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Abstract: Moisture content is the most relevant quality parameter for wood fuels. Effective and fast 
determination of moisture of incoming feedstock is essential in the management of bioenergy facil-
ities. The availability of fast and reliable moisture meters based on innovative technologies simpli-
fies this task. However, in Mediterranean conditions the inherent variability of wood fuels calls for 
a careful sampling strategy if representative results are required while facing acceptable analytic 
costs. The present study is aimed at measuring the fuel heterogeneity and defining accordingly the 
appropriate number of samples to be analyzed in order to get reliable moisture-content results. A 
total of 70 truckloads (about 2270 t of woodchips) were sampled during commercial operations in 
two different seasons. Five samples were collected from each load and measured with standard 
method and magnetic resonance gauge. Results show that the variability of moisture content is in-
fluenced by mixing of species and storage of biomass. Heterogeneity can vary greatly also within 
single truckloads, to the point that three samples are needed to achieve about 90% of estimates 
within the desired precision limits. In the case of larger lots, such as barge or ship loads, 20 samples 
can provide sufficient precision in most scenarios.  
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1. Introduction 
The European Union is promoting the substitution of fossil fuels with renewable en-

ergy sources with an ambitious plan: by 2030 it aims to reduce at least 40% of greenhouse 
gas emissions and to cover 27% of energy consumption with renewable energy sources 
[1]. Even more ambitious is the target to reduce by 2050 the greenhouse gas emissions by 
90% as compared to 1990 [2]. These policies have boosted the development of renewable 
energies. Among those, bioenergy based on woody fuels is still considered one of the main 
contributors thanks to the availability of a large provision of unused feedstock resources, 
such as forest logging residues [3] and agricultural residues, industrial and urban waste 
and, in some contexts, dedicated energy crops [4]. In Italy the number of biomass-fed 
power plants increased from 75 to 89 in 2012–2013 [5] and is still a thriving sector. Yet, the 
economic viability and environmental impact of bioenergy production in this country are 
highly influenced by the great heterogeneity of qualitative properties and energetic char-
acteristics of local wood fuels [6,7]. 

In this frame, an effective quality control becomes a key factor for the supply chain 
[8]. Among all quality parameters, Moisture Content (MC) is considered the most relevant 
[9,10] as it may affect the whole supply chain up to energy conversion. The MC of woody 
fuels depends on several aspects such as species, inclusion of different tree parts (presence 
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of leaves/needles) and season, among others [11,12]. Furthermore, MC can be influenced 
by the harvesting and storage operations [13]. The detrimental effects of MC can be high-
lighted along the whole supply chain [14]. Transport efficiency is penalized by the higher 
share of moisture over the total payload in truck transportation [15], due to its influence 
on the bulk density [16]. During yard storage in bioenergy facilities, a high MC promotes 
microbial activity, which in combination with long storage, large wood-chip piles and ad-
verse weather conditions, may lead to significant dry-matter losses [9]. These can be par-
tially reduced with sheltering systems for the piles, yet this solution increases storage costs 
and may easily offset the benefits obtained [17]. Moreover, in certain conditions the pres-
ence of soluble nutrients and high nitrogen content boosts the microbiological activity 
[13], which may quickly increase the temperature of biomass. In the worst cases it leads 
to self-ignition, causing immediate loss of fuel or, at the least, increases the ash content, 
reducing the overall energy content of the feedstock [18]. As a final drawback, MC is neg-
atively correlated to the heating value, reducing the energy content and the market value 
of the feedstock [5]. Net calorific value could vary from 6 MJ/kg to 12 MJ/kg in woodchip 
with a range of moisture content from 2 to 58% [19], while with a mean value of moisture 
content about 10%, mean gross calorific value is about 18 MJ/kg [20]. In fact, with a high 
share of water over the dry biomass, the evaporation process subtracts energy from the 
combustion, reducing the temperature of the process [21]. This causes a non-decrease of 
the heating value, which drops from 14.07 to 7.82 Mj/kg, respectively, with a moisture 
content of 20 and 50%. Finally, the lower combustion efficiency caused by a high MC in-
creases the pollutant emissions released with the flue gases, causing a significantly higher 
environmental impact [22]. 

