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Abstract: This paper presents the results of investigations concerning the simultaneous removal of
Al(III), Cu(II), and Zn(II) from dilute aqueous solutions using ion and precipitate flotation methods.
The effects of initial solution pH, surface active substance concentration, and the gas velocity on
the flotations’ efficiency and course are studied. Experimental results are discussed in terms of
physicochemical aspects related to aqueous solutions of metal salts. The results indicate that satisfying
simultaneous flotations of aluminum, copper and zinc species are observed if the pH value ranges
between 7.0 and 9.0. It was found that an increase in collector concentration results in a decrease
in the flotation rate constants. An increase in the gas velocity results in an increase in the ion and
precipitate flotation rates.
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1. Introduction

Discharge of waste streams containing metal ions into aquatic systems, mainly due to
industrial operations, is still posing a threat to human health and the environment [1,2].
Strict legal standards regarding the permissible concentrations of metals in wastewater
require the use of efficient methods of treatment of this type of streams, especially those
from the metal and metallurgical industries [3].

The most common method of removing of the metal ions from wastewater is chemical
precipitation [4]. It is a simple method, efficient for highly concentrated streams and
relatively inexpensive, but has significant disadvantages, i.e., a large volume of sludge
with a high water content as a result of precipitation and the chemicals present in the
wastewater can hinder the complete precipitation of metals [1]. Therefore, in recent years,
for the treatment of industrial wastewater from metal ions, various methods were pro-
posed. These include ion exchange, membrane and adsorption processes [5–7] including
the application of low-cost adsorbents [8], bioremediation processes [9], remediation us-
ing metallic iron [10], electrokinetic remediation [11], or photochemical remediation [12].
Among others, flotation techniques may be applied for the treatment of wastewaters
containing metals [13,14]. Ion and precipitate flotation belong to the adsorptive bubble sep-
aration methods, which are of interest due to their high efficiency in the treatment of large
volumes of dilute solutions and low operating costs of the process. A brief comparison of
selected physicochemical methods of the removal of metal ions from wastewaters is given
in Table 1.

Ion flotation allows for the removal of surface inactive ions from the solution. These ions
react with the oppositely charged ions of the surfactant acting as a collector and create com-
pounds can be adsorbed and transported on the surface of gas bubbles rising in the bubble
layer to the foam formed above the liquid layer [15–17]. The concentration of flotated ions in
the product i.e., in the foam condensate, may be many times higher than in the feed solution.
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Ion flotation is said to be a highly efficient method for purification of aqueous streams from
metal ions when their concentration in the range between 10−5 to 10−3 mol dm−3 [18].

The precipitate flotation differs from ion flotation by means of a different process
mechanism. In the precipitate flotation, the feed solution is a suspension containing
hydroxides or insoluble metal salts. By adding a surfactant as a collector, the surface-active
ions are adsorbed onto the hydroxide-charged micelles, neutralizing the electric charge and
making the particle surface hydrophobic. The aggregates formed in this way and adsorbed
on the surface of gas bubbles can be flotated [19,20].

Table 1. Physicochemical methods for removal of various metal ions from wastewaters.

Method Example
Conditions or Metal
Concentration Range

(mg dm−3)

Metal Removal
Efficiency, % Advantages Disadvantages References

Precipitation Hydroxide
precipitation 10–103 and >103 >90 Low cost, ease of

operation
High volumes of sludge,
cost of sludge processing [4]

Coagulation and
flocculation

Coagulation using
aluminum sulfate

pH ranges: 5.5–7.5 and
10.5–11.5; removal of

suspended solids
>95

Short sedimentation
time, stability of

agglomerates

High consumption of
chemicals, cost of
sludge processing

[21]

Ion exchange Ion exchange
zeolites <103 >90 Selective removal of

metal ions

High investment costs,
need of solution

pre-treatment
[5]

Membrane
separation Reverse osmosis Removal of organic and

inorganic compounds >97
High process

efficiency, durability
of equipment

Relatively high cost [22]

Adsorption Activated carbon <103 >70
Possibility of

adsorbent
regeneration

High cost [1]

Electrochemical
processes

Electrochemical
precipitation 10–103 >95

Low consumption
of chemicals,

short process time
High costs [23]

Flotation
techniques Ion flotation 10–103 >95 Low costs,

process selectivity
Consumption of

surface-active substance [3]

In this work, zinc, aluminum and copper were selected as the research objects.
The mentioned metals and their alloys are widely used in different industries, includ-
ing metallurgy, the aviation, and the chemical industry [24]. Ion and precipitate flotation
of aluminum was studied by Shakir and co-workers [25], while investigations on copper
were performed by Rubin and co-workers [26]. Ion flotation of copper with calcium or
lead was studied by Liu and Doyle [27]. Ion and precipitate flotation of zinc was studied
by Jurkiewicz [28]. Ion and precipitate flotation of Al(III) and Cu(II) was investigated by
Kawalec-Pietrenko and Rybarczyk as well as by Ghazy and El-Morsy [29,30]. However,
to the best knowledge of the authors, a mixture of Al(III), Cu(II) and Zn(II) has not been
previously investigated as a research object for ion and precipitate flotation.

