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Abstract: The peripheral nervous system is the bridge of communication between the central nervous
system and other body systems. Autologous nerve grafting is the mainstream method for repair
of nerve lesions greater than 20 mm. However, there are several disadvantages and limitations of
autologous nerve grafting, thus prompting the need for fabrication of nerve conduits for clinical
use. In this study, we successfully fabricated astragaloside (Ast)-containing polyurethane (PU) nerve
guidance conduits via digital light processing, and it was noted that the addition of Ast improved the
hydrophilicity of traditional PU conduits by at least 23%. The improved hydrophilicity not only led to
enhanced cellular proliferation of rat Schwann cells, we also noted that levels of inflammatory mark-
ers tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) significantly decreased with
increasing concentrations of Ast. Furthermore, the levels of neural regeneration markers were signifi-
cantly enhanced with the addition of Ast. This study demonstrated that Ast-containing PU nerve
conduits can be potentially used as an alternative solution to regenerate peripheral nerve injuries.

Keywords: digital light processing; astragaloside; polyurethane; Schwann cells; anti-inflammatory

1. Introduction

The peripheral nervous system (PNS) is the bridge of communication between the
central nervous system (CNS) and other body systems [1,2]. Depending on their degree
and extent, peripheral nerve injuries often result in various kinds of sensory and motor
dysfunctions that have a dramatic impact on one’s quality of life. The global incidence
rate of a peripheral nerve injuries (PNI) is estimated to be over 5 million annually and
is set to increase gradually due to an aging population [2]. Peripheral nerves are known
to exert regenerative capabilities in response to injuries through axonal regeneration and
re-myelination. However, the rate of regeneration is slow, being only 1 to 2 mm per day,
and is greatly restricted by the length of the lesion [3,4]. A PNI less than 30 mm is typically
treated by tension-free direct suturing between two severed neural ends in the human
body. However, for lesions larger than 30 mm, autologous nerve grafting is the mainstream
method as there is less risk of rejection due to human leukocyte antigen mismatch [5].
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However, donor site morbidity, the formation of neuroma and scar tissue, and limited graft
sources are some of the several downsides that are commonly associated with autologous
nerve grafting. Thus, nerve guidance conduits have been developed to counteract this
problem [6,7].

There are various factors that must be considered while designing nerve conduits for
neuronal grafting [8,9]. Biomimicry is a critical component in determining the feasibility
of a nerve conduit and is determined by geometrical architecture and its selected bioma-
terial [10,11]. For the past few decades, three-dimensional (3D) printing technology has
gained a lot of interest in the field of tissue engineering due to its ability to fabricate complex
designs with high precision [12]. Some studies have demonstrated that 3D-fabricated nerve
conduits can provide a suitable microenvironment for nerve cells to retain their native
behaviors as we can specifically mimic the micro-environment of native tissues [13–15].
Polyurethane (PU), a type of biodegradable photopolymer made up of isocyanate and
polyol, is a material commonly used for fabrication of nerve conduits [16]. Furthermore, by
controlling factors such as the concentration of polymers and the extent of UV exposure, we
can fabricate nerve conduits with varying mechanical properties to suit different needs [17].
We previously fabricated PU nerve conduits, and results demonstrated that, indeed, these
novel scaffolds with variable mechanical properties have better effects on cell viability and
nerve-related protein expression than traditional scaffolds [6]. Recent advancements in
technologies have allowed us to combine biomaterials in order to improve the effects of
biomaterials [6,18].