Due to the importance of MC in biofuels, it is common practice of bioenergy facilities 
to set price classes for the incoming biofuel with monetary value inversely proportional 
to MC. This solution promotes the provision of higher-quality fuel but requires the tech-
nical capacity to assess the MC of the incoming loads. Ideally, this measurement should 
be performed quickly and with a reliable system, allowing the immediate refusal of loads 
exceeding the agreed threshold. This is hindered by the time required to determine the 
MC of woody biomass according to the standard method ISO 18134-1:2015 (up to 48 hours 
in oven). 

As a response, in the past two decades several producers introduced in the market a 
number of moisture meters based on diverse technologies and types of sensors. After a 
setting-up period, the newest MC gauges proved comparable to the standard method in 
terms of precision and accuracy, but with a much faster production of results and thus 
capable of handling a higher number of samples in a given time. Nystrom and Dahlquist 
[23] compared several alternative technologies with the standard oven dry method, con-
cluding that Near Infrared (NIR) spectroscopy and Radio Frequency (RF, also known as 
dielectric) technologies were the best-suited for MC measurement in flow and bulk fuels, 
respectively. More recently, further studies confirmed the potential of NIR instruments 
for MC determination due to their real-time and intuitive approach and the possibility to 
measure samples without any specific preparation or alteration of the biomass [24], allow-
ing reiterate analysis on the same sample, if required. However, fuel-specific calibration 
is necessary for correct NIR deployment, making it a less flexible option in conditions of 
high variability of the biomass characteristics [19]. A further technological option recently 
introduced among commercial MC analyzers is Magnetic Resonance (MR) [25]. This was 
successfully tested in industrial environment for quick determination of MC of incoming 
trucks [22], proving capable to perform about 130 analyses in an 8-hour shift and with no 
sensitivity to the heterogeneity of woody biomass and no need of fuel-specific calibration 
models. 

The latter aspect may be crucial for future developments in the field of industrial MC 
determination of biofuels. In fact, with high heterogeneity of wood species and/or intrinsic 
characteristics of the incoming biomass, an improper sampling technique could lead to 
significant errors even with modern sensors, particularly in the case of large consumers 
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of fuel [18]. In fact, the selection of a limited amount of material to be regarded as physi-
cally and chemically representative of large quantities of biomass is a challenging and 
uncertain operation [26]: in case of inappropriate sampling the whole MC determination 
process could be biased. This problem is particularly relevant in areas with high hetero-
geneity of woody fuels, as may be the case with systems based on Mediterranean mixed 
forests, whose degree of variability is largely unknown. 

The technical standard ISO 18135 [27] reports a sampling procedure based on the 
type and variability of the biofuel, to be assessed beforehand or according to expert as-
sessment, and provides tables to calculate the appropriate sampling intensity. Neverthe-
less, the application of the guidelines of the standard in commercial biomass sampling 
showed some critical issues, particularly regarding the excessive demand in terms of time 
and effort required. Furthermore, the heterogeneity of woody biofuel could be overlooked 
by the limited availability of consultative tables, which are related just to major biomass 
typologies. Therefore, guidelines often return a sampling strategy excessively demanding 
and not linked to the actual uncertainty degree of the MC estimate at the power plant. 
[26]. 

The possibility to perform reliable analysis in a short time and within the premises 
of the power plant paves the way to a new approach of MC monitoring of incoming bio-
mass with an increased number of samples per load received and a better description of 
the fuel characteristics. But this approach requires a deeper understanding of the intrinsic 
quality variability of woody fuels and the most appropriate sampling procedures to be 
adopted accordingly. 

Against this background the present study aimed at: 
1 better understanding the range of MC variability of incoming biomass in a 

power plant in real conditions; 
2 relating the MC variability with the reliability of moisture estimate performed 

on site with a Magnetic Resonance moisture meter (MR-MM), and; 
3 assessing the optimal number of samples to be collected for MC determination 

(sampling intensity) in the cases of incoming high-volume trucks and of larger lots of 
woody fuel. 

