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Abstract: Ionic liquids (ILs) are the safest solvent in various high-temperature applications due to
their non-flammable properties. In order to obtain their thermal stability properties, thermogravimet-
ric analysis (TGA) is extensively used to analyze the kinetics of the thermal decomposition process.
This review summarizes the different kinetics analysis methods and finds the isoconversional meth-
ods are superior to the Arrhenius methods in calculating the activation energy, and two tools—the
compensation effect and master plots—are suggested for the calculation of the pre-exponential factor.
With both parameters, the maximum operating temperature (MOT) can be calculated to predict the
thermal stability in long-term runnings. The collection of thermal stability data of ILs with divergent
cations and anions shows the structure of cations such as alkyl side chains, functional groups, and
alkyl substituents will affect the thermal stability, but their influence is less than that of anions. To
develop ILs with superior thermal stability, dicationic ILs (DILs) are recommended, and typically,
[C4(MIM)2][NTf2]2 has a decomposition temperature as high as 468.1 ◦C. For the convenience of ap-
plication, thermal stability on the decomposition temperature and thermal decomposition activation
energy of 130 ILs are summarized at the end of this manuscript.

Keywords: ionic liquid; thermal stability; thermal decomposition kinetics; dicationic ionic liquid

1. Introduction

Ionic liquids (ILs) are molten salts at room temperature composed of organic cations
and organic/inorganic anions [1,2]. ILs have been described as “designer solvents” because
their physicochemical property can be regulated or tailor-made by changing their con-
stituents or the structures of the pairs of the ions [3–5]. Previous research has proved that
ILs have many advantages, including non-volatility, non-flammability, high thermal and
chemical stability, wide electrochemical window, tunable miscibility, and good extraction
capability, which are not attained for the volatile organic solvents [6–8]. As a result of these
features and advantages, ILs are used in a wide range of applications such as catalyst [9–14],
pre-treatment of biomass [15–17], absorbent [18–20], gas sensors [21], electrolyte [22–24],
and membrane separation [25–27]. Among all of the applications, high-temperature utiliza-
tion accounts for the vast majority, including high-temperature lubricants [28–30], solvents
for high-temperature organic reactions [31], heat-transfer fluids [32,33], and thermal energy
storage [34,35]. Although ILs are generally considered to be thermally stable, yet their
stability is influenced seriously by a lot of factors.

So far, the thermal stability of ILs has been studied by many techniques, such as UV
(ultraviolet)–vis spectroscopy [36], flame ionization detection (FID) [37,38], and mass spec-
trometry (MS) [39–41]. Moreover, in some studies, ILs are heated isothermally in a furnace
and open to air to simulate the real environment [42,43]. In order to quantitatively evaluate
the thermal stability of ILs, parameters accounting for short-term and long-term thermal
stability are obtained by thermogravimetric analysis (TGA), and the most representative
ones are the onset decomposition temperature Tonset and Tz/y (decomposition degree z
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in a selected time y), respectively. Although many studies have indicated Tonset obtained
by dynamic TGA overestimates the thermal stability [36,39,44], it is still widely used to
express the stability of ILs from divergent papers [45,46]. Despite the long-term isothermal
experiments can more accurately reflect the real stability of ILs [44,47–49], but it should
be noted that the time in these experiments is still far less than the heat exposure time in
many real applications. To provide the method in predicting long-term thermal stability,
different models have been developed [50–52].

To solve the problem when the entire sample cannot be decomposed [47,48], non-
isothermal TGA is developed as the most popular method to determine the kinetic pa-
rameters in the thermal decomposition process, and the combination of TGA data allows
researchers to calculate the activation energy and pre-exponential factor in this process.
Arrhenius methods are widely used in kinetics analysis due to their simple calculation
process. However, some recent studies have used the isoconversional methods to calculate
the activation energy [44,53,54], while the methods of compensation effect and master plots
provide the pre-exponential factor calculation [55–57].

The thermal stability of ILs is mainly determined by the structure of anions and
cations, and anions usually play a major role [46,58,59]. However, more studies are focused
on the modification of cations, including alkyl chain length, functional groups, and alkyl
substituents to improve the thermal stability of ILs [60,61]. Other conditions, such as gas
atmosphere, heating rates, and impurities, also influence the thermal stability measure-
ments [45,62]. Among which, the heating rate has the most significant impact on the TGA
results, and the difference in Tonset obtained at 1 ◦C/min and 20 ◦C/min is even up to
100 ◦C [44]. Finally, ILs mixtures and dicationic ILs (DILs) are introduced as potential
applications for the further development of high-temperature ILs.

2. Measurement of Thermal Stability
2.1. Short-Term Thermal Stability

Dynamic TGA is applied in the study for short-term thermal stability measurement,
and the most common heating rate is 10 ◦C/min [36,39,42,63–66]. Effects of different
heating rates, at 5, 10, 15, 20 ◦C/min are available in previous studies, and it should be noted
that the faster the heating rate is, the more overestimated the thermal stability of ILs is, and
the corresponding dynamic TGA curve will move to the right accordingly. [18,39,49,53,57].

Tonset, which is basically known as the short-term thermal stability, is determined by
dynamic TGA. Moreover, it is a value calculated by the thermal analysis software, which
is defined as the intersection of the baseline of zero weight loss and the tangent of the
weight versus temperature curve as decomposition occurs [45]. Therefore, the temperature
at which the sample begins to decompose is lower than Tonset. Tz (decomposition degree z)
is also a parameter to characterize the short-term thermal stability, which directly shows
the temperatures at different decomposition degrees [55,63,67–69]. Both parameters are
illustrated clearly in Figure 1. In fact, the difference between Tonset and T50% or T10% is
a measure of the decomposition rate, and the lower the temperature difference between
Tonset and T50% or T10%, the lower the stability of the ionic liquid [70].
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heated at a fixed temperature varying from an hour to tens of hours, then Tz/y is 
determined [49,57,77–79]. As shown in Figure 3, more than three temperatures are usually 
used in the analysis [75,78], and the interval between different temperatures is determined 
by Tonset [74]. However, it is much shorter than the cycle of industrial runnings. Neither 
extrapolating experimental data nor extending the heating time of isothermal TGA seems 
to be the best solution. Therefore, some means predicting the long-term thermal stability 
of ILs have been proposed. 

Figure 1. Thermal parameters of ionic liquids (ILs) obtained from dynamic thermogravimetric
analysis (TGA) curves [70].

Another method to investigate the short-term thermal stability called derivative
thermogravimetry (DTG) is shown in Figure 2. It determines the temperature of maximum
degradation Tpeak [42,64,71–73], i.e., if there is one more peak in the DTG curve, the
temperature corresponding to the highest peak will be selected [74]. The number of peaks
in a DTG curve is also an important parameter. Most ILs have only one peak, indicating
the decomposition process is a simple one-step process [44], and two peaks in some DTG
curves correspond to two different degradation processes in the sample [63].
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Figure 2. Derivative thermogravimetry (DTG) curves of [C4MIM][NTf2] [18].

2.2. Long-Term Thermal Stability

Although Tonset is widely used to describe the thermal stability of ILs, it is not a suitable
parameter for long-term industrial applications. To establish the correlation between the
operating temperature and time, it is necessary to investigate the long-term thermal stability
of ILs through isothermal TGA [36,75,76]. In this method, samples are heated at a fixed
temperature varying from an hour to tens of hours, then Tz/y is determined [49,57,77–79].
As shown in Figure 3, more than three temperatures are usually used in the analysis [75,78],
and the interval between different temperatures is determined by Tonset [74]. However, it is
much shorter than the cycle of industrial runnings. Neither extrapolating experimental data
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nor extending the heating time of isothermal TGA seems to be the best solution. Therefore,
some means predicting the long-term thermal stability of ILs have been proposed.
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Figure 3. Isothermal TGA for (a) 4-methyl-1-propyl-1,2,4-triazolium iodide, (b) 4-methyl-1-propyl-1,2,4-triazolium triflate,
and (c) 1-butyl-4-methyl-1,2,4-triazolium [NTf2] in nitrogen atmosphere [75,78].

Seeberger et al. [50] proposed using the maximum operating temperature (MOT) to
measure the long-term thermal stability at 1% decomposition degree, which is

MOT =
E

R·[4.6 + ln(A·tmax)]
(1)

where A denotes the pre-exponential factor, E is the activation energy, R is the universal
gas constant, and tmax is the maximum operation time. MOT has been used to predict
the long-term thermal stability successfully in several recent studies [56,71,73]. Moreover,
MOT is also applied in the prediction of the thermal stability of ILs mixtures [80].

To estimate the maximum time for ILs used under a specific temperature, Salgado et al. [51]
proposed an exponential function of the temperature, similar to Cao and Mu [74], which is

t = BeCT (2)

where t is the time in minutes, B and C are the fitting parameters, and T is the scanning
temperature in K. From isothermal TGA, t, that each IL takes to decompose to a certain
percentage of mass, is determined at different T. This equation can quantitatively describe
the relationship between the decomposition temperature and the decomposition time of
ILs under a certain degree of decomposition. With this method, T0.01/10h, T0.05/10h, and
T0.1/10h have been correlated, and T0.01/10h was given by Wooster et al. [52] according to

T0.01/10h ≈ 0.82T(dw/dT 6=0) (3)

where T(dw/dT 6=0) is the temperature at which the first appreciable weight loss occurs. The
results of T0.01/10h calculated by Equation (2) is higher than that by Equation (3), which
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attributes to the different experimental conditions [51]. In another research, the above three
methods are used to calculate T0.01/10h of some aprotic ILs [63]. The experiments prove
that the results obtained by Wooster’s method (Equation (3)) are the highest, followed by
Salgado’s method (Equation (2)), and those calculated by Seeberger’s method (Equation (1))
are the lowest.