A mixture of zinc, aluminum, and copper ions gets into industrial wastewaters,
e.g., during the processing of the aluminum brass and the production of brass elements.
The operations require the use of large volumes of the process water, which is associated
with the formation of significant amounts of wastewater containing low concentrations
of metals. Therefore, the use of flotation techniques to treat this type of stream is particu-
larly justified.

Recent research in the field of wastewater treatment using ion and precipitate flotation
was related to the use of biosurfactants [17,31–34], more in-depth description of the pro-
cess mechanisms, e.g., taking into account the physicochemical aspects of the precipitate
formation [35,36] or the selective separation of target ions [37]. Kinetic aspects of the ion
flotation were also investigated [38].

It seems that an interesting aspect of the research regarding ion and precipitate flota-
tion is related to the analysis of the conditions enabling either the simultaneous removal of
several ions from a solution or the selective flotation of a target ion. However, the literature
on the subject is dominated by articles describing the foam separation of single metal ions,
while there are a few publications on the simultaneous ion and precipitation flotation of
two or more metals [29,31,34,39]. The use of flotation techniques in wastewater treatment
requires not only information about the course of the ongoing processes, but also about the



Processes 2021, 9, 301 3 of 22

possibility of its controlling. Therefore, the aim of this study is to evaluate the influence
of the most important process parameters, e.g., pH value of the feed solution, collector
concentration (cSDS and cCTAB, for concentration of sodium dodecyl sulphate and cationic
cetyltrimethylammonium bromide, respectively), and superficial gas velocity (uG, on the
simultaneous removal of Al(III), Cu(II), and Zn(II) from aqueous solutions using ion and
precipitate flotation methods.

2. Materials and Methods

Investigations were performed in a semi-batch bubble column (1) presented in Figure 1.
The height of the column was 510 mm and its internal diameter was 50 mm. The G-4
porous frit (4) was mounted at the bottom of the column. A solution sampling port
(5) was placed 250 mm above the porous frit. A valve (6) mounted below the porous frit
enabled draining the liquid from the column. Waste solution via a pipe (11) was directed
to the measuring cylinder.
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Figure 1. Scheme of a laboratory set-up: 1—bubble flotation column; 2—compressed air line; 3—pressure
reduction valve for compressed air; 4—ceramic porous sinter; 5—sampling port for liquid; 6—drainage
valve; 7—foam line; 8—rotating horizontal plate; 9—foam container; 10—foam condensate container;
11—waste solution line; 12—air outflow.

Compressed air (2) was supplied to the system through a pressure reduction valve (3).
Pressure (P), temperature (T), and volumetric flowrate (VG) of the air were measured prior
to its entering the bubble column. Upon passing through the porous frit, the air stream
was dispersed and raised as the bubble swarm through the gas–liquid bubble layer in the
flotation column. The foam formed during the process was condensed with a rotating
horizontal Teflon plate (8) in a foam container (9). The volume of the foam condensate
was measured (10). During the experiments, superficial air velocity (uG) was equal to
1.51 mm s−1 unless stated otherwise.

Aqueous solutions containing Al2(SO4)3 × 16H2O (Sigma-Aldrich, Steinheim, Germany),
CuSO4 × 5H2O, and ZnSO4 × 7H2O (POCH, Gliwice, Poland) were prepared using dis-
tilled water. Initial concentrations of each of above given metals were either 0.15 or 2 mmol
dm−3. These concentrations are typically found in the research on ion and precipitate flota-
tion [27,40] as well as corresponding to concentrations of investigated metals in real industrial
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effluents [1,41–43]. Selection of two concentrations, differing by the order of magnitude, enable
verification of the effects of important process parameters in the perspective of possible practical
applications. The pH value was adjusted by means of H2SO4 or NaOH (CHEMPUR, Piekary
Śląskie, Poland). Depending on the distributions of ionic species of Al(III), Cu(II), and Zn(II)
(Figures A1–A6), freshly prepared aqueous solutions of either anionic sodium dodecyl sulphate
(molecular formula: C12H25NaSO4; POCH, Gliwice, Poland) or cationic cetyltrimethylam-
monium bromide (molecular formula: C19H42BrN; International Enzymes Limited, Windsor,
United Kingdom) were added as a collector (specified volume was taken from the stock solu-
tion containing 1 g dm−3 of a given surfactant). These surfactants were selected due to their
low price as well as their documented application in similar research [27,41,44], which allows
for comparison of the obtained results. In this process, 1 dm3 of the initial solution was poured
into the column. The flotation time (τ) was 60 min, unless otherwise stated.

Concentrations of aluminum, copper, and zinc in solution samples were determined
spectrophotometrically (HACH LANGE DR 5000, HACH LANGE, Düsseldorf, Germany).
Al(III) and Zn(II) were determined using the xylenol orange method at specified pH
values [45–47]. Cu(II) was determined using a method with cuprizone [47].