2. Materials and Methods 
Samples were collected at the fuel yard of a biomass power plant located in a moun-

tain area of Southern Italy in two different sampling periods, hereafter identified as “Sum-
mer” and “Autumn”. These were selected in order to catch the maximum possible varia-
bility in a short time span. Summer sampling was done in early October, when contractors 
delivered both biomass from ongoing harvest operations (thus with high MC) and mate-
rial left to dry in intermediate yards during the warm and dry summer. Autumn sam-
pling, performed in late November, involved just wet biomass since dry stocks were de-
pleted and the Mediterranean rainy season had commenced. 

The power plant of this study was selected also for the local high variability of tree 
species and forest treatments that provide the feedstock to the facility. The main forest 
species locally delivered as wood chips are chestnut, deciduous oaks, poplar, willow and 
alder among broadleaves; fir, pine and occasionally cypress among conifers. Due to the 
dominance of mixed forests and the variability of work systems deployed, the biomass 
can be either mono-specific or a mix of several species. Additionally, procurement can be 
based on recently felled and comminuted trees, or biomass stored in satellite yards either 
as logs or loose wood chips. All these factors contribute to the high variability of incoming 
feedstock and were duly noted as reference data for each truckload in order to analyze 
their influence on the overall heterogeneity and the reliability of MC fast estimation. 

Wood chips were delivered to the power plant with high-volume, moving-floor sem-
itrailers carrying an average payload of 32.4 tonnes (t). A total of 35 trucks were sampled 
per season, for a total of 70 incoming trucks involved in the study delivering about 2270 t 
of wood chips. Biomass collection was performed immediately after unloading the wood 
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chips on the paved yard. Five replicates were sampled per pile in predefined positions 
chosen in order to describe the possible internal variability: three collecting spots were 
identified on the top and two at the bottom of the heap of wood chips (Figure 1). A manual 
grain scoop was used to collect the biomass, filling 5 buckets with a capacity of 10 dm3 
each. 

. 

Figure 1. Location of the predefined sampling areas in the pile of unloaded wood chips (side 
view). 

At the control station of the biomass yard, the content of each bucket was carefully 
mixed prior to the extraction of 2 subsamples from each sample (Figure 2). The first sub-
sample (hereafter named STAN) had an approximate volume of 3 dm3. It was tipped in a 
paper bag of known tare and weighed with a precision scale for wet mass determination. 
Afterwards, all bags were closed and transported to a laboratory to determine the oven 
dry mass according to standard method (ISO 18134-1:2015). A laboratory scale with a pre-
cision of 0.01 g was used for weighing all subsamples. 

 
Figure 2. Sampling strategy for the selection of 5 first subsamples (STAN) and 5 second subsamples (FAST) from each 
incoming truck. 
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The second subsample (hereafter named FAST) was collected from the bin using a 
0.8 dm3 plastic container, which was directly introduced in the MR–MM for MC determi-
nation. Overall, 700 subsamples equally divided between STAN and FAST were collected 
and analyzed. Further details regarding sampling procedure and the characteristics and 
performance of the MR–MM can be found in [19]. 

2.1. Sampling Intensity on Trucks 
This action aimed at assessing the MC estimate improvement related to the analysis 

of an increasing number of samples from the same load (sampling intensity). The average 
MC of all the five STAN samples collected on each truckload was considered as the refer-
ence value (REF_MC). This was compared with the average MC of the FAST samples 
(MR_MC). The different levels of sampling intensity of MR_MC was simulated using an 
increasing number of FAST values randomly chosen within the same truckload. For this 
purpose, a research randomizer [28] was deployed to casually select the MC values to be 
used for each comparison. The simulated sampling intensity ranged from 1 to 4 FAST 
values used to calculate the average MC: the combination of the 5 FAST values was not 
considered since no randomization was possible. In order to avoid random effects, each 
sampling intensity level (1 to 4) was replicated 5 times with a new set of randomized val-
ues. The average values of the 5 replications were used to calculate the error according to 
the following formula: 