2.3. Factors Affecting TGA Results
2.3.1. Heating Rates

In dynamic TGA, Tonset varies significantly with different heating rates, since when
the temperature rises rapidly, it will easily exceed the onset decomposition temperature,
resulting in a mass loss that cannot be measured correctly [50]. As shown in Figure 4,
compared with a slower heating rate, the higher Tonset is obtained at a faster heating
rate [57]. For [C2MIM][NTf2] and [C3MIM][NTf2], it is found that the difference of Tonset
obtained at 1 ◦C/min and 20 ◦C/min is 100 ◦C [44]. This trend has also been found in more
investigations [39,54]. Therefore, it is necessary to pay attention to the heating rate when
comparing Tonset by different authors. As a criterion, most of the literature known to date
gives the Tonset value at 10 ◦C/min.
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2.3.2. Gas Atmosphere

N2 is often chosen as the gas atmosphere in TGA, while it is just a special case in
industrial applications. Therefore, it is necessary to figure out the influence of different
gas atmospheres on the thermal stability of ILs. As shown by Götz et al., the TGA results
of [P14,6,6,6][NTf2] indicate the mass loss in H2 is much higher than that in N2 at the same
temperature, i.e., H2 accelerates the decomposition of [P14,6,6,6][NTf2] [6]. Figure 5 shows
some Tonset and T10% obtained in both N2 and O2 atmospheres. The results reveal that
the Tonset and T10% of [NTf2]− ILs obtained in O2 are lower by 38 ◦C to 97 ◦C than those
obtained in N2, indicating the reactive atmosphere reduces their thermal stability [49]. The
effect of air on thermal stability is similar to that of O2. As shown in Figure 6, [P4,4,4,8][BScB]
and [P4,4,4,8][BMB] are more thermally stable in N2 than in air [81], and the same results are
observed in another study [55]. However, according to Figure 7, the Tonset of some choline,
pyridinium, and phosphonium ILs are not significantly affected by gas atmospheres, and
the maximum temperature difference is only 26 ◦C [40,73].
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2.3.3. Impurities

In most cases, water has a wide range of values from 30 ppm to 21,000 ppm [51,66,73].
For different kinds of ILs, water has different effects on their thermal stability. On one hand,
water hinders the degradation reaction of [C2MIM][Ac] and [C4MIM][Ac], as shown by
Williams et al. that the mass of [C2MIM][Ac] and [C4MIM][Ac] decreased significantly in
an isothermal TGA at 150 ◦C, but the time-lapsed changed in the UV–vis spectra monitored
over 24 h showed that mixtures of [C2MIM][Ac] and [C4MIM][Ac] with water did not
display any significant decomposition at 150 ◦C [36]. The observed results are in line with
the research of [C2MIM][AcO] and [C4MIM][AcO] [82]. On the other hand, the Tonset
of the quaternary phosphonium carboxylate ILs decreases by 19.8 ◦C at most when the
water content is saturated, as shown in Figure 8 [83]. Moreover, the TGA curves of two
protic ILs, [DEMA][HSO4] and [DEMA][CF3COO], decrease markedly with the increase
of water content [84]. However, for [C1OC2C1Py][NTf2], [C1OC2C1Py][(C2F5)3PF3], and
[P6,6,6,14][(C2F5)3PF3], differences of Tonset between water saturation and supply conditions
are lower than the expanded uncertainties of the apparatus [63].
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In addition to water, the influence of inorganic salts and metal oxides on thermal
stability has also been studied. Adding CuO to [C2MIM][Ac] results in an exothermic
reaction and lowers the decomposition temperature. It is assumed that CuO decomposes
ester compounds produced from [C2MIM][Ac] as it might accelerate the decomposition
of organic compounds [85]. In addition, results summarized in Figure 9 show Tonset of
bulk ILs are significantly higher than the Tonset of γ-Al2O3-supported ILs, indicating the
interactions of ILs with γ-Al2O3 control their thermal stability limits [58]. Putting 20%
NH4Cl into [BMMIM][Cl] reduces the thermal stability [86], and Tonset of commercial
[P6,6,6,14][Cl] is 8 ◦C lower than its pure counterpart [40]. Both studies mean the existence
of impurities alters the thermal stability of ILs.
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3. Kinetics of Thermal Decomposition

The kinetic data in the thermal decomposition process can be obtained based on
isothermal and non-isothermal TGAs. Generally, the rate of thermal decomposition can be
expressed by the following formula:

dα/dt = k(T)· f (α) (4)

α =
m0 −m
m0 −m1

(5)

where k(T) is the rate constant, f (α) is determined by the kinetic models as shown in
Table 1, and m0, m, and m1 are the initial mass, mass at certain time, and terminal mass of
the sample, respectively. α is defined as the fraction of the total mass loss in the process,
ranging from 0 (no mass loss) to 1 (complete mass loss).

Table 1. Some of the models used in thermal decomposition kinetics of ILs. (n 6= 1).

Reaction Model Code f(α)

Power law P2 2α1/2

Power law P3 3α2/3

One-dimensional diffusion D1 1/2α−1

Two-dimensional diffusion D2 [−ln(1 − α)]−1

Three-dimensional diffusion D3 3/2(1 − α)2/3[1 − (1 − α)1/3]−1

Zero-order F0 1
First-order F1 1 − α
nth order Fn (1 – α)n

The correlation between the rate constant and the temperature is defined by the
Arrhenius equation as

k(T) = A· exp
(
− E

RT

)
(6)
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where A denotes the pre-exponential factor, E is the activation energy, R is the universal
gas constant, and T refers to the temperature.

Combining Equation (4) and Equation (6) yields

dα/dt = A· exp
(
− E

RT

)
· f (α). (7)

If the heating rate β is constant, then Equation (7) can be transformed into Equation (8)
as follows:

β(dα/dt) = A· exp
(
− E

RT

)
· f (α) (8)

The calculation of Arrhenius parameters, E and A, will be introduced in the following sections.

3.1. Isoconversional Methods

The isoconversional methods are based on the isoconversional principle, meaning
that the reaction rate dα/dt is only a function of temperature at a constant extent of
conversion [41] and the reaction model f (α) is independent of temperature [87]. In addition,
these methods require that the decomposition process can be approximated as a single-step
kinetic process, that is to say, activation energy calculated by isoconversional methods
does not vary significantly with α [88]. According to this principle, the isoconversional
values of activation energy Eα can be evaluated without assuming or determining any
particular form of the reaction model, so the isoconversional methods are frequently called
“model-free” methods. Currently, these methods have been classified into differential
isoconversional methods and integral isoconversional methods.

3.1.1. Differential Isoconversional Methods

Taking the logarithm on both sides of Equation (8), the most representative differential
isoconversional method is obtained according to Friedman [89]

ln
[

βi(dα/dt)α,i

]
= ln[ f (α)Aα]−

Eα

RTα,i
(9)

where the subscript i denotes individual heating rate, and Tα,i is the temperature at which
the extent of conversion α is reached under ith heating rate. The activation energy corre-
sponding to each conversion α can be obtained easily by using DTG and TGA data. As
shown in Figure 10, in order to better characterize the thermal decomposition process of
[C4MIM][PF6] in the nitrogen atmosphere, the thermal decomposition is divided into two
steps. The activation energy value calculated by the Friedman method suggests that the
linearity of the result is relatively poor in the fitting process and the activation energy
varies significantly with α [55]. In addition, a similar conclusion has also been drawn in
other investigations [90]. In the non-isothermal kinetic analysis of imidazolium [NTf2] ILs,
it is found that the activation energy calculated by the Friedman method has the largest
variation range [44].
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1000/T and; (e), (f) Friedman method ln[β(dα/dt)] versus 1000/T [55]. Reproduced with permission
from Zhen Huang, Journal of Thermal Analysis and Calorimetry; published by Springer Nature, 2019.

3.1.2. Integral Isoconversional Methods

By integrating Equation (7), the following equation can be obtained as

g(α) ≡
∫ α

0

dα

f (α)
= A·

∫ t

0
exp

(
− E

RT

)
dt (10)

In the case of constant heating rate, Equation (10) can be converted into

g(α) ≡
∫ Tα

0

dα

f (α)
=

A
β
·
∫ T

0
exp

(
− E

RT

)
dT (11)

According to the isoconversional principle, Equation (10) can be converted into
Equation (12) under the isothermal condition as follows:

lntα,i = ln[g(α)/Aα] +
Eα

RTi
(12)

where Ti indicates isothermal temperature, and tα,i is the time to reach a given extent of
conversion in the ith isothermal experiment. Apart from the study by Williams et al. that
used this method to calculate the activation energy and pre-exponential factor values of
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1-alkyl-3-methylimidazolium chloride ILs [57], no other literature is known using this
method to analyze the thermal degradation kinetics of ILs.

Compared with isothermal experiments, the constant heating rate (β = constant) is
more popular in isoconversional kinetic analysis [18,39,49,53,56,57]. There is no analytical
solution to the integral of Equation (11), so a series of integral isoconversional methods
using different approximations have appeared. Many integral isoconversional methods
can be expressed in the following form [91]:

ln
(

βi/TB
α,i

)
= Const− C

Eα

RTα
(13)

Flynn–Wall–Ozawa (FWO) method [92,93], Kissinger–Akahira–Sunose (KAS) [94]
method, which is also known as Coats–Redfern (CR) method [95], and Starink method [96]
are all derived based on Equations (14)–(16), respectively. Then the activation energy values
can be calculated from the slope of plots.

ln(βi) = Const− 1.052
Eα

RTα
(14)

ln
(

βi/T2
α,i

)
= Const− Eα

RTα
(15)

ln
(

βi/T1.92
α,i

)
= Const− 1.0008

Eα

RTα
(16)

Table 2 indicates that the activation energy difference of [C4MIM][NTf2] calculated
by the KAS method, FWO method, and Starink method is less than 5.4 kJ/mol, and the
correlation coefficients (R2) is all greater than 0.97 [18]. The calculated results are in line with
many other studies [44,53,54]. Therefore, as recommended by ICTAC (the International
Confederation for Thermal Analysis and Calorimetry), there is no need to perform kinetic
analysis in multiple forms of integral isoconversional methods [88].

Table 2. Correlation coefficient and activation energy for the [C4MIM][NTf2] calculated using
different integral isoconversional methods [18].

