
processes

Article

Implementation of an Automated Manufacturing Process for
Smart Clothing: The Case Study of a Smart Sports Bra

Suhyun Lee 1, Soo Hyeon Rho 1, Sojung Lee 1 , Jiwoong Lee 2, Sang Won Lee 2, Daeyoung Lim 1

and Wonyoung Jeong 1,*

����������
�������

Citation: Lee, S.; Rho, S.H.; Lee, S.;

Lee, J.; Lee, S.W.; Lim, D.; Jeong, W.

Implementation of an Automated

Manufacturing Process for Smart

Clothing: The Case Study of a Smart

Sports Bra. Processes 2021, 9, 289.

https://doi.org/10.3390/pr9020289

Academic Editor: José Barbosa

Received: 30 December 2020

Accepted: 29 January 2021

Published: 2 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Human Convergence Technology R&D Department, Korea Institute of Industrial Technology,
Ansan 15588, Korea; suhyun14@kitech.re.kr (S.L.); rhosh615@kitech.re.kr (S.H.R.);
jungyee814@kitech.re.kr (S.L.); zoro1967@kitech.re.kr (D.L.)

2 Department of Mechanical Engineering, School of Mechanical Engineering, Sungkyunkwan University,
Suwon 16419, Korea; jiwg3000@gmail.com (J.L.); sangwon1127@gmail.com (S.W.L.)

* Correspondence: wyjeong@kitech.re.kr; Tel.: +82-31-8040-6233

Abstract: The garment manufacturing industry is a labor-intensive industry, with one of the slowest
transitions to automation. Hence, it is essential to build a smart factory based on automated systems to
improve productivity and allow responsive production in the market. In this study, the manufacturing
processes for a smart sports bra were established and optimized using various automated machines.
For this system, computer-based 3D virtual design software, a technical embroidery machine, an
automatic cutting machine, an industrial robot arm with gripper, and an industrial pattern sewing
machine were used. The design and materials of the sports bra were selected considering embroidery,
cutting, robot gripping, and sewing processes. In addition, conductive thread and light-emitting
diode (LED) sequences were used to implement smart functions to the sports bra. Transport of
intermediate materials, work orders, and process conditions were optimized to improve the flexible
connection of each process and the quality of the final product. This study suggests the concept of the
automated manufacturing system that minimizes human intervention by connecting the processes
needed to produce a smart sports bra using various automation equipment and programs already
used in the industry.

Keywords: automation; garment manufacturing processes; smart factory; smart clothing; micro
factory; automated processes

1. Introduction

With the fourth industrial revolution and manufacturing innovations that started in
Germany, the fashion industry is changing. The concepts of smart factories and automation
are mixed complexly and used in the fashion industry. On the other hand, there are consid-
erable differences between factory automation and smart factories. Factory automation
refers to a system that automates the entire unmanned factory and manufacturing process
using automatic equipment, such as computers and robots. In contrast, smart factories
give each function to various objects related to manufacturing. Each of these objects is
a factory that communicates to each other through internet of things (IoT) devices and
can autonomously connect, collect, and analyze data [1]. Smart factory and automation
systems can enable the development of a fashion system based on the product quantities
that are better balanced with market demand, more consistent with the customers’ needs,
highly customized, and transparent for their entire lifecycle [2].

Garments are essential items for humans. As the population increases and lifestyles
change, customers’ needs for various new clothing styles are also increasing. The process
of manufacturing garments is a labor-intensive and mass-produced industry. Serious
environmental problems and social costs have occurred due to excessive mass production
to supply new products to the market quickly. In addition, producers continue to move
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their production bases to developing countries with lower wages to lower production
costs. Focusing on the 4.0 smart factory, the garment manufacturing industry needs to be
transformed into an automated manufacturing process through several technologies such
as computer systems and digital facilities because of the limitations of the relocation of the
production base and the needs of customers.

The automation of garment manufacturing has been suggested as one of the measures
for rapid military production because soldiers can be mobilized to the army quickly to
improve military power. On the other hand, automation of the garment industry has not
been implemented to any large extent because clothing products do not undergo the same
form or production process, such as devices or automobiles. The styles are diverse and
change very often, and there is a size issue. Even with the same design, the pattern varies
depending on the size, and the process may be different. The initial investment cost to
build an automated facility in the production site is high. In addition, automation is not so
urgently needed because it still has an inexpensive workforce available.

