (x/2P = 6.25–6.75). This phenomenon occurs due to the
fluid inertia. The regions with high velocity gradients and those with high Nux shown in
Figure 10 are nearly the same. Thus, it can be inferred that the high velocity gradient near
the wall promotes the heat transfer and enhances Nux.
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Figure 11b shows the velocity vectors in the y–z plane. Vortices are found near the
top and bottom of the flow channel in the crest. In the case of the reference design with
grooves, a complicated flow structure is found near the left wavy wall at the edge of a
groove (x/2P = 5.875) due to the upward flow escaping from the groove, which promotes
mixing of the fluid (and thereby heat transfer) in these regions. This is due to sudden
contraction of the flow area just downstream of a groove and provides a reason for the high
Nux regions downstream of the grooves shown in Figure 10b. Even though the grooves are
at the same locations on both the wavy walls, the flow fields shown in Figure 11b are not
symmetric in the z direction because the main flow upstream of the groove proceeds in the
+z direction.

Figure 12 shows the temperature distributions in the y–z plane at the inflection point
of the wavy channel (x/2P = 6). The temperature gradient is relatively small near the upper
and lower sides of the flow path in common. This is thought to be due to the strong vortices
shown in Figure 11b. These low temperature gradients also contribute to the distribution
of high Nux in these regions (Figure 10). Figure 12 shows that the temperature on the left
side in the reference design is still low, even at the medium height, unlike in the smooth
wavy microchannel. This is due to the fluid mixing caused by the strong secondary flow
downstream of the grooves.
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4.3. Parametric Study

Figure 13 shows the results of the parametric study for Nu, Rth, and f. When one
parameter was changed, the other parameters were fixed at the reference values shown
in Table 2. With the change of parameters, the friction factor f shows small variations of
less than 2.5%. At d/t = 0.5, the maximum Nu and f and minimum Rth are found, which
indicates that there is an optimum groove depth for heat transfer enhancement.
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Rth and Nu are inversely correlated with the variation of d/t. Nu and f have maximum
values at w/P = 0.15, but Rth has a minimum value at w/P = 0.25. Rth decreases as w/P
increases in the tested range. This means that wide grooves are effective in reducing
thermal resistance. In the case of D/P, Nu and f increase as D/P increases, but Rth shows a
maximum at D/P = 0 (non-staggered grooves). This indicates that if the absolute value of
D is fixed, the relative locations of grooves between the two wavy walls do not affect Rth
unlike Nu and f.

At D/P = 0.5, Nu shows the maximum value of 20.2. This is the value improved by
23.2% from the value (Nu = 16.4) of the wavy microchannel heat sink without grooves
predicted by Sui et al. [10] under the same geometric and Reynolds number conditions.

4.4. Optimization Results with Different DOEs

Figure 14 shows the distribution of sample points of three different DOEs. In Figure 14a,
the 3-level full factorial design shows that the sample points are located on only the
boundaries of the design space. In the case of the conventional LHS, the sample points are
distributed in only the design space, as shown in Figure 14b. However, in the modified
LHS, the sample points are located on the boundaries and inside of the design space,
as shown in Figure 14c. The RSA models for the objective functions, Ff and FRth, were
formulated in terms of the design variables normalized between 0 and 1 for three different
DOEs as follows:



Processes 2021, 9, 373 13 of 19

Ff _ f ull f actorial = 0.1591 + 0.0092
(

d
Sw

)
− 0.0120

(
D
P

)
− 0.0018

(w
P
)
− 0.0025

(
d

Sw

)(
D
P

)
+0.0084

(
d

Sw

)(w
P
)
− 0.0008

(
D
P

)(w
P
)
− 0.0049

(
d

Sw

)2
+ 0.0139

(
D
P

)2

−0.0031
(w

P
)2

(8)

FRth_ f ull f actorial = 4.6438− 0.0086
(

d
Sw

)
+ 0.2094

(
D
P

)
+ 0.1187

(w
P
)