In recent years, scientists have attempted to combine Chinese medicine with the
biomedical aspects of Western medicine in order to explore better treatment alterna-
tives [19,20]. Cheng et al. conducted an 8-week study on the effect of astragaloside
(Ast) on the recovery of injured rat sciatic nerves. Results revealed enhanced regeneration,
with significantly higher axon densities, endoneurial areas, and numbers of myelinated
axons in the astragaloside groups [21]. Astragaloside (Ast; 3-O-beta-D-xylopyranosyl-6-O-
beta-D-glucopyranosyl-cycloastragenol) is a lanolin alcohol-shaped tetracyclic triterpenoid
saponin with high polarity, and its molecular formula is C14H68O14. Ast has been widely
used in Chinese medicine for thousands of years and is commonly used for cardiovascular
diseases, skin renewal and collagen synthesis, liver hepatitis, liver reperfusion injuries,
the endocrine system, the immune system, the hematopoietic system, and the nervous
system [22]. For the nervous system, Ast is commonly used to protect against ischemic
reperfusion injuries and has recently been found to have strong anti-oxidative capabili-
ties [21]. Furthermore, intravenous AST had been shown to reduce dopamine levels in the
substantia nigra of patients with Parkinson disease; thus, it is also used in relieving symp-
toms of Parkinson disease [23]. Another study performed by Zhang et al. demonstrated
an increased number and diameter of myelinated nerves in injured rat sciatic nerves after
Ast injection. In addition, several mechanisms had been reported regarding the neuropro-
tective effects of Ast. These include immunoregulation and the inhibition of oxidation,
inflammation, and apoptosis. Besides, studies have also discovered that Ast upregulates
the expression level of growth-associated protein-43, which is a critical factor involved in
neuronal growth during the process of neural development and regeneration [24].

In this study, we attempted to fabricate UV-cured PU nerve conduits with Ast using
digital light processing (DLP) in order to further enhance the anti-inflammatory and
neural regenerative behaviors of PU. Physical, chemical, and biological characteristics were
assessed, and results showed that addition of Ast enhanced hydrophilicity (by 7.9% to
23.4%), thus influencing the behaviors of Schwann cells. The cells were noted to have better
adhesion and proliferation in the Ast groups, and subsequent levels of tumor necrosis factor-
alpha (TNF-α) and cyclooxygenase-2 (COX-2) measured significantly reduced in the Ast
groups. However, levels of neural regenerative markers such as brain-derived neurotrophic
factor (BDNF) were significantly enhanced in the Ast groups. These results showed that
PU can still be modified in order to enhance its effects for future clinical applications.
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2. Materials and Methods
2.1. Preparation of Ast-Containing Water-Based PU

Photocurable water-based PU resin (Alberdingk Boley, Krefeld, Germany) was pre-
pared according to our previous published methods [6]. First, PU resin was prepared and
stirred vigorously at 180 ◦C for dehydration. Then, 1.5% 2,4,6-trimethylbenzoyl-diphenyl-
phosphineoxide (TPO; Ciba Specialty Chemicals Inc., Basel, Switzerland), 0.1% 2-hydroxy-
4-methoxybenzophenone-5-sulfonic acid hydrate (HMBS; Tokyo Chemical Industry Co.,
Ltd. Tokyo, Japan), and 0.01% 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (TEMPO;
Sigma-Aldrich, St. Louis, MO, USA) were dissolved into 2-hydroxylethyl methacrylate
(HEMA; Sigma-Aldrich) solution. The mixture was then added to the dehydrated PU and
stirred for another 10 min to produce photo-crosslinkable PU resin. Finally, astragaloside
(Sigma-Aldrich) was added to the PU resin, and different concentrations of astragaloside
in the conduits were labeled Ast0 (0 µM), Ast10 (10 µM), and Ast20 (20 µM).

2.2. Nerve Conduit Fabrication

The SolidWorks (Figure 1A, Dassault Systemes SolidWorks Corp., Waltham, MA, USA)
program was used to design all conduits, and a MiiCraft high-resolution home DLP 3D
printer (Young Optics Inc., Hsinchu, Taiwan) was used for fabrication. The thickness of
each layer was designed to be 100 µm, which was then subjected to 20 s of UV exposure
for crosslinking. Next, the fabricated conduits were rinsed with ethanol to remove excess
PU, and 20 s of UV light exposure was repeated afterward. All conduits were disinfected
by soaking in 75% ethanol for 30 min and sterilized by exposing them to UV light for 2 h
before conducting subsequent studies.
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Figure 1. Schematic drawing of (A) the conduit and (B) the dumbbell-shaped sample used in mechanical testing. (C) A
photograph of 3D-printed astragaloside (Ast)-containing polyurethane (PU) conduits.