Zeta potential measurements were performed using a Malvern ZetaSizer Nano ZS appara-
tus (Malvern Instruments, Malvern, UK). A DTS1060 u-shaped capillary cell was used during
the measurements. Zeta potential was calculated using the Smoluchowski approximation.

The effectiveness of the ion and precipitate flotation was calculated using values of
the final removal ratio (R):

R =
c0 − c∞

c0
, (1)

where c0 and c∞ are concentrations of Al(III), Cu(II), or Zn(II) in the initial solution
and in the solution when the flotation is finished (concentration does not change any
further), respectively.

The courses of ion and precipitate flotations were recorded as changes in temporary
removal ratio (Rτ) during the flotation time (τ) [20,29,48]:

Rτ =
c0 − c

c0
, (2)

where c is the temporary concentration of Al(III), Cu(II) or Zn(II) in the solution dur-
ing flotation.

Based on our own as well as published experimental results [20,29,44,48–52], it is
known that the kinetics of ion and precipitate flotations of metal ions can be described by
Equation (4), which is analogous to the first-order reaction rate equation:

− dc
dτ

= k(c − c∞), (3)

where k is a flotation rate constant.
After separation of the variable and integration, the following equation was used for

the analysis of experimental data:

ln
∣∣∣∣1 − Rτ

R

∣∣∣∣ = −kτ (4)

Dependencies of the Al(III), Cu(II), and Zn(II) forms on the pH value of the aqueous
solutions (Figures A1–A6) were prepared using MEDUSA computer software [53].

3. Results and Discussion
3.1. Effect of pH on the Flotation Efficiency

The pH value of the flotation solution is an important parameter affecting both the
efficiency as well as the course of the flotation process. The influence of pH value on the
efficiency of simultaneous flotation of Al(III), Cu(II) and Zn(II) is presented in Figure 2a
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(for initial concentration of each of investigated metals equal to 0.15 mmol dm−3) and Figure 2b
(for initial concentration of each of investigated metals equal to 2 mmol dm−3). According to
Figure 2a, for pH values lower than 4, the abovementioned metals exist in the solution in a
form of cations, mainly Al3+, Cu2+, and Zn2+ (Figures A1–A3). Values of the final removal
ratio are below 0.1 and the flotation follows the mechanism of ion flotation. This mechanism is
related to the stoichiometric proportion between the concentration of the collector i.e., sodium
dodecyl sulphate and metal ions, known as colligend ions [15]. For pH values higher than 4.1,
values of the aluminum removal efficiency increase because an insoluble aluminum hydroxide
is formed. Thus, precipitate flotation of aluminum takes place. For pH values above 5.0,
the flotation solution contains micelles of Al(OH)3 as well as soluble ionic forms of copper
and zinc. At such conditions, adsorption of these ions on the surface of Al(OH)3 precipitate
is possible [54]. This may be a reason for increases in the final removal ratio values ranging
between 6.0 and 7.0 and 6.2 and 7.5, respectively, for Cu(II) and Zn(II). According to data
presented in Figures A3 and A5, insoluble hydroxides of copper and zinc start to precipitate for
pH values higher than 6.1 and 7.5, respectively. At pH = 8.0, micelles containing hydroxides of
aluminum, copper, and zinc are present in the flotation solution. Thus, precipitate flotation
using anionic sodium dodecyl sulphate is possible, and the values of final removal ratio exceed
0.95 for all investigated metals.
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For pH > 8.5, a decrease in flotation efficiency with respect to Al(III) is observed
(Figure 2a). This is because of an increase in solubility of Al(OH)3 which undergoes
complete dissolution at pH = 10.4 (Figure A1). In the same time, for a pH range between 8
and 11, values of the final removal ratio for Cu(II) and Zn(II) are still high, i.e., above 0.9.
This is due to the lowest solubility of both Cu(OH)2 and Zn(OH)2 at the given pH range
(Figures A3 and A5). For pH > 11.5, the values of the final removal ratio of Cu(II) and
Zn(II) sharply decrease. Such a phenomenon results from the presence of OH− ions
as well as negatively charged hydrolysis products of Al(III), Cu(II), and Zn(II) in the
suspension undergoing the flotation. Adsorption of these anions results in the negative
surface charge of agglomerates, mainly containing hydroxides of copper and zinc. This is
in accordance with the experimental pH of the isoelectric point for investigated system
(Table 2). Thus, flotation with anionic SDS is hindered and a cationic collector must be
applied. However, efficient precipitate flotation with cationic CTAB is possible only for
Cu(OH)2, since Zn(OH)2 dissolves at pH > 12.0. The solubility of Cu(OH)2 increases for
pH > 12.6. At pH 13.0, the final removal ratio for Cu(II) is lower than 0.7 because about
70% of copper exists in a form of insoluble hydroxide (Figure A2).

Table 2. Literature and experimental values of isoelectric points (IEPs) for investigated system.