+0.0703
(

d
Sw

)(
D
P

)
− 0.2730

(
d

Sw

)(w
P
)
− 0.0409

(
D
P

)(w
P
)

−0.0403
(

d
Sw

)2
− 0.3249

(
D
P

)2
− 0.0534

(w
P
)2

(9)

Ff _conventionalLHS = 0.1589 + 0.0099
(

d
Sw

)
− 0.0095

(
D
P

)
− 0.0050

(w
P
)

−0.0110
(

d
Sw

)(
D
P

)
+ 0.0092

(
d

Sw

)(w
P
)
+ 0.0041

(
D
P

)(w
P
)

−0.0060
(

d
Sw

)2
+ 0.0150

(
D
P

)2
+ 0.0005

(w
P
)2

(10)

FRth_conventionalLHS = 4.9136− 1.0222
(

d
Sw

)
− 0.2633

(
D
P

)
− 0.4524

(w
P
)

+0.9502
(

d
Sw

)(
D
P

)
− 0.4268

(
d

Sw

)(w
P
)
− 0.2243

(
D
P

)(w
P
)

+0.7657
(

d
Sw

)2
− 0.0067

(
D
P

)2
+ 0.4980

(w
P
)2

(11)

Ff _modi f iedLHS = 0.1588− 0.0082
(

d
Sw

)
− 0.0038

(
D
P

)
+ 0.0074

(w
P
)

−0.0025
(

d
Sw

)(
D
P

)
+ 0.0085

(
d

Sw

)(w
P
)
− 0.0002

(
D
P

)(w
P
)

+0.0137
(

d
Sw

)2
+ 0.0048

(
D
P

)2
− 0.0118

(w
P
)2

(12)

FRth_modi f iedLHS = 4.6170− 0.2504
(

d
Sw

)
+ 0.5430

(
D
P

)
− 0.2220

(w
P
)

−0.0329
(

d
Sw

)(
D
P

)
− 0.2677

(
d

Sw

)(w
P
)
− 0.0816

(
D
P

)(w
P
)

+0.2165
(

d
Sw

)2
− 0.5965

(
D
P

)2
+ 0.3226

(w
P
)2

(13)

Figure 15 shows the Pareto-optimal solutions using three different DOEs. The Pareto-
optimal solutions are the best solutions that can be achieved for one objective without
disadvantaging another objective and are sensitive to the constructed surrogate model [28].
Pareto-optimal fronts obtained using the conventional and modified LHS methods have
similar smooth curves, as shown in Figure 15. However, the full factorial design shows a
curve that has two inflection points, unlike the other curves. The Pareto-optimal front from
modified LHS predicts the lowest optimum values of the two objective functions among
the tested DOEs in most of the range. The Pareto-optimal fronts of the two LHS methods
cover wider ranges than that of the full factorial design.

To compare the optimization results, three Pareto-optimal designs (PODs) were ex-
tracted from each Pareto-optimal front using K-means clustering [29], as presented in
Figure 15. The predicted objective function values at the PODs and numerical calcula-
tions at the same PODs are compared in Table 5. In case of the full factorial design, the
PODs are close to the boundaries of one or two design variables. However, the PODs
of conventional LHS are found inside the design space. In this case, a POD close to a
boundary (D/P = −0.8802 in POD A) yields a larger relative error between the predicted
and calculated objective function values than the other PODs. As mentioned earlier, the
surrogate model obtained using conventional LHS over-predicts the values at the boundary
of the design space, and the error increases near the boundary.
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In the case of the modified LHS, even the POD located close to the boundary shows
good prediction with maximum relative error less than 1.5%. Thus, the modified LHS
shows the best prediction accuracy among the tested DOEs. The full factorial design
and conventional LHS generally over-predict the objective function values with positive
relative errors at the three PODs, but the modified LHS generally under-predicts the values.
Therefore, there is not much difference in the calculated objective function values at the
PODs among the tested DOEs.
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Table 5. Results of optimizations with three different DOEs. (a) Full factorial design; (b) Conventional LHS; (c) Modified LHS.