δX,I = REF_MCx − MR_MCx,I (1) 

Where:  
“X” is the truckload, ranging from 1 to 70 
“I” is the number of random samples used to calculate the average MC, ranging from 

1 to 5 
“REF_MC” is the MC of the truckload X 
“MR_MC” is the average MC of the “I” samples randomly selected among the 5 

measured on the truckload X 

2.2. Sampling Intensity on Piles 
Similarly to the above procedure, sampling intensity was simulated for large piles of 

wood chips. The analysis was performed assuming to have two piles composed by the 35 
truckloads of each season, thus with an approximate mass of 1130 t. The MC of the piles 
was calculated with the average value of the 175 STAN samples collected and measured 
in each season. Estimation of the MC was simulated as the average of a variable number 
of FAST values. The number of samples used to calculate the average varied according to 
the assumed sampling intensity: 5, 10, 20 and 30 samples per pile. The simulation was 
accomplished again with randomization of the FAST values, generating 10 sets of ran-
domly arranged MC values for the two datasets (Summer and Autumn). From these da-
tasets, 50 subsets (replications) of 5, 10, 20 and 30 MC values were randomly selected, and 
the corresponding average value was calculated. The MC estimation error for the two 
piles/seasons was calculated according to the following formula: 

Δk = REF_MC− MR_MCk 
(2) 

Where: 
“k” is the number of random samples used to calculate the average MC, with values 

set to 5, 10, 20 and 30 
“REF_MC” is the MC of the biomass pile 
“MR_MC” is the average MC of the “k” samples randomly selected among the 175 

measured on the truckloads composing the pile 
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2.3. Statistical Analysis 
Multifactor ANOVA analysis of MC values was performed to verify normal distri-

bution of data and influence of season and external factors on MC. The five MC values 
collected in each truckload were used to calculate an average MC value for each sample 
and the standard deviation of each load (SDt). ANOVA and descriptive analysis were used 
to compare the values of MC and SDt of trucks and the effect of season and other factors 
on the variability. An F-test was performed to compare SD of the average MC and SDt 
values of trucks in different seasons. 

3. Results 
3.1. Fuel Quality and Heterogeneity 

Moisture analysis of STAN samples confirmed the difference expected between the 
two sampling seasons. In spite of the limited timespan, the average moisture content rose 
about 4% in the loads sampled in the Autumn sampling season, reaching almost the 50% 
threshold (Table 1). It is worth mentioning that companies acted in the frame of a contract 
setting 45% MC as the target value for the delivered biomass; thus, it is reasonable to as-
sume that the operators made all possible efforts to counter this variation, to be regarded 
as a consequence of the Mediterranean rainy season. The SD of the whole dataset and the 
SD of the average MC values of single truckloads (REF_MC) are higher for the Summer 
period compared to Autumn, even if there is no statistical difference according to the var-
iance check with Levene’s test. Accordingly, the range of MC values is much higher in 
Summer, with a difference of more than 15 percentage points both when considering the 
whole dataset and the average values of truckloads. 

Table 1. Moisture content (MC) of all samples for the two seasons. Values in column with different letters (a and b) show 
a statistical difference with P-Value below 0.05. 

Sampling 
Season 

Avg. Moisture 
Content (MC%) 

Standard 
Deviation 

Coefficient of 
Variation (%) 

Minimum 
Value (MC%) 

Maximum 
Value (MC%) 

Range (MC% 
Points) 

ALL SAMPLES 
Summer 44.5 a 6.01 13.51 24.9 60.9 36.0 
Autumn 49.2 b 4.88 9.91 39.4 58.8 19.4 

AVERAGE VALUE OF TRUCKS 
Summer 44.5 a 5.84 13.1 27.2 56.3 29.1 
Autumn 49.2 b 4.60 9.35 42.4 57.5 15.1 

By sorting the truckloads according to the increasing REF_MC value (Figures 3 and 
4), it is possible to better visualize the variability recorded among and within the loads. 
Neither the two sampling seasons nor the REF_MC values show a clear influence on the 
heterogeneity of the feedstock composing the load. This was confirmed by the F-test com-
paring SD values of the single trucks (Table 2), where no significant difference was de-
tected among the averages of SD values. This confirms that the internal variability of the 
biomass carried in each truck did not change with the season and remains very high with 
a 4.5 range of SD values. 
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Figure 3. Average MC values of truckloads in increasing order for Summer sampling period. The red line represents the 
average MC value (44.3%), black bars show the SD. 