System Species Literature IEP Experimental IEP

Metal hydroxides
Al(OH)3 8.1–8.9 [55] 8.2 ± 0.2
Cu(OH)2 9.4–10.0 [55,56] 9.8 ± 0.2
Zn(OH)2 9–9.5 [55,56] 9.5 ± 0.2

Aggregates containing mixture of metals Al(III) + Cu(II) + Zn(II) - 9.8 ± 0.2

The influence of the solution pH on the efficiency of simultaneous ion and precipitate
flotation of Al(III), Cu(II), and Zn(II) when the each metal initial concentration is equal
to 2 mmol dm−3 is shown in Figure 2b. Aluminum, copper, and zinc exist in the form of
soluble cations for pH < 3.9, pH < 5.5 and pH < 6.8, respectively. For pH > 3.9, insoluble
Al(OH)3 starts to precipitate, while the precipitation of Cu(OH)2 and Zn(OH)2 occurs
for higher pH values (Figures A2, A4 and A6). Therefore, for pH values higher than
those given above, the flotation efficiency increases with respect to the investigated metal
ions. This results from the shift of the process mechanism from ion to precipitate flotation.
It can be observed (Figure 2b) that the highest values of the final removal ratio for all
investigated metals are noted for pH range between 7.0 and 10.0 when anionic sodium
dodecyl sulphate is used. In the given pH range, insoluble hydroxides of Al(III), Cu(II),
and Zn(II) predominate in the flotation suspension.

For pH > 10.0, the solubility of Al(OH)3 increases, resulting in a decrease in the
removal efficiency of aluminum (Figure 2b). Aluminum hydroxide dissolves at pH = 11.6.
On the other hand, values of the removal ratio for copper and zinc are still very high
(about 0.99) up to a pH value about 12.0. For pH > 12.0, the flotation efficiency of Cu(II) and
Zn(II) decreases. For pH > 13.0, beside insoluble hydroxides of copper and zinc, negatively
charged products of hydrolysis of aluminum, copper and zinc prevail in the flotation
solution. Due to the adsorption of these anions, the surface charge of agglomerates is
negative, thus the flotation with anionic collector is hindered and values of the removal
efficiency drop to zero for pH > 13.0. Due to the broad range of pH values in which anionic
SDS is an effective collector in the investigated system (from about pH = 7 to pH = 10,
for all metals), the authors decided not to investigate the system behavior with cationic
CTAB. This is because of the high ionic strength at high pH values (pH > 12), as well as due
to presence of soluble anionic species in these conditions, which suggests that ion flotation
may prevail, and thus stoichiometric, i.e., very high concentrations of CTAB must be used.

Analysis of results presented in Figure 2a,b reveals that an increase in the initial
concentration of metals in the flotation solution corresponds to an increase in the pH range
of efficient flotation with anionic collector. This results from two phenomena. Firstly,
the pH range of the lowest solubility of Al(III), Cu(II) and Zn(II) is higher when the
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metal concentrations are higher (Figures A1–A6). Secondly, with an increase in the metal
concentration, both the size and the number of metal hydroxide micelles increase. Thus,
the concentrations of OH− ions as well as negatively charged products of metals hydrolysis
required to give the negative charge to agglomerates also increase.

It can be noted that the regulation of the initial solution pH allows for selective
flotation of the metal mixture components. For example, it is possible to separate Al(III)
from its mixture with Cu(II) and Zn(II) when the solution pH is about 5.0 (Figure 2b).

3.2. Effect of pH on the Flotation Rate Constant

The pH value of the initial solution affects not only the flotation efficiency but also the
rate of the process. This effect results mainly from the form of metal existence in the solution
as well as from the prevailing mechanism of flotation. Experimental values of flotation rate
constants for Al(III), Cu(II), and Zn(II) are given in Table 3. Curves presenting changes in
the temporary removal ratio with flotation time are presented in Figures A7–A12. Values of
the rate constants were found as the slope of the straight line, represented by Equation (4).
The values of correlation coefficient (R2) exceeding 0.95 justify that the course of both ion and
precipitate flotation may be correctly described by the first-order chemical reaction rate [29].

Table 3. Effect of pH on the flotation rate constants during flotation of Al(III), Cu(II), and Zn(II) mixture.

Metal c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3

cSDS = 0.125 mmol dm−3
c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3

cSDS = 0.187 mmol dm−3

pH k, min−1 R2 pH k, min−1 R2

Al(III)

4.8 0.523 0.973 4.5 0.380 0.977
6.1 0.829 0.971 5.5 0.621 0.986
7.2 1.208 0.980 6.9 0.802 0.985
8.0 1.580 0.968 8.7 1.176 0.980
9.6 0.904 0.960 10.5 0.510 0.983

Cu(II)

6.1 0.617 0.975 5.5 0.468 0.992
7.2 1.340 0.965 6.9 0.663 0.986
8.0 1.527 0.983 7.8 0.889 0.975
9.0 1.467 0.977 8.7 1.123 0.990

11.0 0.825 0.993 10.5 0.549 0.995

Zn(II)