α
KAS FWO Starink

Eα/kJ mol−1 R2 Eα/kJ mol −1 R2 Eα/kJ mol −1 R2

0.1 109.5 0.99 114.6 0.99 109.9 0.99
0.2 116.9 0.99 121.9 0.99 117.3 0.99
0.3 121.6 0.99 126.5 0.99 122.0 0.99
0.4 121.3 0.99 126.4 0.99 121.7 0.99
0.5 120.3 0.99 125.6 0.99 120.7 0.99
0.6 116.7 0.99 122.2 0.99 117.1 0.99
0.7 112.2 0.97 118.0 0.98 112.6 0.97
0.8 108.8 0.97 114.9 0.97 109.2 0.97

Average 115.9 121.3 116.3

The numerical integration developed by Vyazovkin et al. improves the calculation
accuracy [97–99]. For a series of different heating rates, the activation energy values can be
obtained by minimizing the following function:

φ(Eα) =
n

∑
i=1

n

∑
j 6=i

I(Eα, Tα, i)β j

I
(
Eα, Tα, j

)
βi

(17)
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where the subscript i denotes different heating programs, and the subscript j is used to
denote all heating rates other than i. In order to reduce error as much as possible, the
temperature integral is calculated over a small segment [87] as

I(Eα, Tα, i) =
∫ Tα

Tα−∆α

exp
(
−Eα

RT

)
dt (18)

Table 3 shows that the activation energy values calculated by the Vyazovkin method
are similar to the results of the KAS and Starink methods, indicating that the latter two
simple integration methods are precise enough in most cases [55,57], and the Vyazovkin
method is a better choice when the activation energy values vary with α obviously [88].

Table 3. The activation energy (Eα) values determined from the Kissinger–Akahira–Sunose (KAS)
method, Vyazovkin method, Starink method, and max-rate Starink method. Reproduced with
permission from Zhen Huang, Journal of Thermal Analysis and Calorimetry; published by Springer
Nature, 2019; reproduced with permission from Michael L.Williams, Thermochimica Acta; published
by Elsevier, 2020.

ILs Method Eα/kJ mol−1

[C4MIM][PF6] [55]

Vyazovkin 77.52

101.22

KAS
76.83

100.60

[C2MIM][Cl] [57]
Vyazovkin 120.8

Starink 121.6

[C3MIM][Cl] [57]
Vyazovkin 151.5

Starink 155.0

[C4MIM][Cl] [57]
Vyazovkin 146.8

Starink 150.8

[C6MIM][Cl] [57]
Vyazovkin 98.6

Starink 97.9

[C10MIM][Cl] [57]
Vyazovkin 148.2

Starink 149.7

3.1.3. Maximum-Rate Methods

When the maximum rate of decomposition of ILs is achieved, Tα in Equation (13)
can be replaced by Tpeak [91]. This class of methods will be indicated by adding “max
rate” before the name. In the max-rate Starink method, the activation energy of 1-alkyl-3-
methylimidazolium chloride can be calculated, which is similar to that calculated by the
Vyazovkin method and Starink method, as shown in Table 4 [57]. However, the activation
energy of [C4MPy][NTf2] calculated by Tpeak is about 20 kJ/mol higher than that calculated
by Tα [53].
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Table 4. The activation energy values determined from the integral isoconversional methods and
maximum-rate methods. Reproduced with permission from Khurrum Shehzad Quraishi, Journal of
Thermal Analysis and Calorimetry; published by Springer Nature, 2017; reproduced with permission
from Michael L.Williams, Thermochimica Acta; published by Elsevier, 2020.

ILs Method Eα/kJ mol−1

[C2MIM][Cl] [57]
Starink 121.6

Max-rate Starink 114.6

[C3MIM][Cl] [57]
Starink 155.0

Max-rate Starink 155.6

[C4MIM][Cl] [57]
Starink 150.8

Max-rate Starink 136.6

[C6MIM][Cl] [57]
Starink 97.9

Max-rate Starink 96.1

[C10MIM][Cl] [57]
Starink 149.7

Max-rate Starink 139.9

[C4MPy][NTf2] [53]

FWO 128.6

Max-rate FWO 149.20

KAS 123.6

Max-rate KAS 144.97

Starink 124.0

Max-rate Starink 144.30

3.2. Arrhenius Methods

According to the data of isothermal TGA, Arrhenius methods directly use Equation (6)
to calculate the values of activation energy and pre-exponential factor. Due to the simplicity
of the calculation process, Arrhenius methods have been used extensively [39,44,71,100,101].
By assuming the decomposition is of zero-order or first-order, the rate constant k(T) can be
calculated.

For zero-order reactions
k(T) = −dm/dt (19)

Equation (19) can be transformed into

ln(−dm/dt) = ln(A)− E
RT

(20)

where m is sample mass, and dm/dt is obtained as the slope of a linear fitting of mass loss
versus time for every isothermal TGA. The activation energy and pre-exponential factor
can be derived from Equation (20). Several studies have applied this method to calculate
the activation energy and pre-exponential factor [47,74,75,78,101]. As shown in Table 5,
Parajó et al. used both the isoconversional methods and the zero-order Arrhenius method
to calculate the activation energies of several imidazolium [NTf2] ILs, and they found some
activation energies calculated by the non-isothermal methods are about 20 kJ/mol lower
than those calculated by the isothermal method [44].
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Table 5. Activation energies for the selected ILs by the different methods in the air atmosphere [44].

ILs E/ kJ mol−1

Non-Isothermal Methods Isothermal Method

Friedman KAS FWO Zero-Order
Arrhenius Method

[C2MIM][NTf2] 102 ± 5 102 ± 7 108 ± 6 122 ± 11
[C3MIM][NTf2] 100 ± 7 92 ± 7 98 ± 7 125 ± 8
[C4MIM][NTf2] 130 ± 6 125 ± 5 130 ± 5 144 ± 8

[C4MMIM][NTf2] 118 ± 11 119 ± 13 124 ± 12 129 ± 5

For the first-order reaction

k(T)·m = −dm/dt (21)

Equation (21) can be transformed into

ln(−dm/dt) = ln(A)− E
RT

+ ln(m) (22)

Table 6 shows the values of activation energy and pre-exponential factor calculated by
the first-order Arrhenius method, and these values are quite different from other calculation
results. In the studies of Efimova et al., the activation energy values are calculated using the
isoconversional methods, and then Equation (22) is used to calculate the pre-exponential
factor values [39,71].

Table 6. Activation energy and pre-exponential factor calculated by the first-order Arrhenius method,
zero-order Arrhenius method, and KAS method. Reproduced with permission from Wenlong Wang,
Chemical Engineering Journal; published by Elsevier, 2017; reproduced with permission from Juan
J. Parajó, The Journal of Chemical Thermodynamics; published by Elsevier, 2017; reproduced with
permission from Yuanyuan Cao, Industrial & Engineering Chemistry Research; published by American
Chemical Society, 2014; reproduced with permission from Florian Heym, Chemie Ingenieur Technik;
published by Wiley, 2015.

ILs E/kJ mol−1 A/min−1 Method Reference

[C2MIM][NTf2] 317 7.2 × 1021 First-order Arrhenius method [100]
131.6 1.716 × 1011 Zero-order Arrhenius method [74]
102 - KAS method [44]

[C4MIM][NTf2] 287 7.2 × 1019 First-order Arrhenius method [100]
126.4 3.047 × 1010 Zero-order Arrhenius method [74]
115.9 - KAS method [18]

3.3. Determining the Pre-Exponential Factor

Despite the isoconversional methods are convenient to calculate the values of acti-
vation energy without the reaction model, it is difficult to obtain the values of the pre-
exponential factor. For single-step reactions, the pre-exponential factors can be determined
by the following means when using model-free methods [88].

3.3.1. Using Compensation Effect

Different pairs of the Arrhenius parameters Ak and Ek can be obtained by substituting
different f (α) and experimental data into Equation (8). Although the Arrhenius param-
eters vary widely with f (α), according to the compensation effect, they conform to the
following correlation [88]:

lnAk = aEk + b (23)
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where a and b are the parameters of the compensation effect and are determined by
fitting the pairs of lnAk and Ek at different α into Equation (23). Then for the single-step
reaction, the average pre-exponential factor A0 can be obtained by substituting the average
activation energy E0 determined in non-isothermal experiments into Equation (23). Using
the compensation effect, Haung et al. and Jiang et al. calculated the pre-exponential factors
of [C4MIM][PF6] and [C4MIM][DBP], respectively [55,56]. The pre-exponential factors of
[C4MIM][PF6] ranged from 9.28× 103 to 3.89× 108 min−1, while those calculated by the
Arrhenius method are 2.6686× 1011 min−1 [74].

3.3.2. Using Master Plots

Using a non-isothermal TGA, after determining the activation energy values of the
reaction, the reaction mechanism can be simply and accurately determined by plotting
master plots z(α) or y(α) [102,103]. The y(α) function has the following form:

y(α) = (dα/dt)α exp
(

E0

RTα

)
= A f (α) (24)

After determining (dα/dt)α and Tα at different α, it is possible to plot the experimental
values of y(α) against α. Because A is an unknown constant, the shape of the theoretical
master plots y(α) is the same as f (α). The experimental master plots y(α) are normalized
to vary from 0 to 1, then compared with the theoretical shape of f (α) in different kinetic
models in Table 1, and the reaction model of thermal decomposition can be determined.
Finally, A can be easily obtained from Equation (24).

Another function z(α) has the following form:

z(α) = f (α)g(α) (25)

The temperature integral in g(α) can be approximately expressed by the following
formula [97]:

g(α) =
AE
βR

exp(−x)[π(x)/x] (26)

x =
Eα

RTα
. (27)

where

π(x) =
x3 + x2 + 88x + 96

x4 + 20x3 + 120x2 + 240x + 120
(28)

Combining Equations (7) and (26) followed by some rearrangement, the following
equation is obtained:

z(α) = f (α)g(α) = (dα/dt)αT2
α

[
π(x)
βTα

]
(29)

where (dα/dt)αT2
α

[
π(x)
βTα

]
is an experimental value. It has been proved

[
π(x)
βTα

]
has a negligi-

ble influence on the shape of experimental master plots z(α) [102,103]. So the correlation
between experimental z(α) and α can be determined from the data of non-isothermal TGA
and DTG. Theoretical master plots z(α) can be drawn according to different kinetic models
in Table 1, and the suitable reaction models can be determined by normalizing experimental
z(α) and the theoretical ones in different kinetic models from 0 to 1 and comparing the
normalized results.

