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Abstract: This paper presents the results of numerical simulations of flow in a periodic channel with
the walls covered in the central part by spherical elements that have the same overall surface areas
but different radii. Two distributions of the sphere are considered, with the subsequent rows placed
one after another or shifted. The computations are performed using the high-order code, whereas the
solid elements are modelled with the help of the immersed boundary method. For selected cases, the
results are validated by comparison with the solutions obtained using the ANSYS Fluent code on a
very dense body-fitted mesh. It was found that the increase in the sphere diameter slows down the
flow, which is attributed to the larger blockage of the channel cross-section caused by larger spheres
and the occurrence of intense mixing (recirculation) between the spheres. The velocity profiles in the
vicinity of the sphere are largely dependent on sphere diameter and rise when it increases. It was
found that the distribution of the spheres plays an important role only when the spheres are large. In
the part of the channel far from the sphere, the velocity profiles are significantly influenced by the
sphere diameter but seem to be independent of the sphere distributions.

Keywords: flow over a rough wall; flow control by wall shaping; drag and separation control;
near-wall mixing intensification; immersed boundary method

1. Introduction

Flows over rough surfaces occur commonly in nature and the industry. Roughness
is often the result of natural processes based on adaptation to environmental conditions
(e.g., tree bark or animal skin) or created purposely to improve or control the efficiency
of technical devices (e.g., heat exchangers, golf balls, turbine blades, airplanes). In the
latter case, the required roughness is usually obtained during the manufacturing process
by shaping the walls to obtain waviness or by embedding small solid elements on their
surfaces. The type of roughness is particularly important when the roughness height
is large compared to the boundary layer thickness and changes not only the near-wall
flow characteristics but also affects the mean flow quantities. This often happens in
microchannels, where even small changes in wall topology can significantly impact local
and global flow behavior (e.g., laminar-turbulent transition, drag force). Experimental
analysis of the flow over rough walls is possible but cumbersome as it requires very precise
placing of measurement probes (thermocouples, pressure probes, laser beam cross-section)
in between particular surface elements or waviness. Often, the impact of wall topology is
analyzed from the point of view of its influence on the flow parameters downstream of the
rough wall. For example, Dróżdż et al. [1] analyzed the effect of amplitude waviness on
the skin friction and separation behind the wavy wall part.

The rapid development of computers and novel computational methods allows for
the investigation of the flows over the rough walls using computational fluid dynamics
(CFD) that employs direct numerical simulation (DNS) or large eddy simulation (LES).
Chan et al. [2] investigated the flow in a pipe with a sinusoidal wall. They found that
the inclination of waviness is as important as its height. Flows over sinusoidal walls of
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various frequencies and amplitudes were analyzed by, among others, Dharaiya and Kand-
likar [3], Cherukat et al. [4], Kaisar et al. [5], Bhaganagar et al. [6] and Harikrishan et al. [7].
They found that the waviness of the wall increases velocity fluctuations and vorticity
magnitude, which in non-isothermal problems, intensifies the heat transfer between the
flowing medium and the wall. Harikrishan et al. [7] analyzed the impact of wall skew-
ness on flow and heat transfer. It was reported that the skewness induces secondary
flows, which increases the overall tridimensionality of the flow that enhances the heat ex-
change. Hu et al. [8], Croce and D’Agaro [9], and Guo et al. [10] considered the roughness
formed by rectangular, triangular, prismatic elements or peaks distributed randomly or
in a predefined manner. They found that the topology of these elements, both the type
and localization, significantly affects the pressure drop, drag force, and heat transfer. The
impact of trapezoidal, triangular, rectangular, and cylindrical elements embedded in the
walls and wall waviness on skin friction, slip velocity, and heat transfer was analyzed by
Rawool et al. [11], Herwig et al. [12] and Noorian et al. [13]. A detailed analysis of flow
around conical elements with various shapes placed on the walls of microchannels was
performed by Croce et al. [14]. The influence of the Reynolds number and the roughness
type (triangular, rectangular, spherical elements) on the Nusselt and Poiseuille number
was studied by Zhang et al. [15]. They found that the type of elements affects them more
than the changes in mean flow velocity.

The above brief review shows that the flows over rough walls constitute an important
field of research. The variety of wall topologies and elements used to obtain roughness
indicates that no definite conclusions on their optimal shapes have been formulated so
far. In the present paper, we focus on the impact of half-spherical elements embedded in
the wall surface on mean velocity field and its fluctuations. Rather than trying to find an
optimal configuration of the sphere that would fulfil the assumed goal, we analyze whether
and to what extent the size and distribution of the spheres can be treated as the parameters
that control the mean flow quantities, the turbulence intensity and the mixing process. The
research is performed using a high-order numerical code based on the compact difference
discretization method. The solid walls together with the embedded spheres are modelled
using the immersed boundary (IB) approach, which was found to be very efficient and
accurate in this type of research [16,17]. In the present work, the accuracy of the IB method
is confirmed by comparison with the results obtained on a body-fitted mesh.