6.1 0.475 0.986 6.9 0.592 0.990
7.2 1.154 0.994 7.3 0.689 0.996
8.0 1.389 0.996 7.8 0.839 0.984

10.2 1.043 0.993 8.7 1.161 0.980
11.0 0.783 0.989 10.5 0.521 0.997

The data presented in Table 3 show that the flotation rate constants for given metallic
species are the highest for pH ranges corresponding to the highest removal efficiency.
At the same time, these pH ranges reflect the lowest solubility of hydroxides of investigated
metals [4]. For example, values of the flotation rate constant for Al(III) increase for the
pH range between 4.8 and 8.0 (when initial concentration of each of investigated metals
is 0.15 mmol dm−3). For the pH < 5, soluble species of Al3+ and AlOH2+ are present in
the flotation solution, and thus ion flotation can occur and the value of the flotation rate
constant is relatively low (0.523 min−1). For pH > 4.8, the aluminum hydroxide Al(OH)3
predominates as the aluminum compound in the solution, and thus Al(OH)3 precipitate
flotation occurs. For pH > 8.0, the aluminum flotation rate constant decreases, both due to
dissolution of aluminum hydroxide as well as to increase in the share of negatively charged
species of Al(III). Similar discussion of results, based on the electrochemical equilibria for
investigated systems (Figures A1–A6), is valid in terms of Cu(II) and Zn(II).

Analysis of data presented in Table 3 provides an interesting conclusion on the flota-
tion mechanism of Al(III), Cu(II), and Zn(II). Flotation rate constants, specific for each
investigated metal, attain similar values. For example, values of the flotation rate constants
are 1.176, 1.123, and 1.161 min−1, respectively, for aluminum, copper, and zinc, when the
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solution pH is 8.7. Such values of flotation rate constants indicate that a simultaneous
flotation of all investigated metals is more probable than flotations of hydroxides of single,
different metals. This is probably due to formation of a mixed precipitate which undergoes
flotation. It is known [4] that precipitation of given metal hydroxides from polymetallic
solutions is accompanied by co-precipitation or adsorption of other metals, which undergo
precipitation at higher pH values when they singly occur in the aqueous solution.

The results presented in Table 3 as well as in Figure 2 indicate that the most optimal pH
values, i.e., enabling the highest process efficiency are pH = 8.0 when c0 = 0.15 mmol dm−3

and pH = 8.7 when c0 = 2 mmol dm−3. These pH values correspond to the course of the
process with respect to the mechanism of precipitate flotation. Thus, the effects of collector
concentration and air velocity were studied for precipitate flotation at given pH values. This is
in accordance with some literature data for single metals. For example, Shakir et al. [25]
obtained removal ratio of Al(III) equal to about 0.97 for pH = 6.0 when cSDS = 0.4 mmol dm−3

and c0(Al) = 20 mmol dm−3. Jurkiewicz [28] obtained a removal ratio of Zn(II) equal to about
0.92 for pH = 9.0 when cSDS = 0.2 mmol dm−3 and c0(Zn) = 1 mmol dm−3.

3.3. Effect of Collector Concentration on the Flotation Efficiency

Ion flotation is based on the separation of surface-inactive (colligend) ions from
aqueous solutions by means of surface-active substance. The colligend ions interact with
oppositely charged functional groups of surfactants at the gas–liquid interface [20]. Thus,
successful realization of ion flotation results from stoichiometry of the above described
reaction, which ensures the electrical neutrality of the formed compound. Therefore, at least
stochiometric concentration of the collector to colligend ion is necessary to ensure complete
removal of the target ion from the solution. For anionic sodium dodecyl sulphate as well as
investigated metal ions, the following stoichiometric proportions are valid: cSDS:cAl3+ = 3:1;
cSDS:cCu2+ = cSDS:cZn2+ = 2:1. The influence of the collector concentration on the values of
Al(III), Cu(II), and Zn(II) removal ratio is given in Figure 3.
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The results presented in Figure 3 indicate that for a collector concentration lower
than 0.45 mmol dm−3, only Al3+ ions undergo ion flotation, while copper and zinc ions
remain in the solution. Such a phenomenon suggests both the competition effects between
colligend ions and ions of collector during the formation of floatable surface-active species
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as well as the possibility of the separation of the mixture components depending on the
collector concentration. The results show that the flotation of Cu2+ and Zn2+ is possible
for the SDS concentration higher than 0.45 mmol dm−3. The values of the final removal
ratio for Cu(II) and Zn(II) increase for collector concentration between 0.45 and 1.20 mmol
dm−3. The SDS concentration equal to 1.20 mmol dm−3 is close to the stoichiometric one,
which is 1.15 mmol dm−3 for the investigated system. Thus, within the studied collector
concentration range, the values of the removal ratio for copper and zinc ions do not change
when cSDS > 1.20 mmol dm−3.