After the reaction model has been established, Williams et al. calculated the pre-
exponential factor values from Equation (24). By comparing the pre-exponential factor
values of [C4MIM][Cl] calculated by several different methods in Table 7, it can be found
that results calculated by master plots [57] are close to those calculated by the zero-order
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Arrhenius method [74], and those calculated by the first-order Arrhenius method [39] are
much lower.

Table 7. Pre-exponential factor values of [BMIM][Cl] in different investigations. Reproduced with
permission from Anastasia Efimova, The Journal of Physical Chemistry B; published by American
Chemical Society, 2018; reproduced with permission from Michael L.Williams, Thermochimica Acta;
published by Elsevier, 2020; reproduced with permission from Yuanyuan Cao, Industrial & Engineering
Chemistry Research; published by American Chemical Society, 2014.

ILs
ln(A)*

Master Plots Method Zero-Order
Arrhenius Method

First-Order
Arrhenius Method

[C4MIM][Cl] 34.9 [57] 32.2 [74] 20.4 [39]

* A is in min−1.

4. Influence of Chemical Structure on Thermal Stability
4.1. Influence of Alkyl Chain Length

As shown in Figure 11, a method based on the cations exchange of ILs with sodium
montmorillonite clay (MMT−Na+) is adopted to estimate thermal stability from [C2MIM]+

to [C16MIM]+ [104], and the T1% and T50% decrease with the increase of alkyl chain length.
The same conclusion is obtained from quantum chemistry calculation [104]. The thermal
stability of 1-alkyl-4-methyl-1,2,4-triazolium iodides shows a small but consistent decrease
as the chain length is increased from butyl to dodecyl [105]. For the pyrrolidinium [NTf2]
ILs in Figure 12, although Tonset of [C8MPy][NTf2] and [C9MPy][NTf2] are higher than
[C7MPy][NTf2], it should be stressed that the longer chain length has resulted in lower ther-
mal stability on the whole, and the difference of Tonset between [C3MPy]+ and [C10MPy]+

is up to 48 ◦C [72]. Moreover, the thermal decomposition temperatures of [CnIMBS][HSO4]
generally decrease with the increase of chain length and the decomposition temperature
decreases from 311 to 253 ◦C when n increases from 1 to 16. This trend has also been
observed in some studies of [CnMIM][Cl] [57], [N8,8,8,n][BScB] [106], and [PP1n][NTf2] [107].
Generally, longer the chain length usually results in lower thermal stability, which is proved
by more and more investigations [46,53].
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Figure 13. Thermal Properties of 1-alkyl-4-methyl-1,2,4-triazolium [NTf2] ILs at a heating rate of 10 
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Figure 12. Tonset of [CnMPy][NTf2] at a heating rate of 10 ◦C/min in nitrogen atmosphere [72].
(n = 3–10) Reproduced with permission from Gebrekidan Gebresilassie Eshetu, ChemSusChem; pub-
lished by Wiley, 2017.

However, there are some exceptions. Thermal stability of 1-alkyl-4-methyl-1,2,4-
triazolium [NTf2] ILs in Figure 13 reveals that there is no correlation between Tonset and
alkyl chain length, and T0.01/10h instead increases with the increase of alkyl chain length [75].
The same results are obtained for some 3,5-dimethylpyrazolum ILs and some paramagnetic
ILs [108,109]. In the study of amino acid ILs, [N1,1,14,2O12][Lys] with the long-chain alkyl
group on the side of nitrogen has higher thermal stability than [N1,1,6,2O12][Lys] under the
isothermal condition, while both longer and shorter alkyl side chains harm the thermal
stability under the non-isothermal condition [77].
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The influence of alkyl chain length on thermal stability can be explained as follows:

(1) Increasing the alkyl chain length weakens the bond between the alkyl chain and the
cation such as imidazolium and ammonium, making it more vulnerable to attack and
therefore more readily thermally decomposed [53,106];

(2) Carbocations and carbon radicals with longer alkyl chains are more stable and easier
to leave on heating, and thus ILs with longer alkyl chains favor the decomposition
phenomenon [72];

(3) For choline based amino acid ILs, longer alkyl chains on cation create strong hy-
drophobic interaction with gradually decreased hydrogen bond interaction due to
bulkier cationic size. Upon decreasing alkyl chain length, the reverse effect renders
lowering the overall thermal stability of the ILs [77].

4.2. Influence of Functionalization and Alkyl Substituents

Comparing the decomposition temperature of some imidazolium ILs and amino
acid ILs with different functional groups in Table 8, the functionalization usually de-
creases the thermal stability of ILs. [C2MMIM][BF4] and [C2MIM][Br] are more stable than
[C2NH2MMIM][BF4] and [C2NH2MIM][Br] respectively. The reduced thermal stability
is explained by the introduction of amine to the imidazolium cation, which makes the
nearby carbon atom more positively charged and easier to be attacked by the anion [101].
Aromatic functionality also decreases the thermal stability of imidazolium [NTf2] ILs, and
the Tonset of IL with two benzyls is higher than that with naphthylmethyl [110].

Hydroxyl functionalization has different effects on the thermal stability of ILs. The decom-
position temperatures of [CnOHMMIM][NTf2] are lower than [CnMMIM][NTf2] (n = 2, 3, 4, 6, 8)
and the maximum difference can reach 48 ◦C [111]. Similarly, the substitution of the alkyl side
chain to the hydroxyl group in [EMIM][BF4] and [C2MIM][C4F9SO3] reduces their thermal
stability [74,112], which can be attributed to the higher chemical activity and easier decompo-
sition of the hydroxyethyl group [61]. However, Tonset of [C3OHMIM][Cl] (295 ◦C) [113] are
much higher than [C3MIM][Cl] (246 ◦C) [57], and hydroxyl functionalization also improves
the thermal stability of [EMIM][Ac] and [C2MIM][C4F9CO2] [74,112]. It could be speculated
that the hydrogen bonding interaction between the hydroxyethyl group and anion results in
this trend, and the higher intramolecular hydrogen bond interaction stabilizes ILs and block
thermal decomposition reaction to some extent [74].

Table 8. Thermal stability of ILs with different functional groups at a heating rate of 10 ◦C/min in an
inert atmosphere.

ILs Structure of Cations Tonset/◦C Reference

[C2NH2MMIM][BF4]
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Table 8. Cont.

ILs Structure of Cations Tonset/◦C Reference

[C7MIM][NTf2]

Processes 2021, 9, x FOR PEER REVIEW 19 of 36 
 

 

Table 8. Thermal stability of ILs with different functional groups at a heating rate of 10 °C/min in 
an inert atmosphere. 

ILs Structure of Cations Tonset/°C Reference 

[C2NH2MMIM][BF4] 

 

284 [101] 

[C2MMIM][BF4] 

 

391 [101] 

[C2NH2MIM][Br] 

 

222 [113] 

[C2MIM][Br] 

 

300 [71] 

[C7MIM][NTf2] 
 

437 [110] 

[BnzMIM][NTf2] 
 

421 [110] 

[(Bnz)2IM][NTf2] 

 

410 [110] 

[NapmMIM][NTf2] 
 

406 [110] 

[PP16][NTf2] [PP1EP][NTf2] [PP1PE][NTf2] [PP1MB][NTf2] [PP1MEM][NTf2] [PP1BM][NTf2] [PP1MEEM][NTf2]
240

260

280

300

320

340

360

380

400
385

349 348

314

268
259

253

T 1
0%

 (℃
)

ILs

N+O
[NTf2]-

N+
[NTf2]-

N+
O

[NTf2]-

N+O
[NTf2]-

N+
O

[NTf2]-

N+O
O

[NTf2]- O
O

 
Figure 14. Thermal stability of piperidinium ILs with an oxygen atom-containing alkyl side chain 
at a heating rate of 10 °C/min in argon atmosphere [117]. Reproduced with permission from T. 
Nokami, Faraday Discussions; published by Royal Society of Chemistry, 2018. 

437 [110]

[BnzMIM][NTf2]

Processes 2021, 9, x FOR PEER REVIEW 19 of 36 
 

 

Table 8. Thermal stability of ILs with different functional groups at a heating rate of 10 °C/min in 
an inert atmosphere. 

ILs Structure of Cations Tonset/°C Reference 

[C2NH2MMIM][BF4] 

 

284 [101] 

[C2MMIM][BF4] 

 

391 [101] 

[C2NH2MIM][Br] 

 

222 [113] 

[C2MIM][Br] 

 

300 [71] 

[C7MIM][NTf2] 
 

437 [110] 

[BnzMIM][NTf2] 
 

421 [110] 

[(Bnz)2IM][NTf2] 

 

410 [110] 

[NapmMIM][NTf2] 
 

406 [110] 

[PP16][NTf2] [PP1EP][NTf2] [PP1PE][NTf2] [PP1MB][NTf2] [PP1MEM][NTf2] [PP1BM][NTf2] [PP1MEEM][NTf2]
240

260

280

300

320

340

360

380

400
385

349 348

314

268
259

253

T 1
0%

 (℃
)

ILs

N+O
[NTf2]-

N+
[NTf2]-

N+
O

[NTf2]-

N+O
[NTf2]-

N+
O

[NTf2]-

N+O
O

[NTf2]- O
O

 
Figure 14. Thermal stability of piperidinium ILs with an oxygen atom-containing alkyl side chain 
at a heating rate of 10 °C/min in argon atmosphere [117]. Reproduced with permission from T. 
Nokami, Faraday Discussions; published by Royal Society of Chemistry, 2018. 

421 [110]

[(Bnz)2IM][NTf2]

Processes 2021, 9, x FOR PEER REVIEW 19 of 36 
 

 

Table 8. Thermal stability of ILs with different functional groups at a heating rate of 10 °C/min in 
an inert atmosphere. 