2.3. Physical Properties of Ast-Containing PU Conduits

Hydrophilicity of the nerve conduits was assessed using the water contact angle test.
In short, all samples were first placed on a stable platform, 5 µL of MilliQ water was
dropped on the surface of each samples, and images of the water droplet were captured
using a camera after 20 s. Images taken were then evaluated using ImageJ software
(National Institutes of Health, Taiwan) to identify the water contact angle. For mechanical
property evaluation, a mechanical stress–strain assay was performed using a universal
tensile machine. The samples were printed into the shape of a dumbbell (Figure 1B) and
stretched from both ends at a rate of 1 mm/min. Six tests were conducted for each group,
with average results recorded. In addition, Fourier transform infrared spectroscopic (FTIR)
analysis was used to investigate the common compounds and functional groups of the
nerve conduits. The test was conducted within the wavelength range of 600–2000 cm−1.
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2.4. Biodegradation

To determine the biodegradation rate of different nerve conduits, the specimens were
immersed in simulated body fluid (SBF) at 37 ◦C for 4 weeks. SBF was made with methods
according to our previous studies [19]. At every week of immersion, for 4 weeks, the
specimens were washed, dehydrated, and weighed on an analytical balance (TE214S;
Sartorius, Goettingen, Germany). All data collected were tabulated to determine the
biodegradation rate. Six specimens from each group were analyzed, with the average
value recorded.

2.5. Cell Proliferation and Morphology

Primary rat Schwann cells (RSCs) used in this study were purchased from Scien-
Cell Research Laboratories (Sciencell, San Diego, CA, USA) and cultured in commercial
Schwann cells medium (#1701, Sciencell) to passages 4–8. Each specimen was seeded with
105 cells and placed in an incubator with a pre-determined setting of 37 ◦C and 5% CO2.
At various analyzed time-points (1, 3, and 7 days), Prestoblue® (Invitrogen, Grand Island,
NY, USA) was used to assess for levels of proliferation according to protocols stated by
the manufacturers. Briefly, PrestoBlue® and fresh medium in a ratio of 1:9 were added
to the wells and incubated for 90 min at 37 ◦C. Absorbance was measured using a Tecan
Infinite 200® PRO microplate reader at 570 nm to 600 nm (reference wavelength). RSCs
cultured directly on culture plates were used as controls (Ctl). Cellular morphology was
observed using F-actin staining according to protocols stated by the manufacturers. After
a week of culture, the cells were rinsed with phosphate-buffered saline (PBS, Invitrogen),
fixed with 4% paraformaldehyde, and then treated with 0.1% Triton X-100 to allow cell
permeation. Next, the conduits were reacted with Alexa-Fluor-488-conjugated phalloidin
for 1 h to allow staining, after which images of F-actin were taken using a white light laser
confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany).

2.6. Western Blot Analysis

RSCs were seeded on nerve conduits for different time points and washed three times
with PBS. Then, the cells were lysed with NP40 buffer (Invitrogen) to assess the protein
concentrations using a bicinchoninic acid protein assay kit (Invitrogen). SDS-PAGE was
used to separate the cell lysates (40 µg protein) according to the manufacturer’s instruc-
tions and shifted onto polyvinylidene difluoride membranes. Target primary antibodies,
anti-HuC/HuD (1:500 dilution; Thermo Fisher, Waltham, MA, USA), anti-tumor necrosis
factor-alpha (TNF-α, 1:1500 dilution; Abcam, Cambridge, MA, USA), anti-cyclooxygenase-
2 (COX-2, 1:1000 dilution; Abcam), anti-BDNF (1:1000 dilution; Abcam), anti-nerve growth
factor (NGF, 1:1000 dilution; Abcam), anti-Sry-related HMg-Box gene-10 (SOX10, 1:200 dilu-
tion; Abcam), and anti-β-actin (1:10,000 dilution; Abcam) antibodies, were placed onto the
membranes and incubated overnight. Then, the membranes were washed and incubated
with either horseradish-peroxidase-conjugated anti-rabbit immunoglobulin G (1:2000 di-
lution; Genetex, Hsinchu, Taiwan) or horseradish-peroxidase-conjugated anti-mouse IgG
(1:2000 dilution; Genetex) for 1 h at room temperature. Then, the Fusion-Solo chemilumi-
nescence system (Vilber, Paris, France) and enhanced chemiluminescentdetection reagents
(Thermo Fisher) were used to detect the signals emitted from the samples.