 
Figure 4. Average MC values of truckloads in increasing order for Autumn sampling period. The red line represents the 
average MC value (49.2%), black bars show the SD. 

Table 2. Analysis of the SD values of each trucks (relative to the 5 samples measured in each 
truck). 

 Summer Autumn 
Count 35 35 

Average 1.94 2.08 
Standard deviation 1.21 1.09 
Coeff. of variation 62.2% 52.7% 

Minimum 0.51 0.48 
Maximum 5.03 4.88 

Range 4.52 4.40 

In order to better describe the heterogeneity of the incoming truckloads, SDt values 
were ranked in unitary SD classes, providing their frequency distribution (Figure 5). As-
suming that the desired degree of MC variability for an industrial biomass user falls below 
an SD value of 2, the threshold is exceeded by 31.4% and 40% of the loads, respectively, 
for the Summer and Autumn periods. 
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Figure 5. Classes of SD values of the loads measured in the two sampling seasons. 

The analysis of external factors showed that the intermediate storage of biomass prior 
to transportation has a high impact on SDt values, with a significant increase when bio-
mass is stored in satellite yards before its delivery to the power plant (Figure 6). The spe-
cies composition did not result in a statistically significant effect on SDt, yet the means plot 
table shows that pure material either from conifers or broadleaves has higher values, 
while the mix of both reaches lower SDt and is significantly different from broadleaves 
according to the multiple-range test. 

   

(a) (b) 

Figure 6. Means plot of the influence of storage (a) and species (b) factors over SDt values. 

3.2. Estimate of Moisture Content and Sampling Intensity 
3.2.1. Influence of Sampling Point 

The comparison of MC values of the FAST samples collected in the five different pre-
defined sampling points showed no significant difference (Figure 7). This result confirms 
that sampling may be performed on random positions of the biomass pile without com-
promising the reliability of the procedure. For the purpose of this study, it also endorses 
the use of random combinations of the five FAST values to estimate the total MC value 
without incurring procedural bias. 

42.9

25.7

20.0

11.4

34.3

25.7

37.1

2.9

0

2

4

6

8

10

12

14

16

0-1 1-2 2-3 3-4

Fr
eq

ue
nc

y

SD Classes

Summer Autumn

SD
 o

f  
lo

ad
s

No storage Storage
1.1

1.4

1.7

2

2.3

2.6

SD
 o

f  
lo

ad
s

Conifer Broadleaf Mix
0

0.5

1

1.5

2

2.5



Processes 2021, 9, 359 9 of 14 
 

 

 
Figure 7. Box-plot of the five sampling points (as in figure 1). The box encloses 50% of 
observations, the vertical line reports the median value and “+” indicates the average 
value. 

3.2.2. Estimate of Moisture Content in Truckloads 
The sampling intensity was first run on the whole dataset comparing REF_MC with 

MR_MC values with no randomization of the FAST values. These were added in order of 
sampling. For the analysis of the truckloads was set a threshold of ±2% of tolerated error, 
considered as the maximum admitted level for the power plant managers. Figure 8 shows 
the tolerance plots and the percentage of MC estimates with the desired precision accord-
ing to the sampling intensity used. Single sample estimates provide less than 70% of val-
ues with the necessary precision, and four sampling points are necessary to achieve over 
90% of estimates within the tolerated error (Table 3). 