ILs Structure of Cations Tonset/°C Reference 

[C2NH2MMIM][BF4] 

 

284 [101] 

[C2MMIM][BF4] 

 

391 [101] 

[C2NH2MIM][Br] 

 

222 [113] 

[C2MIM][Br] 

 

300 [71] 

[C7MIM][NTf2] 
 

437 [110] 

[BnzMIM][NTf2] 
 

421 [110] 

[(Bnz)2IM][NTf2] 

 

410 [110] 

[NapmMIM][NTf2] 
 

406 [110] 

[PP16][NTf2] [PP1EP][NTf2] [PP1PE][NTf2] [PP1MB][NTf2] [PP1MEM][NTf2] [PP1BM][NTf2] [PP1MEEM][NTf2]
240

260

280

300

320

340

360

380

400
385

349 348

314

268
259

253

T 1
0%

 (℃
)

ILs

N+O
[NTf2]-

N+
[NTf2]-

N+
O

[NTf2]-

N+O
[NTf2]-

N+
O

[NTf2]-

N+O
O

[NTf2]- O
O

 
Figure 14. Thermal stability of piperidinium ILs with an oxygen atom-containing alkyl side chain 
at a heating rate of 10 °C/min in argon atmosphere [117]. Reproduced with permission from T. 
Nokami, Faraday Discussions; published by Royal Society of Chemistry, 2018. 

410 [110]

[NapmMIM][NTf2]

Processes 2021, 9, x FOR PEER REVIEW 19 of 36 
 

 

Table 8. Thermal stability of ILs with different functional groups at a heating rate of 10 °C/min in 
an inert atmosphere. 

ILs Structure of Cations Tonset/°C Reference 

[C2NH2MMIM][BF4] 

 

284 [101] 

[C2MMIM][BF4] 

 

391 [101] 

[C2NH2MIM][Br] 

 

222 [113] 

[C2MIM][Br] 

 

300 [71] 

[C7MIM][NTf2] 
 

437 [110] 

[BnzMIM][NTf2] 
 

421 [110] 

[(Bnz)2IM][NTf2] 

 

410 [110] 

[NapmMIM][NTf2] 
 

406 [110] 

[PP16][NTf2] [PP1EP][NTf2] [PP1PE][NTf2] [PP1MB][NTf2] [PP1MEM][NTf2] [PP1BM][NTf2] [PP1MEEM][NTf2]
240

260

280

300

320

340

360

380

400
385

349 348

314

268
259

253

T 1
0%

 (℃
)

ILs

N+O
[NTf2]-

N+
[NTf2]-

N+
O

[NTf2]-

N+O
[NTf2]-

N+
O

[NTf2]-

N+O
O

[NTf2]- O
O

 
Figure 14. Thermal stability of piperidinium ILs with an oxygen atom-containing alkyl side chain 
at a heating rate of 10 °C/min in argon atmosphere [117]. Reproduced with permission from T. 
Nokami, Faraday Discussions; published by Royal Society of Chemistry, 2018. 

406 [110]

Moreover, ether in alkyl side chains is favorable for thermal decomposition. As the
number of introduced ether increases, the thermal stability tends to decrease [66,114–116]
because the introduction of oxygen atoms weakens the interaction between the cation
and anion [77,115]. Specifically, Figure 14 demonstrates that the oxygen atom at the
β-position significantly decreases the thermal stability of ILs, which can be explained
by retro-alkylation of piperidinium ILs into 1-methyl piperidine and the corresponding
oxocarbenium ion intermediates at elevated temperature [117]. In addition, the length of the
O-alkyl chain also influences thermal stability. However, it is interesting that the increase
of the length of the oxygen alkyl chain improves the thermal stability in isothermal TGA,
while the conclusion obtained by non-isothermal TGA is opposite [77]. This contradiction
between the results of non-isothermal TGA and isothermal TGA has also been found in
other studies [44,57,75,78,110].
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Faraday Discussions; published by Royal Society of Chemistry, 2018.

In addition to functional groups, the alkyl substituents also affect thermal stability.
Ngo et al. [118] found that the thermal stability of the imidazolium ILs is improved by
increasing the degree of substitution of hydrogen by alkyl groups on the imidazolium
ring, the potential energy barrier for an attack is increased. Methyl substitution in C2
(the carbon atom between two nitrogen atoms in the imidazolium ring) enhances the
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thermal stability [45,74,119]. C-2H acidity of the imidazolium ring is one of the structural
factors determining short-term thermal stability because the most acidic proton on the
imidazolium cation locates at C2 [58].

Moreover, Table 9 shows the bonding of the alkyl chain via tertiary carbon atom
decreases the thermal stability of the IL, compared to those isomers, in which the alkyl is
connected with the secondary carbon atom to the imidazolium ring [66,120]. The potential
energy barrier of the decomposition reaction decreases because the decomposition products
originating from tertiary carbon can be easily stabilized [66,72].

Table 9. T5% of several isomeric and quasi-isomeric ILs at a heating rate of 10 ◦C/min in argon
atmosphere [66].

ILs Structure of Cations T5%/◦C

[ethoxyC5IM][NTf2]
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4.3. Influence of Anions and Cations

Anions play a major role in determining thermal stability, which has been confirmed
in many studies [46,58,59]. For 1,2,4-triazolium ILs, the stability increases in the order
[NTf2]− > [OTf]− > [OTs]− > [BF4]− > [OMs]− > [I]− > [NO3]− (Table 10). For tributyl-
tetradecyl phosphonium ILs, the stability increases in the order [PFOS]− > [NPf2]− >
[NTf2]− > [FeCl4]− > [AOT]− > [OS]− (Table 11). For nitrile-functionalized azepanium
ILs, the stability increases in the order [OTf]− > [PTS]− > [CH3SO4]− > [OMs]− > [Br]−

> [TFA]− (Table 12) For choline based amino acid ILs, the stability increases in the order
[Tau]− > [Threo]− > [β-ala]− [77]. For fatty acid ILs, the stability increases in the order
oleate > linoleate > caprylate > caproate [121]. The influence of anions on the thermal
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stability for other cations has been compared in detail by Xue et al. [122]. In general,
ILs with [NTf2]−, [BF4]− or [PF6]− perform better in heat resistance, and imidazolium,
pyrrolidinium, and pyridinium are considered as cations with excellent thermal stabil-
ity [34,63,122].

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 ◦C/min in nitrogen atmosphere [78].

ILs Structure of Anions Tonset/◦C

4-methyl-1-propyl-1,2,4-
triazolium

[NTf2]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

365

4-methyl-1-propyl-1,2,4-
triazolium

[OTf]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

330

4-methyl-1-propyl-1,2,4-
triazolium

[BF4]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

302

4-methyl-1-propyl-1,2,4-
triazolium

[PTs]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

291

4-methyl-1-propyl-1,2,4-
triazolium

[OMs]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

267

4-methyl-1-propyl-1,2,4-
triazolium[I] I- 207

4-methyl-1-propyl-1,2,4-
triazolium

[NO3]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

198

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 ◦C/min in nitrogen
atmosphere [37].

ILs Structure of Anions T5%/◦C

[P4,4,4,14][PFOS]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

426

[P4,4,4,14][NPf2]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

418

[P4,4,4,14][NTf2]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 

405



Processes 2021, 9, 337 22 of 36

Table 11. Cont.

ILs Structure of Anions T5%/◦C

[P4,4,4,14][FeCl4]

Processes 2021, 9, x FOR PEER REVIEW 21 of 36 
 

 

> [Threo]－ > [β-ala]－ [77]. For fatty acid ILs, the stability increases in the order oleate > 
linoleate > caprylate > caproate [121]. The influence of anions on the thermal stability for 
other cations has been compared in detail by Xue et al. [122]. In general, ILs with [NTf2]－, 
[BF4]－ or [PF6]－ perform better in heat resistance, and imidazolium, pyrrolidinium, and 
pyridinium are considered as cations with excellent thermal stability [34,63,122]. 

Table 10. Tonset of 1,2,4-triazolium ILs at a heating rate of 10 °C/min in nitrogen atmosphere [78]. 

ILs Structure of Anions Tonset/°C 

4-methyl-1-propyl-1,2,4-triazolium [NTf2] 

 

365 

4-methyl-1-propyl-1,2,4-triazolium [OTf] 

 

330 

4-methyl-1-propyl-1,2,4-triazolium [BF4] 

 

302 

4-methyl-1-propyl-1,2,4-triazolium [PTs] 291 

4-methyl-1-propyl-1,2,4-triazolium [OMs] 

 

267 

4-methyl-1-propyl-1,2,4-triazolium[I] I- 207 

4-methyl-1-propyl-1,2,4-triazolium [NO3] 

 

198 

Table 11. T5% of tributyltetradecyl phosphonium ILs at a heating rate of 10 °C/min in nitrogen 
atmosphere [37]. 

ILs Structure of Anions T5%/°C 

[P4,4,4,14][PFOS] 

 

426 

[P4,4,4,14][NPf2] 

 

418 

[P4,4,4,14][NTf2] 

 

405 

[P4,4,4,14][FeCl4] 

 

401 401

[P4,4,4,14][AOT]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

330

[P4,4,4,14][OS]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

194

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a
heating rate of 10 ◦C/min in an inert atmosphere [123].

ILs Structure of Anions Decomposition
Temperature/◦C

[C4CNAzp][OTf]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

332

[C4CNAzp][PTs]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

240

[C4CNAzp][CH3SO4]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

234

[C4CNAzp][OMs]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

220

[C4CNAzp][Br] Br- 216

[C4CNAzp][TFA]

Processes 2021, 9, x FOR PEER REVIEW 22 of 36 
 

 

[P4,4,4,14][AOT] 

 

330 

[P4,4,4,14][OS] 

 

194 

Table 12. The thermal decomposition temperature of nitrile-functionalized azepanium ILs at a 
heating rate of 10 °C/min in an inert atmosphere [123]. 