The complete automation of garment manufacturing is impossible because a human
force is still needed to control the direction and position of the sewn fabric during the
sewing process. Regardless of how much technology develops, more than 95% automation
appears impossible because garment styles change very quickly, and its forms are so
numerous. Nevertheless, partial automation is being realized gradually. Research on
automation is aimed at automatically and easily manufacturing garments and textiles
for sale rather than prototypes [3]. Therefore, a future garment manufacturing system is
expected to be a smart factory. This is because the production costs are increasing gradually,
and reactive and local production according to customization needs is required. As shown
in Figure 1, in the near future, the fashion industry is expected to transform into the means
of instant production and delivery of clothing designed and ordered by customers [4].
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Research has been actively conducted in the field of automation of garment manufac-
turing for many years, particularly in robot gripping and automatic sewing systems [3,5–8].
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A robot-based sewing system named SEWBO (Sewbo, Inc., Seattle, WA, USA) sewed all the
necessary seams of a T-shirt automatically using an industrial robot arm. Within the project
speed factory of Adidas, a new sewing system to sew two layers of textiles automatically
has been developed by the Institute für Textiletechnik of the RWTH Aachen University. The
system consists of two transport rollers to guide textiles with different contours through
the sewing process individually [3]. Philipp Moll proposed an innovative concept for
garment manufacturing. The concept comprised a holistic, general production line from
cutting, and transport to the sewing process with the following three parts: fast automated
single-ply cutting, automatic robotic pick-up of fabric parts and transfer to an automatic
hanging transport system, and sewing process with a traditional sewing technique and
robotic 3D assembling [9].

This paper proposes a system to establish an automated process for garment manu-
facturing with various machines and technologies. To this end, the currently developed
automated sewing system was examined, and a new automatic manufacturing process for
smart clothing was proposed. Smart clothing is a new clothing concept with the conver-
gence of information and communication technology (ICT) [10]. Therefore, the material
constituting it is relatively limited compared to that generally required to produce fashion
clothing, and the design is also simple. For these reasons, smart clothing was selected as
the target item for establishing an automated process for manufacturing garments. For this
purpose, the 2D–3D computer aided design (CAD) system, technical embroidery technol-
ogy, robot-based gripping system, and automatic sewing system were used to connect the
process and analyze the correlation between textile and process conditions at each stage.
Through this, the production system for a sports bra with a light-emitting diode (LED)
system was optimized.

2. Case Study of Manufacturing Process Automation in Clothing and Textile Fields
2.1. SEWBOT

Steve Dickerson, a founder of Softwear Automation in Atlanta and a professor at
the Georgia Institute of Technology, studied robotics technology for sewing and launched
SEWBOT, which is an automatic sewing system. This system consists of an automatic
sewing machine (ASM), The robotic arm to carry and move the fabrics, and budgers which
move the fabric in all directions so that the fabric can be sewn, as shown in Figure 2. The
ASM can perform various sewing tasks such as creasing, organizing clothes, attaching
fabrics, and basic sewing. The robotic arm uses air-absorbing technology to transfer fabrics
of various sizes quickly to the ASM without wrinkling [3].
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In 2017, Softwear Automation presented a fully automated T-shirt work-line, as shown
in Figure 3. Unlike research that imitates the human hands or develops separate grippers
to handle textiles, they suggested a new approach, which is a type of conveyor system
based on a vacuum ball to carry a single textile at each stage of garment manufacturing.
This system is equipped with a vacuum ball on the table. Each installed ball can be moved
in both directions. Therefore, the adsorbed cutting material can move freely according to
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the movement of the ball. By combining the vision system, the contour of the textile is
detected and moved accurately, and the automatic sewing facility is arranged according
to the process. These have enabled unmanned manufacturing system that can be sewn
without human intervention. Using this system, it takes approximately four minutes from
the cutting of the fabric to the sewing of the finished product, allowing the production
of 800,000 shirts annually. In addition, floor rugs, bathroom mats, pillows, and car mats
can be manufactured using the fully automated systems. Unfortunately, because all the
processes are connected by a single ball system, the problem of space limitation needs to
be solved. In addition, current robotic handling technology has limitations on the items
that can be handled because only rigid materials, such as cotton, can be used. On the other
hand, full automation of the garment manufacturing process is expected to become a reality
in the near future through research to expand the technology to various fabrics, such as
cotton–PET blend fabric, silk, and mesh fabrics.
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2.2. Micro-Factory