2.7. Statistical Analyses

One-way statistical analysis of variance (ANOVA) was performed to analyze the sig-
nificance of the differences between the different experimental groups in each experiment.
Scheffe’s multiple-comparison test was used to determine the significant deviations for each
sample. A p-value of <0.05 was considered to be statistically significant, as indicated by *.
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3. Results and Discussion
3.1. Characterization of Ast-Containing PU Conduits

The 3D-printed Ast-containing PU conduits are transparent with a light-yellow color
(Figure 1C). Hydrophilicity is a critical factor taken into consideration while designing
3D-printed nerve conduits. Nerve conduits with adequate hydrophilicity are said to have
positive effects on cellular adhesion and growth, which would influence their downstream
cellular behaviors. This was determined by measuring the water contact angle between
the water droplet and the surface of each conduit, with a lower angle suggestive of higher
hydrophilicity. Figure 2 shows the water contact angles obtained from different groups.
The highest water contact angle of 74.6◦ ± 3.2◦ was observed in the control group. In
contrast, groups with a higher concentration of Ast were observed to have a lower water
contact angle, with the Ast20 group at 68.6◦ ± 2.3◦ and the Ast10 group at 57.1◦ ± 2.9◦.
The water contact angle reduced by 7.9% in the Ast10 group and 23.4% in the Ast20 group
(p < 0.05). The results suggested that the addition of Ast enhances the hydrophilicity of
nerve conduits, which is optimal for cellular adhesion and growth [25].
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FTIR was used to characterize and determine the presence of Ast in order to determine
the successful combination PU and Ast (Figure 3A). In the PU spectrum, characteristic
peaks detected at 1167, 1525, and 1727 cm−1 corresponded to stretching vibrations of C-O-C
(urethane formation), C=C, and C=O (carbonyl urethane group) bonds, respectively [26].
The broad region from 2809 to 3000 cm−1 consisted of two peaks at 2872 and 2959 cm−1,
deriving from the CH2 symmetric stretching and anti-symmetric stretching bands. This
result clearly indicated that Ast can be incorporated successfully with PU without affecting
its structural integrity. The band at 3300 to 3550 cm−1 was hydrogen-bonded NH that
formed at the PU chain. The reflecting content of characteristic peaks of Ast could be ob-
served from 750 to 1100 cm−1, which were connected to polysaccharide-containing uronic
acid (762 cm−1) and the α-pyranose ring of the glucosyl residue (1019 and 1122 cm−1) [27].
Furthermore, increasing -C-O-C signals were noted with increasing concentrations of Ast,
therefore indicating that Ast was successfully integrated with PU. In addition, results
also showed that different concentrations of Ast could be loaded into PU, as evidenced
by the difference in the intensity of the -C-O-C peak. This was an important factor to
note as the main goal of this study was to retain the superior characteristics of PU and
yet add on the benefits of Ast for nerve regeneration. To assess the feasibility of our con-
duits, a tensile stress–strain test was performed to determine their mechanical properties.
As shown in Figure 3B, the highest maximal tensile strength was observed in the Ast0
group (112 ± 8 MPa), and the addition of Ast reduced the mechanical properties, with the
lowest observed in the Ast20 group (98 ± 6 MPa). Studies have reported that the stress–
strain behavior of human nerves is similar to that of rat nerves, which is approximately
13.8 MPa [28]. Therefore, even though conduits with Ast exhibit reduced tensile strength
in comparison to PU conduits, they still possess sufficient mechanical strength for surgical
handlings as well as implantations.
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An ideal nerve conduit should have adequate degradability to allow the efficient nerve
repair process to take place. As mentioned, nerves regenerate at a rate of 1-2 mm/day, and
regeneration usually starts after a period of rest [23]. Therefore, the degradation rate of all
conduits immersed in SBF were analyzed and recorded at 1, 2, 3, and 4 weeks, as shown in
Figure 4. Complete regeneration takes about 6 to 12 weeks; thus, an ideal conduit should
have the majority of its mass at the end of 4 weeks. An increased degradation rate was
observed in all conduits with longer immersion times, with the fastest degradation rate
seen in the first week of immersion in SBF. The maximal weight loss in the Ast0 group was
approximately 5%, with increased weight loss observed in Ast-containing conduits during
the first week of SBF immersion. After immersion for 4 weeks, the weight loss in the Ast0,
Ast10, and Ast20 groups was 12%, 19%, and 21%, respectively. The results shown above
displayed the highest degradation rate in the Ast20 group, followed by the Ast10 group,
and the lowest in the Ast0 group. In a previous study, the time taken for nerve regeneration
was about 6 to 12 weeks, depending on the severity of injury. Therefore, logically, an ideal
nerve conduit should be able to last at least 12 weeks to provide complete regeneration.
Magnetic resonance imaging evaluation can also confirm nerve regeneration and recovery
of function that are fully recovered about 12 weeks after the onset of nerve injury [29].
Thus, we can conclude that the degradability of nerve conduits is related and can be greatly
enhanced with the addition of Ast, which is ideal for optimal nerve regeneration.
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3.2. Cell Proliferation and Morphology