ILs Structure of Anions Decomposition Temperature/°C 

[C4CNAzp][OTf] 

 

332 

[C4CNAzp][PTs] 

 

240 

[C4CNAzp][CH3SO4] 234 

[C4CNAzp][OMs] 

 

220 

[C4CNAzp][Br] Br- 216 

[C4CNAzp][TFA] 

 

176 

5. Thermal Stability of Some Novel ILs 
5.1. ILs Mixtures 

Preparing IL mixtures is a simpler and more promising approach compared with 
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different 
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can be 
concluded that the thermal stability of binary mixtures is determined by the ILs which 
could be reconstituted by all ions in the mixture [125]. In other words, the anions and 
cations can combine freely in the mixture [111,112]. 

176

5. Thermal Stability of Some Novel ILs
5.1. ILs Mixtures

Preparing IL mixtures is a simpler and more promising approach compared with
developing new ILs. Figure 15 shows TGA curves of binary mixtures with different
proportions of [C4IM][BF4], [C4IM][NO3], [C4MIM][BF4] and [C4MIM][NO3] [124]. It can



Processes 2021, 9, 337 23 of 36

be concluded that the thermal stability of binary mixtures is determined by the ILs which
could be reconstituted by all ions in the mixture [125]. In other words, the anions and
cations can combine freely in the mixture [111,112].
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In order to predict the thermal stability of mixtures, Navarro et al. [126] proposed a
method to obtain the mass loss of IL mixtures at different temperatures by using pure ILs
TGA data as

mmixture =
L

∑
l=1

wl ·ml (30)

where mmixture is the mass that the mixture would lose in an ideal case at each temperature,
ml denotes the experimental mass loss of species in forming the mixture at a certain
temperature, wl refers to the mass fraction of the lth component in the mixture, and L is the
number of compounds involved in the mixture. This method has successfully predicted
the thermal stability of several IL binary mixtures [80,126,127]. However, for the mixture of
[4C4MPyr][NTf2] and [C2MIM][EtSO4], the model cannot predict its thermal stability well,
and this may be related to the strong interaction between [EtSO4]− anion and the other
ions in the mixture [128].

In addition, the study has revealed that mixing certain ILs in an appropriate ratio can
improve thermal stability. TGA data of mixtures of [C4MIM][NTf2] and [C8MIM][AcO]
in different proportions proves that when the mole fraction of [C8MIM][AcO] is be-
tween 0.1 and 0.3, T5% and T10% are significantly higher than the values predicted by
Equation (30) [64]. The results of nuclear magnetic resonance (NMR) indicate that the
synergistic role of hydrogen bond and electrostatic interactions are proposed as the main
reason for the improvement of the thermal stability of the IL mixtures.
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5.2. Dicationic ILs

Due to their unique properties, dicationic ILs (DILs) have been widely used in ther-
mal storage [67,129], organic synthesis [130], anti-corrosion [131], or as surface-active
agents [132], and they are less toxic than their monocationic counterparts [133].

The Tonset of monocationic ILs [C10MIM][Br], [C12MIM][Br] and [C14MIM][Br], and
dicationic ILs [C10(MIM)2][Br]2, [C12(MIM)2][Br]2 and [C14(MIM)2][Br]2, are shown in
Figure 16. The values of DILs are 30-40 ◦C higher than their monocationic counter-
parts [134–136]. Other studies have obtained similar conclusions, which are ascribed
to higher charges, higher molecular weight, and greater intermolecular interactions of
DILs [6,129,137]. Due to their stronger electrostatic interactions, DILs often demonstrate
higher melting points than monocationic ILs, which limits their applications [69]. Therefore,
numerous methods of lowering melting points have been proposed, such as adjusting
alkane linkage chain length, changing cationic head groups and anions, mixing DILs with
the same cationic head groups and anion but different alkane linkage chains [37], utilizing
branched alkane linkage chains [69] and designing unsymmetrical DILs [138].
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10 ◦C/min in nitrogen atmosphere [134] (n = 10, 12, 14).

As shown in Table 13, when the linkage chain is the same, the thermal stability of DILs
with cationic head groups of (MMIM), (C1Py), and (PC3C3C3) is significantly different.
Moreover, Figure 17 suggests that the longer the alkyl side chains are, the lower the
thermal stability of DILs are. The reduced thermal stability is attributed to the decreasing
symmetry of cations with the increase of the number of carbon atoms in the alkyl side
chains, which hinders the crystal effective accumulation [129,139]. Table 14 demonstrates
that the decomposition temperatures of DILs with some functional groups are higher
than those of DILs without corresponding functional groups. This might be explained by
the appearance of complex functional groups increasing the strength of intermolecular
interaction and the energy of chemical bonds [139].
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Table 13. Thermal stability of dicationic ILs (DILs) containing different cationic head groups at a
heating rate of 10 ◦C/min in nitrogen atmosphere [69].

DILs Structure of Cations T0.01/◦C T0.05/◦C T0.15/◦C

[C32M(MMIM)2][NTf2]2

Processes 2021, 9, x FOR PEER REVIEW 25 of 36 
 

 

Table 13. Thermal stability of dicationic ILs (DILs) containing different cationic head groups at a 
heating rate of 10 °C/min in nitrogen atmosphere [69]. 

DILs Structure of Cations T0.01/°C T0.05/°C T0.15/°C 

[C32M(MMIM)2][NTf2]2 
 

398 438 478 

[C32M(C1Py)2][NTf2]2 
 

313 373 401 

[C32M(PC3C3C3)2][NTf2]2 
 

355 402 434 

320

309

292

281

311

305

299

280

0 1 2 3 4
270

275

280

285

290

295

300

305

310

315

320

325

Alkyl chain length, n

T 1
0%

 (℃
)

270

275

280

285

290

295

300

305

310

315

320

325

 T
on

se
t (

℃
)

 
Figure 17. Thermal decomposition temperature of [C2(CnIM)2][Br]2 and [C4(CnIM)2][Br]2 at a 
heating rate of 10 °C/min in nitrogen atmosphere [129,139] (n = 1–4). 

Table 14. Tonset of DILs with different functional groups at a heating rate of 10 °C/min in nitrogen 
atmosphere [139]. 

ILs Structure of Cations Tonset/°C 

[C4(C2IM)2][Br]2 
 

277.33 

[C4(C2H4IM)2][Br]2 
 

304.36 

[C4(C2H5OIM)2][Br]2 
 

297.65 

[C4(C2H3O2IM)2][Br]2 

 

309.43 

398 438 478

[C32M(C1Py)2][NTf2]2

Processes 2021, 9, x FOR PEER REVIEW 25 of 36 
 

 

Table 13. Thermal stability of dicationic ILs (DILs) containing different cationic head groups at a 
heating rate of 10 °C/min in nitrogen atmosphere [69]. 

DILs Structure of Cations T0.01/°C T0.05/°C T0.15/°C 

[C32M(MMIM)2][NTf2]2 
 

398 438 478 

[C32M(C1Py)2][NTf2]2 
 

313 373 401 

[C32M(PC3C3C3)2][NTf2]2 
 

355 402 434 

320

309

292

281

311

305

299

280

0 1 2 3 4
270

275

280

285

290

295

300

305

310

315

320

325

Alkyl chain length, n

T 1
0%

 (℃
)

270

275

280

285

290

295

300

305

310

315

320

325

 T
on

se
t (

℃
)

 
Figure 17. Thermal decomposition temperature of [C2(CnIM)2][Br]2 and [C4(CnIM)2][Br]2 at a 
heating rate of 10 °C/min in nitrogen atmosphere [129,139] (n = 1–4). 

Table 14. Tonset of DILs with different functional groups at a heating rate of 10 °C/min in nitrogen 
atmosphere [139]. 

ILs Structure of Cations Tonset/°C 

[C4(C2IM)2][Br]2 
 

277.33 

[C4(C2H4IM)2][Br]2 
 

304.36 

[C4(C2H5OIM)2][Br]2 
 

297.65 

[C4(C2H3O2IM)2][Br]2 

 

309.43 

313 373 401

[C32M(PC3C3C3)2][NTf2]2

Processes 2021, 9, x FOR PEER REVIEW 25 of 36 
 

 

Table 13. Thermal stability of dicationic ILs (DILs) containing different cationic head groups at a 
heating rate of 10 °C/min in nitrogen atmosphere [69]. 

DILs Structure of Cations T0.01/°C T0.05/°C T0.15/°C 

[C32M(MMIM)2][NTf2]2 
 

398 438 478 

[C32M(C1Py)2][NTf2]2 
 

313 373 401 

[C32M(PC3C3C3)2][NTf2]2 
 

355 402 434 

320

309

292

281

311

305

299

280

0 1 2 3 4
270

275

280

285

290

295

300

305

310

315

320

325

Alkyl chain length, n

T 1
0%

 (℃
)

270

275

280

285

290

295

300

305

310

315

320

325

 T
on

se
t (

℃
)

 
Figure 17. Thermal decomposition temperature of [C2(CnIM)2][Br]2 and [C4(CnIM)2][Br]2 at a 
heating rate of 10 °C/min in nitrogen atmosphere [129,139] (n = 1–4). 

Table 14. Tonset of DILs with different functional groups at a heating rate of 10 °C/min in nitrogen 
atmosphere [139]. 

ILs Structure of Cations Tonset/°C 

[C4(C2IM)2][Br]2 
 

277.33 

[C4(C2H4IM)2][Br]2 
 

304.36 

[C4(C2H5OIM)2][Br]2 
 

297.65 

[C4(C2H3O2IM)2][Br]2 

 

309.43 

355 402 434

Processes 2021, 9, x FOR PEER REVIEW 25 of 36 
 

 

Table 13. Thermal stability of dicationic ILs (DILs) containing different cationic head groups at a 
heating rate of 10 °C/min in nitrogen atmosphere [69]. 