The abovementioned competition between colligend ions and ions of collector re-
sults from varied affinity of metal cations towards anions of surface active substances.
It is known that the higher the mentioned affinity is, the higher the ionic potential of a
given cation is [57,58]. Ionic potentials for Al3+, Cu2+, and Zn2+ are 5.77, 2.74, and 2.25
(elementary charge A−1), respectively [57,59,60]. This is why aluminum ions are selec-
tively flotated from its mixture with copper and zinc ions when the collector concentration
is sub-stoichiometric.

Influence of the collector concentration on the precipitate flotation of Al(III), Cu(II),
and Zn(II) is shown in Table 4. Comparison of the results obtained for ion and precipitate
flotation reveals that the collector concentration needed to reach high values of final
removal ratio (i.e., R > 0.9) is several times lower for precipitate flotation than in ion
flotation. Such a discrepancy in the collector concentration may be explained by the
stoichiometry of the formation of a metal ion–collector product in ion flotation as well as
micelles formation during precipitate flotation. In precipitate flotation, metal hydroxides
present in the flotation suspension form micelles. The surface charge of a micelle is many
times lower than the net charge of ions included in the hydroxides. Thus, the amount of
the collector required for the charge neutralization is many times lower that it would be in
the case of ion flotation of the same number of metal ions.

Table 4. Effect of the collector concentration on the efficiency of simultaneous precipitate flotation of
Al(III), Cu(II), and Zn(II) mixture.

c0, mmol dm−3 pH CSDS, mmol dm−3 RAl RCu RZn

0.15 8.0

0.022 0.441 0.638 0.421
0.044 0.810 0.730 0.653
0.075 0.950 0.920 0.897
0.094 0.957 0.940 0.920
0.125 0.965 0.970 0.980
0.250 0.966 0.971 0.975
0.484 0.963 0.960 0.956
0.625 0.956 0.950 0.953

2 8.5

0.014 0.231 0.199 0.214
0.035 0.498 0.456 0.477
0.070 0.832 0.812 0.833
0.125 0.929 0.932 0.922
0.187 0.978 0.980 0.979
0.250 0.979 0.980 0.978
0.347 0.971 0.977 0.978
0.693 0.960 0.960 0.959

The results presented in Table 4 show that an increase in collector concentration
results in the increase in the values of final removal ratio of investigated metals. However,
the increase in the values of the final removal ratio is observed to a certain value of SDS
concentration, above which a further increase in collector concentration does not affect the
removal efficiency.

The ratio of the collector concentration to the concentration of metals in the solution
decreases with the increase in metal concentration (Table 4). This effect is probably asso-
ciated with a decrease in the density of surface electric charge when the sizes of metal
hydroxide micelles increase due to an increase in metal concentration. In such a case,
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the concentration of the collector required for the charge neutralization is lower when the
metal concentration is higher.

3.4. Effect of Collector Concentration on the Flotation Rate Constant

An influence of the collector concentration on the values of flotation rate constants for
Al(III), Cu(II), and Zn(II) is presented in Table 5, while the curves presenting changes in the
temporary removal ration with flotation time are given in Figures A13–A18. The results
indicate that an increase in the collector concentration results in a decrease in the flotation
rate constants for investigated metals. This effect is clearly visible in the case of the
precipitate flotation process. The authors decided not to present data on ion flotation
since only stoichiometric proportion of collector to colligend ions is reasonable in this case.
Sub-stoichiomteric concentrations of collector result in low process efficiency, while excess
collector concentrations lead to competition between colligend ions and collector ions for
adsorption at the gas–liquid interface as well as excessive foaming occurs.

Table 5. Effect of collector concentration on the values of the flotation rate constants during flotation of Al(III), Cu(II),
and Zn(II) mixture.

Metal c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3

pH = 8.0
c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3

pH = 8.7

cSDS, mmol dm−3 k, min−1 R2 cSDS, mmol dm−3 k, min−1 R2

Al(III)

0.125 1.580 0.968 0.187 1.176 0.980
0.220 0.867 0.990 0.347 0.589 0.991
0.355 0.216 0.969 0.485 0.505 0.996
0.625 0.045 0.984 0.625 0.345 0.973
0.815 0.030 0.988 0.874 0.244 0.976

Cu(II)

0.125 1.527 0.983 0.187 1.123 0.990
0.220 0.964 0.992 0.347 0.607 0.991
0.355 0.217 0.981 0.485 0.490 0.996
0.625 0.057 0.994 0.625 0.307 0.987
0.815 0.035 0.989 0.874 0.252 0.997

Zn(II)

0.125 1.389 0.996 0.187 1.161 0.980
0.220 0.952 0.993 0.347 0.597 0.992
0.355 0.242 0.984 0.485 0.513 0.997
0.625 0.060 0.994 0.625 0.320 0.995
0.815 0.037 0.987 0.874 0.254 0.998

A decrease in the flotation rate constants with an increase in the collector concentra-
tion may be explained as follows. When the collector concentrations are higher than the
minimum concentration required for the occurrence of flotation, in the flotation suspension
micelles containing metal hydroxides and ions of collector co-exist with free i.e., not ad-
sorbed ions of collector. With an increase in the collector concentration, the share of free
collector ions in the suspension increases. Therefore, a competition for the gas–liquid
interface area between the floatable aggregates and the free collector ions is observed in
the system. Free collector ions are smaller than micelle–collector aggregates and thus these
free collector ions are preferentially adsorbed at the gas–liquid interface [20]. This results
in a decrease in the values of Al(III), Cu(II), and Zn(II) flotation rate constants with the
increase in the collector concentration. What is more, a delay effect [20,29] for flotation of
metal-collector compounds in comparison to the flotation of free collector is clearly visible
in Figures A13–A15.