ITA(Institut für Textiltechnik of RWTH Aachen University) and an industrial partner
(Gerber Technology GmbH, Korea Institute of Industrial Technology, VETRON Typical Eu-
rope GmbH, Wear it Berlin GmbH, ZSK Stickmaschinen GmbH) have developed the smart
textile micro-factory. This system manufactures smart cushions, as shown in Figure 4a,
which enable interactions with the user through intense and light pulses, as well as wireless
communication with other cushions [11].
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This smart textile micro-factory consists of a technical embroidery machine, an auto-
matic cutting machine, a gripping robot system, and an automatic sewing machine. After
materials, such as conductive thread and LED sequences, are embroidered on a large area
of fabric through a technical embroidery machine, they were moved to an automatic cutting
machine to cut the front and back panels of the cushion into a single-ply. The robot transfers
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the cut pattern materials to the frame of the sewing machine using a vacuum gripper, as
shown in Figure 4b. When all cut materials are placed into the frame, sewing is performed
automatically in a square shape.

This system is meaningful because it attempts to automate a series of processes for the
manufacture of smart cushions using various existing equipment without human intervention.

2.3. Robotic-Guided Sewing Project in SINTEF Raufoss Manufacturing

The Norwegian company, SINTEF Raufoss Manufacturing AS, operates a laboratory
for sewing automation research. They are working on robot-guided sewing projects in
collaboration with the furniture company, Ekornes ASA, protective clothing manufacturer
Hansen Protection AS, CAD and computer-aided manufacturing (CAM) supplier Amatec
AS, Norwegian University of Science and Technology (NTNU), and the Research Council
of Norway. Through this project, Johannes S. et al. [12] published a robot-guided sewing
process that included an industrial C-frame sewing machine, two robotic arms to handle
textiles to be sewn, one robotic arm to guide sewn textiles, and a sewing cell composed of a
sensor and camera system to check the edge of the sewn textiles and adjust the moving
direction, as shown in Figure 5. The two robotic arms that handle the textile to be sewn
each grip the top and bottom of the workpiece. In addition, the robotic arm is equipped
with mechanical grippers to monitor the tension on the textile and adjust it constantly.
The fabric gripped by the robot is placed into the sewing machine, and the sewn textile
is then inspected through the sensor. The overall robot motion is controlled in real-time
through a Linux computer, a robot operating system, and various software. The system
has a disadvantage in that the radius of the seam sewing is limited, and the working
space is limited because of the robot guides. On the other hand, the robotic arm shows
a new approach to robotic sewing—to guide the cut materials rather than the sewing
head. Currently, they have developed prototype equipment for the robotic sewing of
armchair covers and offshore survival suits, and further studies aimed at commercialization
are underway.
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3. Automatic Manufacturing Process for Smart Clothing
3.1. Making Process Framework

To build an automatic system, smart clothing with LED sequences was designed as
an item. Smart clothing is suitable for an automatic production system because the raw
and subsidiary materials used are relatively limited compared with fashion items, and
the structure of clothing is simple. Considering the robot gripping and automatic sewing
process, the design was simplified by reducing the cutting line and removing the fastening
detail. In addition, to increase the efficiency of the production process, unlike the order of
the general fashion clothing manufacturing process, the embroidery process for embedding
smart functions was carried out in the fabric state and then cut. Figure 6 shows the entire
production process.
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Fabrics for making smart clothing in this study were provided by Woojoo Global
(Korea). The fabrics were a tricot knitted fabric composed of 87% polyester and 13%
spandex. The weight and thickness of the fabrics were 574 g/m2 and 0.84 mm, respectively.

3.2. Design and Pattern Making through CAD/CAM Systems

Computer-aided design (CAD) is a design and development process based on com-
puter technology, and has been utilized in various fields. In the textile and apparel indus-
tries, CAD uses software, such as Gerber, Lectra, Apparel CAD, Illustrator and Photoshop,
and Optitex to design clothing and accessories, pattern design, grading, and virtual simula-
tion. The computer-aided manufacturing (CAM) system performs substantially related to
manufacturing, such as marker planning, spreading, and cutting. In the actual clothing
production process, CAD/CAM systems, such as pattern design, grading, 3D virtual sim-
ulation, and markers, improve overall productivity, accuracy, and efficiency by reducing
sample production, shortening the time required for the entire work, and reducing fabric
waste [3,13,14]. In this study, as a part of the automated manufacturing process of smart
clothing, the CAD/CAM system was used to establish pattern making, simulation of
virtual fit, and marker planning.