2. Mathematical Modelling

We consider incompressible flows described by the continuity equation and the Navier–
Stokes equations defined as follows:

∂tρ +∇ · (ρu) = 0 (1)

ρ(∂tu + (u · ∇)u) +∇p = ∇ · τ + fBF + fIB (2)

where p is the hydrodynamic pressure; u—velocity vector; ρ—density; τ—viscous stress
tensor. The term fBF is the source term that causes the fluid movement and fIB originates
from the IB method. Its role is to act on the flow field as if there was a solid body embedded
in the flow domain. Definitions and discussion of these terms are presented later.

2.1. Solution Algorithm

The solution algorithm for Equations (1) and (2) is formulated in the framework
of a projection method for pressure-velocity coupling [18]. Time integration is based
on a predictor-corrector approach (Adams–Bashforth/Adams Moulton) and the spatial
discretisation is performed using the sixth-order compact difference schemes on half-
staggered meshes [19,20]. Details of the IB method can be found in [21] and here, we only
present its most important elements. The main solution algorithm is defined as follows.
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Predictor step. Generally, we assume that the time-step (∆t) can vary as the flow
velocity changes in the successive time-steps, ..., n− 1, n, n + 1, .... With this assumption,
the second-order Adams–Bashforth method is given as follows:

ρu∗ − ρun

∆tn =

(
1 +

∆tn

2∆tn−1

)
Res(un)− ∆tn

2∆n−1 Res(un−1)−∇pn + fBF + fIB,∗ (3)

where Res(u) represent the convection and diffusion terms of the Navier–Stokes equations.
The source term fIB is integrated in time in a fully implicit manner that is discussed later.
The velocity field u∗ computed from Equation (3) does not fulfil the continuity equation
(i.e., ∂tρ +∇ · (ρu∗) 6= 0) and according to the projection method, it must be corrected [18]
using the gradients of pressure correction (p′) according to the following formula:

ρu∗∗ = ρu∗ − ∆tn∇p′ (4)

where p′ is computed from the Poisson equation:

∇ · (∇p′) =
1

∆tn [∇ · (ρu∗)] (5)

resulting from the condition ∂tρ +∇ · (ρu∗∗) = 0.
Corrector step. The second-order Adams–Moulton method is defined as follows:

ρu∗ − ρun

∆tn =
1
2
(Res(u∗∗) + Res(un))−∇pn + fBF + fIB,∗ (6)

Again, the velocity field u∗ does not fulfil the continuity equation and its correction is
defined as follows:

ρun+1 = ρu∗ − ∆tn∇p′ (7)

The equation ρn+1
t +∇ · (ρun+1) = 0 leads to the Poisson equation analogous to

Equation (5). Its solution allows us to correct the velocity using (7) and to update the
pressure field as follows:

pn+1 = pn + p′ (8)

IB–VP source term. The IB–VP method works through penalising the difference be-
tween the actual and assumed velocity of the solid body. The role of the source term fIB is
to mimic the presence of solid objects in the flow domain. In the volume penalisation (VP)
variant of the IB method, it is defined as follows:

fIB = − ρ

η
Γ(x)(u− us) (9)

where η � 1 is the so-called penalisation parameter measured in time units, and Γ is a
phase indicator defined as follows:

Γ(x) =
{

0, for x ∈ Ω f
1, for x ∈ Ωs

(10)

where Ω f and Ωs represent the fluid and soild parts, respectively, of the computational
domain. For Γ(x) = 1 with η � 1, both Equations (3) and (6) reduce to u∗ = un+1 ≈
∆tnus/(η + ∆tn), which for η � ∆tn leads to u∗ = un+1 ≈ us. Thus, the forcing term can
enforce the no-slip boundary conditions on the wall or set the required velocity if the solid
objects are moving. In the computations, we set η = 10−10 and the time-step computed
based on the CFL criterion (CFL = 0.4) oscillated around ∆t = 1.5× 10−4. The simplicity
of the IB–VP method has the direct consequence of lower accuracy. Similarly, as in the
classical IB method with the stepwise approach (i.e., without interpolation [22]), the formal
order of the IB–VP method is at most equal to one [23,24]. However, as shown in [25], the
combination of the high-order discretisation method with the IB method with the stepwise
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approach can lead to the solutions characterized by the second-order accuracy. We will
compare the results of the IB–VP method with those obtained on a body-fitted mesh.