Analysis of data given in Table 5 reveals that the flotation rate constants for each
of the investigated metals are similar. This is in accordance with previously formulated
statement (p. 3.2.) that investigated metals undergo simultaneous flotation in the form of
agglomerates containing micelles of metal hydroxides and adsorbed ions of collector.
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3.5. Effect of Air Velocity on Flotation Efficiency

Air velocity is an important parameter affecting both the course as well as the efficiency
of ion and precipitate flotation. This is because the volume of foam generated during
flotation us much dependent on the gas velocity [61]. Furthermore, resulting volume of
the foam condensate decides about the enrichment of the colligend. From this perspective,
low volumes of foam containing possibly high concentrations of removed ions are favored.
The effects of the air velocity on the efficiency of ion and precipitate flotation as well as on
the volume of foam condensate are presented in Table 6.

Table 6. Effect of the air velocity on the efficiency of simultaneous ion or precipitate flotation of Al(III), Cu(II) and
Zn(II) mixture.

c0, mmol dm−3 cSDS, mmol dm−3 pH uG, mm s−1 RAl RCu RZn Vc, cm3

0.15 1.186 3.0

0.56 0.84 0.71 0.71 70
0.79 0.95 0.89 0.90 105
1.51 0.96 0.95 0.96 240
2.40 0.97 0.96 0.98 315

0.15 0.125 8.0

0.13 0.94 0.93 0.92 7
0.72 0.97 0.97 0.95 13
1.51 0.98 0.98 0.97 20
3.24 0.96 0.96 0.93 45

2 0.187 8.7

0.23 0.96 0.99 0.99 10
1.12 0.97 0.99 0.99 15
1.51 0.97 0.98 0.97 27
2.86 0.97 0.99 0.99 40

Vc–volume of foam condensate, cm3.

Analysis of the data given in Table 6 reveals that the gas flow rate does not greatly
affect the values of the final removal ratio. The only exception is for low air velocities for
ion flotation. This phenomenon may be explained as follows: the selected time of flotation
(120 min) may be too little for complete ion flotation at low air velocity. This statement
is supported by the shape of curves in Appendix A (Figures A19–A21). What is more,
for ion flotation when uG = 0.56 mm s−1, the values of the final removal ratio for Cu(II)
and Zn(II) are much lower than for Al(III). Additionally, curves presenting the course
of the processes (Figures A19–A21) reveal that Al3+ is preferentially flotated from its
mixture with Cu2+ and Zn2+. This is in accordance with previous discussion on the effect of
collector concentration and a competition effect between investigated metal cations for both
preferential interactions with anionic collector as well as for adsorption at the available
gas–liquid interfacial area.

3.6. Effect of Air Velocity on the Flotation Rate Constant

The flotating air velocity, for fixed process conditions with respect to solution pH and
collector concentration, influences the values of the flotation rate constants. This is because
of the fact that the flotation rate constant depends on the rate of formation of the gas–
liquid interface [20,61–63]. As shown in Table 7 (results presenting original experimental
recordings, i.e., changes in temporary removal ratio with flotation time, Figures A19–A27),
an increase in the air velocity results in an increase in the flotation rate constants for Al(III),
Cu(II), and Zn(II). Values of the flotation rate constants for ion flotation conditions (pH = 3.0)
are an order of magnitude lower than for precipitate flotation conditions. The results
show that the flotation rate constant is proportional to the gas velocity with the exponent
value of about 0.78 [64]. This is in accordance with other similar results published in the
literature [20,29]. It is known that the generated gas-phase interfacial area is proportional
to the gas flow rate with the exponent value of about 0.44 [20]. The discrepancy between
the above given values of the exponents indicates that the observed increase in the flotation
rate together with an increase in the gas flow rate results also from the turbulence in
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the liquid and not only from the available gas-liquid interfacial area. An increase in the
turbulence in the liquid increases the probability of a collision between the solid particle
aggregates and air bubble in the bubble layer, thus increasing the flotation rate.