The sports bra was selected as a prototype for this study. The pattern was formed based on
the average size of women in their twenties (height = 160.8 cm, bust circumference = 85.1 cm,
waist circumference = 71.9 cm, and shoulder width = 35.7 cm) from the seventh SIZE
KOREA data provided by the Korean Agency for Technology and Standards [15]. The
pattern was designed using YUKA CAD (Yuka & Alpha Co., Ltd., Tokyo, Japan), and
the pattern of the sports bra was based on the bodice pattern from ESMOD [16]. After
removing the ease of the bust circumference and darts on the shoulder from the bodice
pattern, the sports bra was designed with a neck width of 9.6 cm, a front neck depth of
10 cm, a shoulder length of 6 cm, and a side line of 10 cm. In addition, according to the
characteristics of the sewing equipment that sews while each piece is placed flat on the
template of the sewing machine, the front and back pieces were set identically, and the
length and angle of the shoulder and side lines of the front and back panels were designed
to be the same.

The fabric was made of flexible material and required a consideration of the reduction
rate of the pattern. The reduction rate of 0%, 10%, 20%, and 30% was applied to the sports
bra pattern in a weft direction, referring to the pattern reduction rate for the development
of tight-fitting clothing by Jeong [17]. For the four patterns, the conditions of virtual fitting
were simulated by CLO (CLO 3D version 5.2, CLO Virtual Fashion Inc., Seoul, Korea), and
the properties of the fabric were used after converting the elongation of 18% in the warp
direction and 32% in the weft direction through the CLO fabric emulator function. Figure 7
shows each pattern and the wearing state. The color of the virtual clothing in Figure 7
simulated the clothing pressure that can occur depending on the size reduction rate. The
pattern without the reduction rate showed a lifting phenomenon in the armhole. The
pattern with the 30% reduction rate showed that the armhole area was stretched due to the
insufficient ease of the bust circumference. The measured values are difficult to compare
from the actual clothing pressure, but examination of the clothing pressure distribution
ratio according to the pattern reduction rate on the CLO showed that the pattern applying
20% and 30% reduction ratios in the weft direction showed a high clothing pressure of
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100 kPa to the human body when designed and virtually worn through the CAD program.
Therefore, a pattern with a 10% reduction ratio in the weft direction was selected.
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Figure 8. Sports bra marker by AutoNest.

3.3. Embroidery for Smart Function

Embroidery was originally a handicraft. On the other hand, during the Industrial
Revolution, embroidery machines began to be developed, and digitized-pattern software is
used in modern times [18,19]. Technical embroidery technology uses conductive materials
(thread, wire, fiber, and LED) with an embroidery machine to make embroidery products
with electrical properties. Digitized embroidery patterns can include machine motion-
control functions (e.g., thread color change, embroidery speed change, thread cut, machine
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stop, and sequin device control), enabling almost automatic embroidery. Many researchers
are developing various fiber-type conductive wires, sensors, and antennas using technical
embroidery technology [20–23].

In this study, the KITECH logo was designed over the sports bra pattern using
technical embroidery techniques. For this, a technical embroidery machine (SGVA 0109-825,
ZSK Stickmaschinen, Krefeld, Germany) was used, as shown in Figure 9a. The EPC_win
program (ZSK Stickmaschinen, Germany) was used to design the size and shape of the logo
for embroidery. In particular, an LED circuit was inserted with an LED and silver-coated
conductive thread in the logo to give a light-emitting function to the sports bra. As shown
in Figure 9b, an LED sequin consisted of a light-emitting part and an electrode part. The
LED circuit was made by connecting the anode and cathode with conductive thread. HC-12
from Maderia (Germany) was used as a conductive thread, as shown in Figure 9c.
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sequin and conductive circuit line, respectively. After that the KITECH logo was designed 
on the LED circuit to hide the conductive lines with the LED sequin, as shown in Figure 
10b. The final design and size of the embroidery pattern were determined by a simulation 
through virtual fitting using a 3D CLO program (Figure 10c). Finally, the position to em-
broider among the sports bra patterns was designated, as shown in Figure 10d. After ad-
justing the position of the logo to be embroidered on the front of the sports bra using the 
marker file, the position coordinates were obtained for the embroidery process.  
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Figure 9. Apparatus and materials for the embroidery process: (a) technical embroidery machine;
(b) light-emitting diode (LED) sequin; (c) conductive thread.