The MC estimates and the relative δ values of randomized combinations of FAST 
values provide a more robust insight of the results of an increasing sampling intensity 
(Table 3). In both sampling seasons, the increment from 1 to 2 FAST samples provides an 
increase in precision over 10%; 3 FAST samples per load are sufficient to exceed the thresh-
old of 90% of values within the defined limits of precision. 

Table 3. Percentage of δ values below the threshold of ± 2 percentage points of error for the differ-
ent levels of sampling intensity. 

Sampling intensity Summer Autumn 
1 74.3% 62.9% 
2 85.7% 88.6% 
3 91.4% 91.4% 
4 97.1% 94.3% 

3.2.3. Accuracy of MC Estimation in Piles 
Estimation of MC on piles or large lots requires a significant number of samples. 

However, compared to the MC assessment on truckloads, a higher level of precision can 
be achieved with a relatively lower number of samples. As shown in Figures 9 and 10, the 
estimation of MC with an average of 20 samples achieves about 90% of values within the 
limit of 2% of MC difference. Lower sampling intensity leads to higher errors and is in-
creasingly affected by the inhomogeneity of the MC of wood chips: in Summer, just a 
tolerance level of ±4 or above allows reducing sampling intensity to 10 FAST samples and 
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still gets more than 90% of observations within the threshold; in Autumn, a tolerance level 
of ±3 is enough to achieve the same result. 

. 

Figure 8. Tolerance plots of the fitted normal distribution representing the frequency of δ values (deviation of MC esti-
mate). The central red line indicates the center of the normal distribution (exact matching). Outer red lines indicate the 
threshold admitted of ± 2 MC percentage points of error. The percentage of values within the limits is reported below each 
plot. 
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Figure 9. Sensitive analysis of MC estimation accuracy of the Summer pile based on the average of an increasing number 
of samples (5, 10, 20 and 30). Trend lines show the result according to different error tolerance levels. 

 
Figure 10. Sensitive analysis of MC estimation accuracy of the Autumn pile based on the average of an increasing number 
of samples (5, 10, 20 and 30). Trend lines show the result according to different error tolerance levels. 

4. Discussion 
The availability of new instruments for the determination of MC in close-to-real-time 

at the facility of the biomass end-users provides a unique opportunity to plan an effective 
control of incoming feedstock, resulting in lower fuel and yard management costs, higher 
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combustion efficiency and, as a consequence, lower emissions. The MC–MM analyzer 
tested in the study proved to be a reliable and fast instrument for the determination of 
MC in industrial applications, particularly thanks to the robust measurement system that 
is not influenced by the quality of biomass and its inherent heterogeneity. 

However, in order to fully express the potential of this or comparable instruments 
for MC determination, it is important to reliably estimate the appropriate number of sam-
ples to be collected, i.e., the sampling intensity. This shall be determined as a function of 
the variability of the feedstock characteristics: a fast assessment and characterization of 
the incoming biomass is a key strategy to adjust the sampling intensity (and the related 
costs) with the desired precision of the MC estimate. Given the operative context, the es-
timate is necessarily based on factors that can be measured or retrieved by the biomass 
manager for each transport unit received. In fact, this study shows that single truckloads 
arriving on the same day may differ greatly in terms of internal variability, with about 
35% of SDt exceeding the threshold value of 2. According to the results of this study, this 
variability does not depend on the season or the average MC. This outcome is consistent 
with other research [29,30] that highlights how, to a certain extent, the inherent and non-
controllable variability of biomass hinders the efficient management of bioenergy facili-
ties. The unique variable with a significant influence is related to the procurement system: 
storage of biomass. When present, this step of the supply chain increases the heterogeneity 
of the fuel, making it more difficult to perform an effective estimate of the MC of the unit 
of fuel delivered (a truckload, a barge, etc.). The importance of its correct evaluation is 
demonstrated by the significant influence on biomass density, affecting storage and 
transport conditions [6]. This is probably due to the fact that biomass producers use inter-
mediate storage—generally uncovered—to create a buffer of feedstock, securing the pro-
vision to the end user in adverse weather conditions. This is confirmed by several studies 
on the effect of storage of wood chips [18–32], which leads to variations of the fuel prop-
erties, particularly if prolonged for several months. Additionally, wood chips from differ-
ent forest operations are delivered and mixed at the intermediate storage, thus including 
several species and diverse tree sections. With this process, freshly comminuted material 
is mixed with “seasoned” biomass already exposed to open-air conditions, leading to a 
further source of variability. 