3.7. Cost Estimation of Selected Methods for Removal of Metal Ions from Aqueous Solutions

Selection of a treatment method for the purification of wastewater streams from
metal ions requires careful analysis of the properties of both treated and purified streams.
Such analysis should cover several parameters, including solution pH, concentration of
target pollutants as well as the expected purification efficiency. In several papers on ion and
precipitate flotation, it was said that these processes are economically attractive comparing
to other methods, especially when high volumes of containing low metal concentrations
are considered [29,41,62]. Such a statement is true; however, few data are available on the
evaluation of the costs of these processes. The low costs of ion and precipitate flotation
result from the relatively low requirements for specific equipment and energy input for the
operation. Apart from the apparatus for flotation, these processes require a surface-active
substance as collector, acid or base solutions for pH regulation and, in general, a supply of
compressed air. Grieves in 1970 estimated the cost of treatment of wastewaters containing
Cr(III) to be about USD 0.12 to 0.15 per 1 m3, respectively, for dispersed and dissolved air
flotation [65]. A brief comparison of costs associated with selected methods of wastewater
treatment is proposed in Table 8 [66].

Table 7. Effect of the air velocity on the values of the ion and precipitate flotation rate constants for Al(III), Cu(II), and Zn(II).

Metal c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3 c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3

pH = 3.0
cSDS = 1.186 mmol dm−3

pH = 8.0
cSDS = 0.125 mmol dm−3

pH = 8.7
cSDS = 0.187 mmol dm−3

uG, mm s−1 k, min−1 R2 uG, mm s−1 k, min−1 R2 uG, mm s−1 k, min−1 R2

Al(III)

0.56 0.029 0.981 0.13 0.214 0.995 0.23 0.276 0.981
0.79 0.033 0.996 0.72 0.554 0.992 1.12 0.880 0.980
1.51 0.069 0.976 1.51 1.580 0.968 1.51 1.176 0.985
2.40 0.087 0.964 3.24 2.621 0.995 2.86 1.903 0.988

Cu(II)

0.56 0.030 0.976 0.13 0.205 0.981 0.23 0.262 0.984
0.79 0.034 0.991 0.72 0.600 0.987 1.12 0.855 0.981
1.51 0.069 0.978 1.51 1.527 0.983 1.51 1.123 0.990
2.40 0.088 0.986 3.24 2.547 0.977 2.86 1.994 0.958

Zn(II)

0.56 0.030 0.975 0.13 0.227 0.985 0.23 0.257 0.996
0.79 0.041 0.977 0.72 0.636 0.974 1.12 0.861 0.985
1.51 0.070 0.951 1.51 1.389 0.996 1.51 1.161 0.980
2.40 0.091 0.971 3.24 2.614 0.984 2.86 2.207 0.970

Table 8. Estimated costs of selected methods for wastewater treatment.

Method Average Cost, € m−3 Average Energy Consumption, kWh m−3

Reverse osmosis 0.22 2.1
Nanofiltration 0.18 0.5

Adsorption 0.07 0.1
Ion exchange 0.10 0.1

Electrodialysis 0.20 0.6

Analysis of data given in Table 7 reveals that adsorption- and ion exchange-based
techniques provide the most cost-effective conditions for wastewater treatment [66]. Thus,
ion and precipitate flotation as adsorptive bubble separation techniques, are economi-
cally attractive solutions to be considered for application during wastewater purification,
especially when dilute streams are taken into account [62].

4. Conclusions

The results presented in this paper reveal that the pH of the initial solution is an
important parameter governing the flotation mechanism and efficiency. The highest values
of the final removal ratio for Al(III), Cu(II), and Zn(II) were noted for a pH range between
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7.0 and 9.0. This pH range corresponds to the precipitate flotation carried out using the
anionic collector. Moreover, the regulation of pH value enables the selective flotation of
Al(III) for pH values lower than 5.0 using anionic SDS and the selective flotation of Cu(II)
for pH higher than 12, using cationic CTAB.

During ion flotation at pH = 3.0, Al3+ ions are preferentially removed from the solution
prior to Cu2+ and Zn2+.

The course of the ion and precipitate flotation processes may be described by the
first-order reaction rate equation.

An increase in the collector concentration results in a decrease in the flotation rate
constants for investigated metals.

An increase in the flotating air velocity results in an increase in the ion and precipita-
tion flotation rates. Flotation rate constants for Al(III), Zn(II), and Cu(II) are proportional
to the gas flow rate in the exponent of 0.78.

For specified process conditions of precipitate flotation, i.e., pH value, collector and
metal concentration, air velocity, flotation rate constants for Al(III), Zn(II), and Cu(II)
are similar, indicating that these metals are simultaneously removed from aqueous solutions
in the form of mixed precipitate, containing hydroxides of above named metals.

It is proposed that further research on the application of ion and precipitate flotation
to remove metals should include pilot-scale investigations on real wastewater samples. It is
expected that such investigations define the areas of possible utilization of these processes
in the wastewater treatment technologies together with deep economic and environmental
analyses of benefits from using ion and precipitate flotation techniques.
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64. Rybarczyk, P. Równolegle Przebiegające Procesy Separacji Pianowej Jonów Al(III), Cu (II) i Zn(II) z Roztworów Ich Mieszanin.

Ph.D. Thesis, Gdansk University of Technology, Gdańsk, Poland, 2015.
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