The procedure for producing an embroidery pattern was as follows. First, the LED
circuit was designed, as shown in Figure 10a. The pink part and yellow line are the LED
sequin and conductive circuit line, respectively. After that the KITECH logo was designed
on the LED circuit to hide the conductive lines with the LED sequin, as shown in Figure 10b.
The final design and size of the embroidery pattern were determined by a simulation
through virtual fitting using a 3D CLO program (Figure 10c). Finally, the position to
embroider among the sports bra patterns was designated, as shown in Figure 10d. After
adjusting the position of the logo to be embroidered on the front of the sports bra using the
marker file, the position coordinates were obtained for the embroidery process.
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Figure 10. Procedure for designing embroidery pattern of KITECH logo with LED circuit: (a) LED with a circuit line; (b)
final logo pattern; (c) virtual fitting with final logo pattern; (d) sports bra pattern with the designed logo on the marker.

Embroidery patterns files designed in the EPC_win program were moved to a technical
embroidery machine for embroidery. As shown in Figure 11, the connection between the
LED and the conductive thread was not embroidered well, and the logo embroidery did not
proceed smoothly. The connection problem between the LED and the conductive thread
caused a malfunction of the LED and damaged the needle of the embroidery machine. The
appearance of the logo work was not good, reducing its value as a product. This is because
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the good elasticity of the fabric used for embroidery allows the fabric to be stretched easily
by the needle and thread during embroidery. Furthermore, the short stitch lengths were
packed into each inch of stitching, producing a puckering and spacing appearance because
the stitches with short stitch lengths hold the fabric with high tension [24].
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Figure 11. Technical problem during the embroidery process: (a) LED circuit; (b) logo.

To reduce the deformation of the fabric, a nonwoven fabric was placed under the fabric
and embroidered together to minimize the movement of the fabric during embroidery. In
addition, the stitch length was increased from 3.0 mm to 4.5 mm to reduce the puckering
problem. As a result, the embroidered product and process were improved, as shown in
Figure 12. After the continuous embroidery process, the LED operation on the KITECH
logo was confirmed by connecting the battery.
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3.4. Automatic Cutting Process

A cutting process is an important area where garment components are cut from fabrics.
Automatic cutting machines can cut single or multiple plies of a wide variety of fabrics,
from lightweight apparel fabric to high-performance industrial fabrics. Cutting can be
performed using a laser, knife, or water-jet. The advantages of automatic cutting are the
increased efficiency and accuracy, ease of cutting single and multiple plies, and perfect
cutting the first time [3].

In this study, several embroidered fabrics were placed on the automatic cutting ma-
chine (P-CAM 161, Shima Seiki, Wakayama, Japan) for cutting into the patterns. For
matching the embroidered logo on the accurate position, a full-size pattern piece was
projected on the fabric as it was spread over the cutting surface using an overhead projec-
tor, as shown in Figure 13a. The cutting process was performed using a multi-ply knife
cutter. After the cutting was complete, the cut fabrics were transferred approximately 1.7 m
through a conveyor belt attached to the cutting machine for pattern recognition through a
vision sensor and gripping by a robot.
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3.5. Robot Handling with a Gripping System
3.5.1. Adaptive Fabric Gripping Module