Figure 5 shows differences in the proliferation of rat Schwann cells (RSCs) cultured
on different conduits. According to the results shown, the highest proliferation rate was
observed in the Ast20 group, followed by the Ast10 group, with the lowest in the Ast0
group at all time points of 1, 3, and 7 days. The differences were obvious since day 1 of
cell culture, with as ignificantly higher proliferation rate observed in the Ast20 group as
compared to the Ast0 group. In addition, the differences in the cell proliferation rate were
even greater in the Ast20 group in comparison to both Ast0 and Ast10 groups at days 3
and 7. In contrast, the proliferation rate in the Ast20 group after 3 days of culture was
approximately 1.6- and 1.3-times higher than that in Ast10 and Ast0 groups, respectively.
Besides, the Ast10 group also showed higher proliferation as compared to the Ast0 group
at both days 3 and 7. These results indicated that the proliferation of RSCs is directly
related to Ast concentrations, which is in good agreement with in vitro and in vivo studies
conducted by Chen et al. [30]. According to their latest studies, in vitro results revealed
that the addition of Ast upregulated the proliferation of neuronal stem cells but did not
influence differentiation. In addition, 2 µg/kg of Ast was administered via the IV route
into experimental stroke rat models, and results proved that Ast was able to upregulate the
expression of nestin, p-epidermal growth factor receptor (EGFR), and p-mitogen-activated
protein kinase proteins (MAPK), thus improving the repair of neurological function in the
rats. Furthermore, it was also hypothesized that improved hydrophilicity of Ast leads to
enhanced cell adhesion and attachment, therefore allowing for improved cellular behaviors
such as proliferation. These results also showed that Ast is non-cytotoxic to cells, thus
making it a potential candidate for further neural-related studies. Figure 6 shows the
immunofluorescence staining results of RSCs with F-actin. At first glance, Figure 6 is in
good agreement with the proliferation results above. There were more cells in the Ast10
group at days 1, 3, and 7 as compared to Ast5 and Ast0 groups, as seen by the area covered
by cells. Furthermore, cells in the Ast10 group were flatter and had elongated spindles at
day 1 as compared to the rest of the groups, thus indicating that the micro-environment was
more favorable to RSCs. In addition, the RSCs cultured on the conduits with Ast stimulation
showed longer axons and more spindle cells, which proved the positive influence of Ast
stimulation on neuronal cell proliferation [31]. These data indicated that the addition of
Ast can promote cellular adhesion and proliferation and can be used as a neurogenic factor
in future nerve-regeneration-related studies.
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3.3. Immune Responses

