Multi-Objective Optimization of Non-Isothermal Simulated Moving Bed Reactor: Parametric Analyses

Supplementary Materials

Jian Wang^a, Wenwei Chen^a, Yan Li^b, Jin Xu^{a,*}, Weifang Yu^{a,*}, Ajay K. Ray^{b,*}

- a Chemical Engineering Department, Wenzhou University, University Town, Wenzhou, Zhejiang 325035, China
- b Department of Chemical and Biochemical Engineering, Western University, London, ON N6A 5B9, Canada
- * corresponding Authors: <u>xujin@wzu.edu.cn</u> (J. Xu); <u>ywf@wzu.edu.cn</u> (W. Yu); aray@eng.uwo.ca (A. K. Ray)

Figure S1 Temperature transition in Zone II during a switch (Case 3)

Figure S2 m_{IV} values corresponding to simultaneously maximized *PurB* and *UT*. Cases 1, 3 and 5, α_I equal to 1 and 100.

Figure S3 Internal concentration profiles of product *B* corresponding to *PurB*=0.99. a: Case 1, α_1 =1; b: Case 1, α_1 =100;c: Case 3, α_1 =1; d: Case 3, α_1 =100.

Figure S4 Effects of α_2 on *m* values corresponding to the Pareto solutions for Cases 2, 3, 4, 5.

Figure S5 Comparison of α_2 equal to 0.5 and 1. Upper and lower channels are for Cases 1 and 3. From left to right are Pareto curves, m_1 , m_{11} and m_{111} .

Figure S6 Internal concentration profiles of by product *C* at optimal conditions for *PurB*=0.99, α_2 =4, Cases 2, 3, 4, and 5.

Figure S7 Comparison of *m* values optimized for Case $3/\alpha_3=0.5$ and Case $1/\alpha_3=1$.

Figure S8 Effects of α_3 on Pareto curves for Cases 2 (left) and 4 (right).

Figure S9 Pareto curves obtained at various feed concentrations. a, b, c for α_4 equal to 2, 5, 10.

Figure S10 Pareto curves obtained for various reaction enthalpy. a-h are for α_3 equal to -10, -5, -2, -1, 1, 2, 5, 10.

Column		Adsorption equilibrium			Kinetics	
<i>L</i> (m)	0.25		H^{0}	ΔH_{ads} (kJ [·] mol ⁻¹)	k_f^0 / \min^{-1}	1.07
<i>d</i> (10 ⁻³ m)	9.4	A	0.426	-19.64	E_f (kJ·mol ⁻¹)	44.2
ε	0.4	Ε	0.375	-9.10	K _{eq} (kJ·mol ⁻¹)	334.78
Ν	50	W	2.92	-8.53	ΔH_{rxn} (kJ·mol ⁻¹)	-5.83
Q^{0}_{Max} (10 ⁻⁸ m ³ /s)	5.0	$\frac{CA_{feed}}{(10^3 \text{ mol}/\text{ m}^3)}$		2.0	$\lambda(10^{-2}s^{-1})$	1.67
$T_{max}\left(\mathrm{K}\right)$	308	T _{min} (K)		323	$T^{ref}(\mathbf{K})$	318

Table S1 Dimensional model parameters

Table S2 Preset upper and lower bounds of variables for the use of NSGA

Para [#]	Mult ^{\$}	Bounds of Variables						
		mı	<i>m</i> 11	mIII	miv			
Da ^{ref}	<i>α</i> ₁ =1	(2.5,7.5)*	(0.2,0.5)	(0.5,2.0)	(0.1,0.5)			
	3	(2.5,6.0)	(0.1,0.5)	(1.0,2.8)	(0.1,0.5)			
	4	(2.5,6.0)	(0.1,0.45)	(1.0,2.8)	(0.15,0.5)			
	5	(2.8,5.5)	(0.1,0.5)	(1.0,3.0)	(0.15,0.5)			
	10	(2.8,5.0)	(0.1,0.45)	(1.3,3.0)	(0.15,0.5)			
	100	(2.8,5.0)	(0.1,0.45)	(1.3,3.3)	(0.15,0.5)			
H_A^{ref}	α2=0.1	(2.8,8.75)	(0.15,0.5)	(0.5,1.8)	(0.1,0.5)			
	0.5	(2.5,8.75)	(0.15,0.5)	(0.5,2.0)	(0,0.5)			
	4	(2.8,7.0)	(0.3,0.75)	(1.0,2.8)	(0.1,0.5)			
	8	(2.8,9.5)	(0.5,1.3)	(1.25,3.8)	(0.1,0.5)			
	20	(8.0,22.3)	(0.75,1.45)	(1.5,3.8)	(0.1,0.5)			

e_f	α ₃ =0.5	(2.8,9.0)	(0.23,0.45)	(0.5,2.2)	(0.15,0.5)
	0.2	(2.8,9.0)	(0.2,0.5)	(0.5,2.35)	(0.1,0.5)
	0.1	(2.8,9.0)	(0.2,0.5)	(0.5,2.35)	(0.1,0.5)

#:parameter; \$: multiplier; *: (lower bound, upper bound).

The bounds for α_1 =1 are for original parameters and were also applied to all α_4 and α_5 values.