Grippers handling garment parts should be differentiated from general robot grip-
pers because of the unique characteristics of fabric materials, such as flexibility and air-
permeability. Koustoumpardis and Aspragathos [25] classified the valid types of fabric
handling grippers, and several studies have proposed several novel fabric-grippers, in-
cluding an electrostatic gripper [6,26–28]. On the other hand, when integrating the fabric
gripping process with the cutting or sewing process for the garment manufacturing automa-
tion, it is very important to hold the fabric firmly and grip it without sagging and wrinkles.
To this end, the grippers must hold the suitable points of the target fabric according to its
shape. Therefore, in this study, an adaptive gripping system was developed to respond
appropriately to various fabric shapes. First, several commercialized grippers based on
pneumatic and penetrating principles have been studied to determine if they could be
applied to an adaptive and automatic fabric grip. Pneumatic grippers could hold the fabric
without damage, but it was almost impossible to grasp only a single fabric sheet because
precise control of the pneumatic variables was difficult. On the other hand, the penetration
types, including a needle gripper, had a potential risk of fabric damage, but they could pick
up the precise number of fabric sheets by adjusting the penetration depth. As a result, an
electric needle gripper (SNGi-AE, Schmalz, Glatten, Germany), which can electrically ad-
just the length of the edle stroke, was chosen for this study; it showed robust performance
for numerous fabric types without noticeable damage. Figure 14a presents photographs
of the selected electric needle gripper. Figure 14b presents optical microscopy images of
denim and stretched fabrics for compression wear after the need to penetrate them. A
quantitative examination of the images in Figure 14b showed no noticeable damage to the
fabrics after the penetration.
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needle gripper (Schmalz); (b) fabric damage evaluation due to needle penetration.

Second, an adaptive gripper jig system was designed to move the grippers to the
appropriate positions depending on the shape of the grip object. Figure 15a shows the
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designed equipment containing four needle grippers that move along the linear motion
(LM) guides with four alternating current (AC) servomotors. In addition, the spring
suspensions were installed between each gripper and the jig structure to minimize the
impact forces in the direction of fabric stacking when gripping the fabric. Consequently,
fabrics with various shapes within the area range from 160 × 130 mm to 450 × 410 mm
could be gripped stably, as shown in Figure 15b. The developed gripper jig system has
been mounted into the six-degree of freedom (DOF) industrial robot arm, as shown in
Figure 15c.
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3.5.2. Vision-Based Shape Recognition Module

The vision-image processing technique was applied to recognize the shape of a fabric
object automatically and to make a proper decision for optimal gripping of the object. The
vision camera (CAM) was attached below the gripper jig structure with a flashlight, as
shown in Figure 16a. OpenCV, the most popular and powerful open-source computer
vision library, was used to construct the vision-based shape recognition algorithm.
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The final vision-based recognition module has two functions: marker recognition and
shape recognition. The marker recognition was required to determine whether to start
the automatic fabric handling processes, including gripping, transferring, and releasing
steps. The speed-up robust features (SURF) algorithm was used to detect the pre-specified
marker in a fabric object in a real-time manner with a CAM image at a rate of 30 frames per
second (fps). Figure 16b shows the result of recognizing the embroidered LED marker in
the fabric object. The next step begins once the SURF-based algorithm confirms the marker
position for two seconds (60 frames) within the CAM screen.

The second step is to match the real-time CAM images with the pre-designed CAD
pattern (2D) images. As a second step in the vision system, the fabric shape-recognition
algorithm works by matching the pre-designed CAD pattern image to real-time vision
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CAM images. To increase the recognition accuracy, several types of image features were
considered and tested, such as the contour, edges, and corner, and the corner-based features
were finally chosen as the features of the CAM images. Figure 17 presents the results of
detecting the correct shape of the sports bra (front parts) by mapping the CAD image with
the corner-based features of the CAM image. Subsequently, the detected shape information
was converted to the quantified geometrical information for the robotic motion, such as (1)
the position of the recognized shape’s center point in the local robot coordinate system to
move the gripper jig to the target fabric and (2) the distance between the center point and
each gripping point to which the grippers should move using AC servomotors.
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3.5.3. Data Communication Module and Total System Development

The heterogeneous communication network environment for the robot, AC servo-
motors, and grippers should be established to transfer the information obtained from the
shape recognition module. Figure 18 presents a schematic view of the data communication
framework, including the following three communication protocols.
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• PC to Robot: Transmits the x, y coordinates of the target’s center point by Ethernet-
based socket communication

• PC to Grippers: Transfers the specified stroke length of needle gripper using Ether-
net/IP communication

• PC to Jig (AC servomotors): Sends the determined gripper positions through Ethernet
for control automation technology(EtherCAT) communication