It is interesting to consider that the heterogeneity observed within the load of single 
trucks is not related to the variability of the wood chips delivered as a whole (e.g., the 
daily procurement of a power plant). The case of the two sampling periods in the present 
study is well representative, presenting a high SDt variability with a relatively limited 
heterogeneity of piles.  

A high and inhomogeneous SDt makes more challenging the estimate of MC of the 
incoming transport units, with negative consequences on biomass control, unless a high 
sampling intensity is adopted. MC estimated with a single sample per truck leads to a 
significant bias, as in the worst case (Autumn) it returns over 30% of values with an error 
exceeding ±2 percentage points. The adoption of two sampling points significantly en-
hances the reliability of the estimate, reducing to about 11–14% the values with excessive 
deviation. The latter can be regarded as a reasonable compromise between cost and pre-
cision. When a higher reliability is required, for instance for invoicing purposes and in 
order to avoid disputes, three samples should be collected in each truckload, with a ratio 
of about one sample every 10–11 t of feedstock. Such sampling intensity should be 
adopted also when the biomass manager detects in the load darker and more “seasoned” 
wood chips coming from intermediate storage. With three samples per truck (i.e., 1 sam-
ple every 11 t of biomass), the measuring time required by the MR–MM sets a maximum 
threshold of about 40–45 trucks measurable per shift—a limit that larger power plants 
may exceed often and that would require additional shifts or MC sensors, thus further 
increasing the cost of MC monitoring. 

On the contrary, the MC values recorded in the piles composed by the 35 loads are 
relatively more homogeneous, allowing a reliable estimate of the overall MC even with a 
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lower number of samples. A sampling intensity of 20 samples is sufficient to achieve a 
probability of 90% to lay below ±2 percentage points of error in MC estimation. This cor-
responds to a ratio of about one sample every 57 t of feedstock. If ±3 percentage points of 
error are tolerated, the intensity can be reduced to 10 samples, with a significant cost re-
duction for the analysis and a ratio of one sample per 114 t of biomass. 

5. Conclusions 
Large bioenergy facilities are increasingly adopting fast MC measurement systems 

in substitution to the slow-responsive thermo-gravimetric method. Among those, Mag-
netic Resonance systems proved to be particularly reliable, coping with any degree of var-
iability in terms of MC and biofuel properties. As a further benefit, these sensors allow 
increasing the quantity of samples measured in each load, enhancing the overall quality 
and reliability of the MC estimate. In order to maximize this opportunity, biomass man-
agers should pay attention to visually evaluating the characteristics of the incoming 
trucks. In the case of high volume (90 m3) loads with low fuel heterogeneity, two samples 
per truck (i.e., one sample every 16 t of biomass) may be enough to effectively control MC. 
However, when dealing with a higher variability (e.g., due to the presence of biomass 
previously stored in open-air conditions) the results of this study suggest increasing the 
intensity to three samples per truck (i.e., one sample every 11 t of biomass). When dealing 
with larger loads, such as barges, an intensity of one sample every 50–60 t of biomass 
appears to be adequate to correctly estimate the overall MC. The use of tables referring to 
different types of biofuel in ISO 18135 could be useful to guide biomass managers to de-
fine quality parameters thresholds. Yet those should be integrated with further details in 
order to better support biomass monitoring and quality estimates. 

The results of this study relay on a relatively robust database, however further stud-
ies, possibly based on yearly records of power plants, should be conducted to better define 
the thresholds of variability of MC in biomass and the predictable factors influencing it, 
(e.g., intermediate storage practices). Such information should lay the basis for a new or 
integrated ISO standard sampling procedure for rapid MC gauges installed within the 
premises of end users, facilitating a reliable and cost effective MC estimation in commer-
cial operations. 
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