(a)

Full Factorial Design
Design Variables Predicted Values Numerical Solutions Relative Errors (%)

d/t D/P w/P FRth (K/W) Ff FRth (K/W) Ff FRth (K/W) Ff

POD a 0.7862 0.9300 0.2462 4.360 0.1640 4.328 0.1679 0.7301 −2.365
POD b 0.2226 0.8809 0.2472 4.530 0.1568 4.512 0.1549 0.3890 1.216
POD c 0.1095 0.2327 0.2473 4.683 0.1518 4.519 0.1573 3.496 −3.630

(b)

Conventional LHS
Design Variables Predicted Values Numerical Solutions Relative Errors (%)

d/t D/P w/P FRth (K/W) Ff FRth (K/W) Ff FRth (K/W) Ff

POD A 0.7218 −0.8802 0.2083 4.288 0.1645 4.534 0.1608 −5.731 2.278
POD B 0.4156 −0.3492 0.2026 4.446 0.1588 4.593 0.1580 −3.287 0.5225
POD C 0.1580 −0.4159 0.2198 4.731 0.1547 4.701 0.1536 0.6289 0.6969

(c)

Modified LHS
Design Variables Predicted Values Numerical Solutions Relative Errors (%)

d/t D/P w/P FRth (K/W) Ff FRth (K/W) Ff FRth (K/W) Ff

POD 1 0.8879 1.0000 0.2163 4.246 0.1672 4.309 0.1675 −1.496 −0.1857
POD 2 0.2942 0.8214 0.2491 4.510 0.1552 4.512 0.1556 −0.0465 −0.2670
POD 3 0.1452 −0.1498 0.2211 4.781 0.1536 4.843 0.1558 −1.295 −1.412

The R2 and adjusted R2 values of the RSA models constructed using three different
DOEs are listed in Table 6. As mentioned earlier, values closer to 1 indicate a better
surrogate model. In this respect, the modified LHS shows the best results in Table 6. This
is consistent with the results shown in Table 5. In addition, the RSA model with the full
factorial design has the worst performance. Applying a DOE method that properly locates
the sample points on the boundaries and inside of the design space makes it possible to
construct a more accurate surrogate model and obtain superior optimization results.

Table 6. Statistical analysis of the RSA models. (a) Full factorial design; (b) Conventional LHS;
(c) Modified LHS.

(a)
R2 Adjusted R2

FRth 0.7905 0.6454
f 0.8451 0.7379

(b)
R2 Adjusted R2

FRth 0.8751 0.8039
f 0.8579 0.7964

(c)
R2 Adjusted R2

FRth 0.9339 0.9005
f 0.9175 0.8927

4.5. Analysis of the Optimized Design

POD 2 obtained with the modified LHS was selected for further analysis because the
values of both the objective functions were improved compared to the reference design. In
POD 2, Rth and f are reduced by 1.55% and 3.00%, respectively, compared with those of the
reference design. The Nux distributions on the wavy walls are shown in Figure 16, which
compares the heat transfer performance between POD 2 and the reference design. In the
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case of the reference design, there are high Nux regions on the left wall between the grooves
in the crest and the trough (x/2P = 5.75–6.25). In the case of POD 2, high Nux regions are
shown on the left side wall between the inflection point where the groove is located and
the trough (x/2P = 5.50–6.25). The right wall between x/2P = 7.00 and 7.50 shows the same
Nux distribution as the left wall between x/2P = 5.50 and 6.25. Unlike the reference design,
the high Nux distribution for POD 2 from the inflection point to the crest (x/2P = 5.50–5.75)
seems to be one of the important factors in reducing Rth compared to the reference design.
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Figure 17 shows the streamlines and velocity vectors. Figure 17a shows that the
recirculating flow develops in the grooves in the reference design. These recirculating
flow regions correspond to the low Nux regions in the grooves in Figure 16. This occurs
because the flow recirculation hinders the heat transfer on the wall. Figure 17b shows the
velocity vectors at the cross sections perpendicular to the flow direction. As mentioned
earlier, in the reference design, a strong interaction between the vortical flow in the channel
and upward flow from the groove is found near the left wall at the edge of the groove
(x/2P = 5.875). In the case of POD 2, this phenomenon is also found near the left wavy
wall at the edge of the groove (x/2P = 5.593) but is weaker than in the reference design.
This seems to be affected by the location of the groove (which is the crest in the reference
design but an inflection point in POD 2) and the fact that the two grooves on both the walls
are attached at the same location in the reference design.