As shown in Figure 18, the processed data 1 and 3 from the vision-based shape
recognition module and data 2 were transferred to the PC, and the data on the robot
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movement, needle stroke, and gripper position were generated and given to each device:
the robot arm, grippers, and AC servomotors. The 6-DOF robot equipped with the gripping
sub-system could grasp the fabric at its optimal points and move it to the target position
precisely. Figure 19 presents photographs of moving to the target fabric, grasping the
fabric, and transferring the fabric in a sequence. To estimate the transferring accuracy,
the difference between the target position and actual position capture by the CAM was
calculated by considering the pixels of the entire fabric (cloth) area. The final accuracy was
calculated to be 96.64%, as shown in Figure 20.
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3.6. Automatic Sewing

Sewing technology has not changed radically since thousands of years ago when
people first put needles and threads into fabric. Despite the tremendous engineering
advances, including mechanized looms and sewing machines, the methods of producing
sewing products today are as labor-intensive as they were 100 years ago. In addition,
sewing represents the most important textile joining technology, accounting for 85% of all
joining methods [29]. Textile manufacturing skills, such as sewing, are essential process
steps of manufacturing garments, comprising approximately 35–40% of the total cost and
the added value of textile products [3]. For the above reasons, factories have been relocated
to developing countries where wages are low. On the other hand, as a fundamental solution,
research to automate the sewing process is urgent.

In this study, two tasks were performed to realize automatic sewing technology. First,
an automatic feeding system was developed to develop an automatic sewing process using
a motor and acceleration sensor. The automatic feeding system was located on the right
side of the industrial pattern sewing machine (ASM-224, JUKI, Tokyo, Japan), as shown
in Figure 21a, and was designed to move the cut material to the sewing position. Two
templates were then produced, as shown in Figure 21b. Each was placed above and below
the pattern that will be sewn to be moved using an automatic feeding system. The template
was designed using two polycarbonate materials by drilling two shoulder lines and two
lines next to the bust sewn 15 mm thick.
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 Figure 21. Picture of the automatic sewing machine with a self-modified feeding system and template: (a) sewing machine

with the feeding system; (b) polycarbonate template for sports bra.

The sewing stitch design was produced using the PM-1 program (JUKI, Japan). The
shoulder line and the body side line were designed as a straight lock-stitch pattern with a
stitch distance of 2 mm. The sewing pattern file was transferred to the sewing machine
and saved. The robot grasped the cut fabric and placed it on the templates of the sewing
machine. Sewing preparation was completed when the front and back panels of the sports
bra pattern were superimposed on the templates through the repetitive work. Figure 22a
shows the sewing readiness. Two patterns placed between the two templates exist in the
automatic feeding system, as shown in Figure 22b. Sewing was performed in the order of
the right shoulder line, right body side line, left body side line, and left shoulder line for
the efficiency of the work. Figure 22c shows the final product. The mannequin wore the
light-emitting sports bra through the automatic manufacturing process.
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4. Conclusions and Future Work

The innovation of smart factory construction through the automation system and
garment manufacturing technologies is already progressing in the academic and industrial
fields. Following this movement, this paper proposed a system to establish an automated
process for smart sports-bra manufacturing with various machines and technologies, such
as 2D CAD and 3D virtual programs, technical embroidery machines, automatic cutting
machines, vision sensors, industrial robot arms with a gripping system, and automatic
sewing machines. This process showed the possibility of manufacturing the smart sports
bra automatically with digital systems and automated equipment through the simplified
process and sequence change. In particular, human intervention could be minimized
by connecting cutting, moving, and sewing processes that were performed by humans
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previously. On the other hand, the design, pattern, and cut lines of the target item were
very limited to implement the automated manufacturing process. In addition, the func-
tion of the smart sports bra is simple, with an LED light attached using the embroidery
method. Therefore, it is necessary to continuously study the establishment of a process for
manufacturing smart clothing with more diverse functions and designs.

To realize the automation of the garment manufacturing industry, the following two
issues must be solved. The first is quality. Garments made through an automated process
must maintain the same quality as garments made by human resources. In particular, the
sewing processes still depend on humans, and the extremely low quality of robot sewing
has limited commercialization. On the other hand, it is expected that further developments
of pattern sewing, 3D sewing technology, and automation systems will produce superior
quality products in the near future. The second is flexibility of the process. The system
must buffer among the fast and frequent pattern modification, shifting and sorting, and
transport systems. In this respect, smart clothing is one of the most suitable items for an
automated manufacturing process.

Future research will explore methods for the development and commercialization
of an automated garment manufacturing process for smart clothing using more diverse
designs and materials.
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