DILs Structure of Cations T0.01/°C T0.05/°C T0.15/°C 

[C32M(MMIM)2][NTf2]2 
 

398 438 478 

[C32M(C1Py)2][NTf2]2 
 

313 373 401 

[C32M(PC3C3C3)2][NTf2]2 
 

355 402 434 

320

309

292

281

311

305

299

280

0 1 2 3 4
270

275

280

285

290

295

300

305

310

315

320

325

Alkyl chain length, n

T 1
0%

 (℃
)

270

275

280

285

290

295

300

305

310

315

320

325

 T
on

se
t (

℃
)

 
Figure 17. Thermal decomposition temperature of [C2(CnIM)2][Br]2 and [C4(CnIM)2][Br]2 at a 
heating rate of 10 °C/min in nitrogen atmosphere [129,139] (n = 1–4). 

Table 14. Tonset of DILs with different functional groups at a heating rate of 10 °C/min in nitrogen 
atmosphere [139]. 

ILs Structure of Cations Tonset/°C 

[C4(C2IM)2][Br]2 
 

277.33 

[C4(C2H4IM)2][Br]2 
 

304.36 

[C4(C2H5OIM)2][Br]2 
 

297.65 

[C4(C2H3O2IM)2][Br]2 

 

309.43 

Figure 17. Thermal decomposition temperature of [C2(CnIM)2][Br]2 and [C4(CnIM)2][Br]2 at a
heating rate of 10 ◦C/min in nitrogen atmosphere [129,139] (n = 1–4).

Table 14. Tonset of DILs with different functional groups at a heating rate of 10 ◦C/min in
nitrogen atmosphere [139].
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The change of the linkage chain between the two cationic head groups also has an
important influence on thermal stability. The linkage chain is usually a straight-chain alkyl,
and a longer linkage chain leads to worse thermal stability within a certain range, while a
further increase in chain length leads to the decrease of thermal stability [37]. DILs with the
branched linkage chain are developed due to reducing the high melting point of DILs with
a straight linkage chain. Although the thermal stability of DILs containing the branched
alkyl linkage chain is lower than their linear counterparts, it should be noted that this
discrepancy is acceptable when the length of the linkage chain reaches C5. Therefore, the
thermal stability of DILs can be tuned by branching linkage chains [69]. Recently, DILs with
m-xylyl, pyridine functional groups, and dioxane linkage chain have been synthesized,
and all of them have a low melting point and high thermal stability [140–142]. Similar
to monocationic ILs, anions have a major influence in the thermal stability of DILs, and
Table 15 reveals that the thermal stability order is as follows: [NTf2]− > [PF6]− >[BF4]−

> [OTf]− > [Cl]− [129,141]. The [NTf2]− DILs also have high thermal stability and low
melting point [37,138,140]. Generally, the influence factors of DILs structure on thermal
stability are similar to monocationic ILs. Therefore, the properties of DILs that have not
been determined by experiments can be inferred from the known monocationic ILs.

Table 15. The decomposition temperature of DILs with different anions at a heating rate of 10 ◦C/min
in nitrogen atmosphere [129,141]. Reproduced with permission from Jianlian Liu, Journal of Molecular
Liquids; published by Elsevier, 2020; reproduced with permission from Coby J. Clarke, ACS Sustainable
Chemistry & Engineering; published by American Chemical Society, 2020.

DILs Decomposition Temperature/◦C

[Pyri(C8MIM)2][Cl]2 273.2 a

[Pyri(C8MIM)2][OTf]2 417.8 a

[Pyri(C8MIM)2][BF4]2 419.1 a

[Pyri(C8MIM)2][PF6]2 429.4 a

[Pyri(C8MIM)2][NTf2]2 443.5 a

[C4(MIM)2][BF4]2 384.6 b

[C4(MIM)2][PF6]2 423.4 b

[C4(MIM)2][NTf2]2 468.1 b

a Tonset from [141]; b T10% from [129].

6. Summary

The methods measuring the thermal stability of ILs are discussed. Although Tonset
overestimates the thermal stability, it is still used as a universal parameter in different
investigations. It should be noted that when using Tonset to compare the thermal stability it
is necessary to determine whether the experimental conditions (atmosphere type, heating
rate, etc.) are the same. Although Tz/y is defined as a parameter to measure the long-
term thermal stability of ILs, it is clear that this parameter cannot meet the required
time of industrial running. Thus, a series of methods have been proposed to predict the
thermal stability of ILs over a longer period. Among them, MOT is considered a highly
accurate method, and the activation energy and pre-exponential factor values in the thermal
decomposition process are required for calculating MOT.

Different means to study the thermal degradation kinetics of ILs are elaborated. After
extensively analyzing the kinetic data from several investigations, it can be concluded
that the isoconversional methods have been widely used to calculate the activation energy
values, and the results of integral isoconversional methods are more accurate than those
of differential methods. In addition, maximum-rate methods and Arrhenius methods
are used in many research studies due to their simple calculation process, although both
methods are not as precise as isoconversional methods. The Arrhenius method is also used
to calculate the pre-exponential factor. However, compensation effect or master plots are
seen lately as reliable tools for calculating pre-exponential factor values.
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Thermal stability data of divergent ILs are summarized in Table 16 according to the
types of anions, and this table reveals many structural factors affecting thermal stability,
in which the modification of cations is the prime research object. For cations, a longer
alkyl side chain, functionalization, and the bonding of alkyl chain via tertiary carbon atom
all reduce the thermal stability of ILs. In the process of etherification, the number and
position of oxygen atoms and the length of the O–alkyl chain have evident effects on
thermal stability. Moreover, due to the high acidity of the C2 proton, methyl substitution in
the C2 position on the imidazolium ring can improve the thermal stability. Although there
are many methods to change the thermal stability by tuning cations, it should be stressed
that the type of anions plays a major role in determining thermal stability. Generally,
some specific anions such as [NTf2]−, [BF4]−, and [PF6]− and cations such as imidazolium,
pyrrolidinium, and pyridinium make the ILs more stable at high temperatures.

Table 16. Decomposition temperature and activation energy of some ILs and DILs.

No. ILs Tonset/◦C T5%/◦C T10%/◦C Tpeak/◦C E/kJ mol−1 Ref.

Monocationic ILs

1 [C2MIM][Cl]
263 122 a [57]
260 120 b [39]

2 [C3MIM][Cl] 246 155 a [57]

3 [C4MIM][Cl]
260 151 a [57]
250 105 b [39]

4 [C4MMIM][Cl] 267 58.688 b [86]
5 [C6MIM][Cl] 253 98 a [57]
6 [C10MIM][Cl] 247 150 a [57]
7 [C3OHMIM][Cl] 295 [113]
8 [P6,6,6,14][Cl] 320 [40]
9 [C2MIM][Br] 283 125 b [39]

10 [C4MIM][Br] 255 127 b [39]
11 [C10MIM][Br] 265 298 [134]
12 [C12MIM][Br] 257 292 [134]
13 [C14MIM][Br] 255 287 [134]
14 [C2NH2MIM][Br] 222 [113]
15 [C4CNAzp][Br] 216 [123]
16 [C2MIM][I] 279 111 b [39]
17 [C4MIM][I] 265 121 b [39]
18 [C3MT1,2,4M][I] 207 188 122.1 c [78]
19 [C2MIM][NTf2] 425 384 402 470 102 b; 108 d [44]

20 [C3MIM][NTf2]
406 358 379 448 92 b; 98 d [44]
412 369 115.8 c [78]

21 [C4MIM][NTf2]

426 385 405 466 125 b; 130 d [44]
421 478 [58]
367 465 115.9 b;121.3 d; 116.3 a [18]
418 385 130.7 c [75]

22 [C4MMIM][NTf2]
418 374 394 468 119 b; 124 d [44]
436 408 478 129 c [47]

23 [C7MIM][NTf2] 437 426 464 [110]
24 [C12MIM][NTf2] 405 418 464 125 b [49]
25 [N4,4,4,1][NTf2] 380 374 435 121 b [49]
26 [N8,8,8,1][NTf2] 362 386 425 108 b [49]
27 [P4,4,4,14][NTf2] 405 [37]
28 [C3MPy][NTf2] 469 [72]
29 [C4MPy][NTf2] 451 [66] 450 128.6 d; 123.6 b; 124.0 a [50]
30 [C5MPy][NTf2] 443 [72]
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Table 16. Cont.

No. ILs Tonset/◦C T5%/◦C T10%/◦C Tpeak/◦C E/kJ mol−1 Ref.

31 [C6MPy][NTf2] 440 [72]
32 [C7MPy][NTf2] 429 [72]
33 [C8MPy][NTf2] 443 [66] 447 [50] 113.7 d; 107.8 b; 108.2 a [50]
34 [C9MPy][NTf2] 447 [72]
35 [C10MPy][NTf2] 421 [72]
36 [C1OC2MPy][NTf2] 411 399 443 [63]
37 [C2MT1,2,4M][NTf2] e 355 327 102.5 c [75]
38 [C3MT1,2,4M][NTf2] e 365 337 110.3 c [75]
39 [C4MT1,2,4M][NTf2] e 350 327 114.8 c [75]
40 [C6MT1,2,4M][NTf2] e 345 318 119.1 c [75]
41 [C8MT1,2,4M][NTf2] e 346 318 123.6 c [75]
42 [C10MT1,2,4M][NTf2] e 357 331 127.7 c [75]
43 [C12MT1,2,4M][NTf2] e 354 326 131.6 c [75]
44 [BnzMIM][NTf2] 421 402 464 [110]
45 [(Bnz)2IM][NTf2] 410 391 453 [110]
46 [NapmMIM][NTf2] 406 392 460 [110]
47 [PP16][NTf2] 385 [117]
48 [PP1EP][NTf2] 349 [117]
49 [PP1PE][NTf2] 348 [117]
50 [PP1MB][NTf2] 314 [117]
51 [PP1MEM][NTf2] 268 [117]
52 [PP1BM][NTf2] 259 [117]
53 [PP1MEEM][NTf2] 253 [117]
54 [ethoxyC5IM][NTf2] 377.3 [66]
55 [ethoxyiC5IM][NTf2] 372.7 [66]
56 [ethoxyneoC5IM][NTf2] 369.8 [66]
57 [ethoxycC5IM][NTf2] 355.4 [66]
58 [ethoxy3C5IM][NTf2] 354.3 [66]
59 [C4C5IM][NTf2] 413.2 [66]
60 [C4iC5IM][NTf2] 402.3 [66]
61 [C4cC5IM][NTf2] 365.9 [66]
62 [C43C5IM][NTf2] 362.9 [66]
63 [C4MIM][PTs] 346 379 [58]
64 [C3MT1,2,4M][PTs] e 291 271 141.8 c [78]
65 [C4CNAzp][PTs] 240 [123]
66 [Chol][Tos] 332 346 [73]
67 [C2Py][Tos] 335 357 [73]
68 [Chol][Ac] 200 222 [73]
69 [C2MIM][Ac] 221 [85]
70 [C4MIM][OS] 314 353 [58]
71 [P4,4,4,14][OS] 194 [37]
72 [MIM][NO3] 163 184 112.7 d [90]
73 [C3MT1,2,4M][NO3] e 198 187 132.1 c [78]
74 [C3MT1,2,4M][OMs] e 267 254 138.9 c [78]
75 [C4CNAzp][OMs] 220 [123]
76 [C4MIM][OTf] 382 420 [58]
77 [C4MMIM][OTf] f 436 424 479 148 c [47]
78 [C3MT1,2,4M][OTf] e 365 337 110.3 c [78]
79 [C4CNAzp][OTf] 332 [123]
80 [C4MIM][BF4] 381 396 [58]
81 [C2MMIM][BF4] 391 [101]
82 [C2NH2MMIM][BF4] 284 72.2 c [101]
83 [C3MT1,2,4M][BF4] e 302 264 102.2 c [78]
84 [C1OC2MPy][(C2F5)3PF3] 352 349 384 [63]
85 [P6,6,6,14][(C2F5)3PF3] 363 356 396 [63]
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Table 16. Cont.