However, in POD 2, the vortices in the channel become stronger at a location down-
stream (x/2P = 5.875). This is consistent with the Nux distributions shown in Figure 16. In
the reference design, the high Nux region persists from the groove edge (x/2P = 5.875) to a
location far downstream but disappears before the next groove. However, in POD 2, the
high Nux region is relatively narrow at the edge of the groove (x/2P = 5.593) but grows
downstream and becomes widest at the upstream edge of the next groove. Thus, the total
area of the high Nux regions is larger in POD 2 than that in the reference design.
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5. Conclusions

A wavy microchannel heat sink with grooves was optimized using RANS analysis
of the flow and conjugate heat transfer. In the reference wavy channel with grooves, Nu
increased by about 8.34%, and Rth decreased by about 2%, but the friction factor f also
increased by about 1.25% compared to the smooth wavy channel. Thus, using grooves, the
enhancement of the heat transfer surpasses the increase in the friction.

For optimization, the distance between staggered grooves on opposite wavy walls,
the groove depth, and the groove width were selected as design variables. The thermal
resistance (Rth) and friction factor (f ) were used as objective functions. A modified LHS that
uses the advantages of conventional LHS and the three–level full factorial method was also
proposed. The optimization performance of three DOE methods was estimated. Surrogate
models of the objective functions were constructed by RSA with each DOE method. The
corresponding Pareto optimal solutions were derived, and three representative optimal
solutions were selected to compare the predictions of the DOE methods.

The results showed that the optimal solutions using modified LHS methods have the
best predictions with less than 1.5% error compared to the numerical calculations. They also
had the largest R2 and adjusted R2 values, which indicate the best statistical accuracy of the
RSA models. For one of the representative optimal solutions, POD2, Rth and f decreased
by 1.55% and 3.00%, respectively, compared to the reference design, indicating that both
the objective functions were improved. Therefore, the multi–objective optimization with
modified LHS could effectively improve the performance of the wavy microchannel heat
sink with grooves.
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Abbreviations

Ab The bottom area of the flow channel (m2)
As Side area of the flow channel (m2)
d Groove depth (µm)
D Distance between staggered grooves (µm)
Dh Hydraulic diameter (m)
F Friction factor
h Height of flow path (µm)
H Height of microchannel (µm)
kw Thermal conductivity (W/K)
Nu Nusselt number
Nux Local Nusselt number
U Average velocity at the inlet (m/s)
p Pressure (N/m2)
P Half of wave length of channel wall (µm)
q Heat flux (W/cm2)
Re Reynolds number
Rth Thermal resistance (K/W)
t Side wall thickness of channel (µm)
Tw Average temperature at the solid wall (K)
Tm Average temperature of the inlet and outlet (K)
Ts,max Highest temperature at the bottom substrate (K)
Tf,inlet Average temperature of the cooling fluid at the inlet (K)
w Groove width (µm)
W Width of channel (µm)
x, y, z Rectangular coordinates
ρ Density (kg/m3)
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