In nerve regeneration studies, qualities including good biocompatibility and low
immunogenicity are the basic requirements in developing an ideal nerve conduit [32]. The
feasibility of a conduit depends largely on the host’s immune response after implantation,
as an increased immune response would lead to suboptimal tissue regeneration and graft
rejection. A suitable conduit should thus have low immunogenicity so as not to completely
suppress nerve regeneration. In fact, adequate inflammatory reactions play an important
role in balancing neurological activities between various stakeholders such as Schwann
cells, macrophages, and dendritic cells [33]. A study by Buttner et al. demonstrated that
excessive levels of macrophage infiltration and inflammatory signals reduce the regener-
ative capacity of aging nerves [34]. In this study, we used inflammatory markers TNF-α
and COX-2 to assess for levels of immune responses to our 3D-printed Ast-containing PU
nerve conduits. TNF-α is a cytokine that is involved in both innate and adaptive immune
responses [35]. In contrast, COX-2 is an inflammatory exclusive cytokine that induces
secretion of downstream prostaglandin E2 to bring about inflammatory responses [36].
Furthermore, levels of COX-2 were found to be significantly enhanced in the spinal cord
after traumatic injuries [37]. As seen from the Western blot results in Figure 7, the protein
expression levels of both TNF-α and COX-2 were lower in the Ast10 and Ast20 groups as
compared to the Ast0 group. Quantification results further showed that increasing Ast
concentrations was inversely related to the levels of inflammatory markers. The Ast20
group had approximately 40% lower levels of both TNF-α and COX-2 as compared to the
Ast0 group. It is important to note that the addition of Ast did not completely inhibit in-
flammatory responses; instead, it reduced the levels of inflammation. As mentioned above,
adequate levels of inflammation are required for efficient neural regeneration. Therefore,
with reference to studies done by others, we hypothesized that the addition of Ast induces
certain levels of immunoregulatory effects that might be beneficial for neural regeneration.

3.4. Nerve-Regeneration-Related Protein Expression

Western blot was used to evaluate the secretion levels of various neurogenic-related
proteins. Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin
family and is known to play a role in promoting the growth and differentiation of new
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neurons and synapses [38]. HuC/HuD proteins are mammalian embryonic lethal abnormal
visual system (ELAV)-like neuronal RNA-binding proteins that are involved in neuronal
development in both central and peripheral nervous systems and are great markers for
determining the presence of developing neurons [39]. Nerve growth factor (NGF), just as
its name suggests, is known to promote the proliferation, survival, and maintenance of
neurons [40]. Sry-related HMg-Box gene-10 (SOX10), in contrast, is a nucleocytoplasmic
shuttle protein that plays a critical role in the development of the neural crest and peripheral
nervous system [41]. From the results obtained (as shown in Figure 8), the expression levels
of all neurogenic proteins were the highest in the Ast20 group, followed by the Ast10 group,
and the lowest in the Ast0 group. The secretion levels of these neurogenic proteins were
directly related to the concentration of Ast. BDNF and HuC/HuD expression in the Ast20
group was even more than 2 times higher than that in the Ast0 group. Interestingly, similar
expression levels of HuC/HuD were observed in both Ast0 and Ast10 groups. However,
the HuC/HuD expression level significantly increased in the Ast20 group, indicating that
Ast20 is a better concentration level for promoting nerve growth as compared to the other
two concentrations. In addition, a study done by Cheng et al. revealed that the addition
of Ast was able to positively regulate the nerve regeneration process through interactions
with various receptors on nerve cells, such as tropomyosin receptor kinase A (TRKA)
and p75NTR [21]. The TRKA receptor works by enhancing the expression level of B cell
lymphoma-2, which leads to better nerve tissue regeneration [42]. Overall, these results
suggested that Ast can enhance neural development and regeneration, which is consistent
with other related studies.
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4. Conclusions

In summary, Ast-containing PU nerve conduits were successfully fabricated using
DLP 3D printing technology in this study. The addition of Ast enhanced neural prolif-
eration and regeneration, as demonstrated by increased absorbance levels and F-actin
immunofluorescence staining results of RSCs, with direct correlation to the concentrations
of Ast. The neurogenic properties of Ast might be attributed to its role in immunoregu-
lation, as evidenced by the decreased expression levels of inflammatory markers TNF-α
and COX-2, which was also in good agreement with data obtained from other related
studies. Besides, the hydrophilicity of Ast was hypothesized to be another factor that
contributes to the neurogenic properties of Ast, as increased hydrophilicity was associated
with better cell adhesion and proliferation. Overall, these results demonstrated that 3D-
printed Ast-containing PU nerve conduits not only supply suitable mechanical properties,
they also are able to enhance neural cell proliferation and neural regeneration, as noted
from the increased expression of neural-related markers. Therefore, we hypothesized
that 3D-printed Ast-containing PU nerve conduits may be a promising strategy for future
peripheral nerve-regeneration-related applications.
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