No. ILs Tonset/◦C T5%/◦C T10%/◦C Tpeak/◦C E/kJ mol−1 Ref.

86 [C4MIM][DBP]
274 293 [58]
286 157.88 a [56]

87 [C4MIM][AcO] 222 246 [58]
88 [P6,6,6,14][AcO] 275.8 259.3 [83]
89 [P6,6,6,14][ButO] 270.6 248.3 [83]
90 [P6,6,6,14][HexO] 255.8 233.9 [83]
91 [P6,6,6,14][OctO] 242.8 219.6 [83]
92 [P6,6,6,14][DecO] 268.8 260.4 [83]
93 [P4,4,4,8][BScB] 412 430 [81]
94 [P4,4,4,8][BMB] 403 430 [81]
95 [Chol][H2PO4] 246 335 [73]
96 [C4MIM][HSO4] 348 389 [58]
97 [C4MIM][SbF6] 387 413 [58]
98 [C4MIM][PF6] 412 386 399 461 100.60 b; 107.36 d [55]
99 [BSMBIM][CF3SO3] 331 359 171.01 b; 171.30 a [54]

100 [C4MMIM][FAP] 376 379 402 139 c [47]
101 [P4,4,4,14][PFOS] 426 [37]
102 [P4,4,4,14][NPf2] 418 [37]
103 [P4,4,4,14][FeCl4] 401 [37]
104 [P4,4,4,14][AOT] 330 [37]
105 [C4CNAzp][CH3SO4] 234 [123]
106 [C4CNAzp][TFA] 176 [123]

Dicationic ILs
107 [C2(MIM)2][Br]2 311 [139]
108 [C2(C2IM)2][Br]2 305 [139]
109 [C2(C3IM)2][Br]2 299 [139]
110 [C2(C4IM)2][Br]2 280 [139]
111 [C4(C2IM)2][Br]2 277 [139]
112 [C10(MIM)2][Br]2 299 317 [134]
113 [C12(MIM)2][Br]2 289 309 [134]
114 [C14(MIM)2][Br]2 294 315 [134]
115 [C4(C2H4IM)2][Br]2 304 [139]
116 [C4(C2H5OIM)2][Br]2 298 [139]
117 [C4(C2H3O2IM)2][Br]2 309 [139]
118 [C4(MIM)2][Br]2 320 [129]
119 [C4(C2IM)2][Br]2 309 [129]
120 [C4(C3IM)2][Br]2 299 [129]
121 [C4(C4IM)2][Br]2 281 [129]
122 [Pyri(C8MIM)2][Cl]2 273 [141]
123 [Pyri(C8MIM)2][OTf]2 418 [141]
124 [Pyri(C8MIM)2][PF6]2 429 [141]
125 [C4(MIM)2][PF6]2 423 [129]
126 [C4(MIM)2][NTf2]2 468 [129]
127 [C32M(MMIM)2][NTf2]2 438 [69]
128 [C32M(C1Py)2][NTf2]2 373 [69]
129 [C32M(PC3C3C3)2][NTf2]2 402 [69]
130 [Pyri(C8MIM)2][NTf2]2 444 [141]

All TGA experiments were performed under an N2 atmosphere and at a heating rate of 10 ◦C/ min unless indicated. In ref. [44,63,85,90]
an air atmosphere was used, and in ref. [66], an argon atmosphere was used. In ref. [56,90] the heating rate was 8 ◦C/min, and in
ref. [83], the heating rate was 5 ◦C/min. a Starink method; b KAS method; c zero-order Arrhenius method; d Flynn–Wall–Ozawa (FWO)
method; e T1,2,4M denotes 1,2,4-triazolium; f in the air atmosphere; reproduced with permission from Asli Akçay, Thermochimica Acta;
published by Elsevier, 2014; reproduced with permission from Wenlong Wang, Chemical Engineering Journal; published by Elsevier, 2017;
reproduced with permission from Andreah T. De La Hoz, The Journal of Physical Chemistry B; published by American Chemical Society, 2014;
reproduced with permission from Josefa Salgado, The Journal of Chemical Thermodynamics; published by Elsevier, 2013; reproduced with
permission from Samuel M. Murray, Journal of Chemical & Engineering Data; published by American Chemical Society, 2013; reproduced
with permission from D. Blanco, Thermochimica Acta; published by Elsevier, 2017; reproduced with permission from Rahul A. Patil,
Chemistry of Materials; published by American Chemical Society, 2016; reproduced with permission from Gebrekidan Gebresilassie Eshetu,
ChemSusChem; published by Wiley, 2017; reproduced with permission from Khurrum Shehzad Quraishi, Journal of Thermal Analysis and
Calorimetry; published by Springer Nature, 2017; reproduced with permission from Juan J. Parajó, The Journal of Chemical Thermodynamics;
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published by Elsevier, 2018; reproduced with permission from T. Nokami, Faraday Discussions; published by Royal Society of Chemistry,

2018; reproduced with permission from Jan Rotrekl, Fluid Phase Equilibria; published by Elsevier, 2020; reproduced with permission from

J.J.Parajó, The Journal of Chemical Thermodynamics; published by Elsevier, 2020; reproduced with permission from Nana Yamaki, Journal of

Thermal Analysis and Calorimetry; published by Springer Nature, 2019; reproduced with permission from Vikranth Volli, Journal of Thermal

Analysis and Calorimetry; published by Springer Nature, 2019; reproduced with permission from Shuangyue Liu, Journal of Molecular

Liquids; published by Elsevier, 2015; reproduced with permission from Hui-Chun Jiang, Journal of Thermal Analysis and Calorimetry;

published by Springer Nature, 2019; reproduced with permission from K. Oster, The Journal of Chemical Thermodynamics; published by

Elsevier, 2018; reproduced with permission from Faiz Ullah Shah, Molecules; published by Molecular Diversity Preservation International,

2020; reproduced with permission from Zhen Huang, Journal of Thermal Analysis and Calorimetry; published by Springer Nature, 2019;

reproduced with permission from Zahoor Ullah, Procedia Engineering; published by Elsevier, 2016; reproduced with permission from Hang

Zhang, The Journal of Physical Chemistry C; published by American Chemical Society, 2018; reproduced with permission from Jianlian Liu,

Journal of Molecular Liquids; published by Elsevier, 2020; reproduced with permission from Coby J. Clarke, ACS Sustainable Chemistry &

Engineering; published by American Chemical Society, 2020; reproduced with permission from Mohsen Talebi, Journal of Molecular Liquids;

published by Elsevier, 2018.

Finally, the thermal stability of some novel ILs is introduced to provide more choices
in high-temperature applications. In ILs mixtures, the anions and cations can combine
freely. It is also feasible to predict the thermal stability of ILs mixtures by using TGA data
of pure ILs. DILs have better thermal stability than their monocationic counterparts, and
the influence factors of DILs structure on thermal stability are similar to monocationic ILs.
Moreover, due to the stronger electrostatic interactions, DILs have a higher melting point,
while adjusting the length of the linkage chain and the type of anions can obtain DILs with
low melting point and high thermal stability.
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Nomenclature

A Pre-exponential factor, min−1

Aα Isoconversional values of pre-exponential factor, min−1

E Activation energy, kJ mol−1

Eα Isoconversional values of the activation energy, kJ mol−1

f (α) Kinetic model function
g(α) Integral kinetic model function
k(T) Rate constant
L Number of compounds presented in the mixture
m Mass at a certain time
m1 End mass of the sample
m0 Initial mass
ml Experimental mass loss of each IL forming the mixture at each temperature
mmixture Mixture mass lose in an ideal case at each temperature
MOT Maximum operating temperature, ◦C
R Universal gas constant, 8.314 J mol−1 K−1

tmax Maximum operation time
Tonset Onset decomposition temperature, ◦C
Tpeak Temperature of maximum degradation, ◦C
T50% Temperature at the decomposition degree of 50%, ◦C
Tz Temperature at the decomposition degree z, ◦C
T0.01/10h Temperature at decomposition degree of 0.01 within 10 h, ◦C
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Tz/y Temperature at decomposition degree z within the selected time y, ◦C
T(dw/dT 6=0) Temperature at which the first appreciable weight loss occurs, K
wl Each IL mass fraction in the mixture
Greek Symbols
α Extent of conversion
β Heating rate, ◦C min−1

Subscripts
α Different extent of conversion
i Different temperature programs
j All heating programs other than i
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