2.2. Spatial Discretisation

All terms in the continuity and the Navier–Stokes equations are discretised using a
high-order compact difference method up to the sixth order. The solution algorithm is
based on a half-staggered mesh in which the so-called pressure nodes are shifted to the
cell centres, as shown in Figure 1. It may happen that within one computational cell, let us
say (i + 3/2, j + 1/2), part of the nodes (i.e., the pressure node and three velocity nodes)
lie inside the solid object, while one node (i + 2, j + 1) lies in the fluid zone. The proposed
algorithm is not sensitive to these situations and such partially divided cells are treated in
the same way as the cells placed fully inside or outside solid regions.

p

u,v

p

p p

i,j

i+1,j+1i,j+1

i+1/2,j+1/2

i+1,j

i,j+2 i+1,j+2

i+3/2,j+1/2

i+1/2,j+3/2 i+3/2,j+3/2

u,v

u,v u,v

u,v u,v

Figure 1. Half-staggered computational mesh with a region with the red nodes belonging to the solid
body. The figure on the right shows how the solid curved wall is seen on the mesh.

A study by [19] showed that the use of the half-staggered mesh structure has a
stabilising effect, which is extremely important when high-order discretisation methods are
applied. It often turns out that small discontinuities in the flow field or occurrence of large
gradients of the flow variables cause instability and divergence of solution procedures [26].
Taking into account that the presence of solid elements inside the computational domains
can lead to local flow discontinuities, the stabilising properties of node staggering seem to
be very desirable. Indeed, the presented results show that in all analysed cases, the flow
fields are smooth and free from any unwanted numerical artefacts. Details of the solution
method for the algorithm not involving the IB–VP technique can be found in [19,20].

3. Computational Configuration
3.1. Computational Domain and Spheres Localizations

In real situations, roughness is mostly a complex 3D structure formed during the
manufacturing process or created artificially by a special forming of the wall surface.
In the present work, we consider the latter approach and analyse the flow in between
the walls with spherical elements embedded in their surfaces. As shown in Figure 2,
the spherical elements are pressed into the solid slabs to half of their diameters. The
computational domain is a straight channel with dimensions Lx × Ly × Lz = 4π × 2× π.
Note that we consider a non-dimensional reference frame and refer to the Reynolds number

Reτ = uτh/ν = 180, where uτ =
√

ν∂u/∂y|y=±h is the friction velocity where u is the
velocity component in the ‘x’-direction, ν is the kinematic viscosity, and h = Ly/2. As will
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be presented later, the small value of the Reynolds number allowed us to obtain accurate
results without using a turbulence model. For a flat-channel configuration, the applied
high-order discretisation method ensures accurate solutions on a moderate mesh density
even for Reτ = 590, as demonstrated in [19].

Figure 2. Schematic view of the computational domain with spherical elements embedded in the
upper and lower walls.

The flow is periodic in the ‘x’- and ‘z’-directions and is forced by the constant pressure
gradient dp/dx = −u2

τρ/h. The first row of spheres is placed at x = π, whereas the
localization of the last row depends on the size of the spheres. We compare the results for
three configurations in which the overall surface of all spheres is the same and equal to
S = 2× π3. In the first configuration, the basic one, (S1.0) there are 200 spheres with
the diameter D = π/10 arranged in 10× 20 rows. In the configuration S0.5, there are
800 spheres (20× 40 rows) with D = π/20, whereas in the configuration S2.0, there are
50 spheres with D = π/5 in 5× 10 rows. Note that the cross-sectional areas of the spheres
in particular configurations are equal to Ω = 10× πD2/4 = 10× π(π/10)2/4 = π3/40
(in the configuration S1.0), Ω = 20 × π(π/20)2/4 = π3/80 (in S0.5), and Ω = 5 ×
π(π/5)2/4 = π3/20 (in S2.0), which means that the largest blockage of the channel
(B = Ω/(Lz × Ly)) occurs in the case S2.0 and it equals to B = π2/40. It is two times larger
than in S1.0 (B = π2/80) and four times than in S0.5 (B = π2/160).

We analyse how the sphere size affects the mean flow velocity and fluctuations.
Furthermore, we verify to what extent the ordering of the spheres in subsequent rows
influences the velocity field. We consider two sphere arrangements presented in Figure 3.
In the first one, the spheres are orderly placed one after another. In the second case, the
subsequent rows are shifted in the ‘z’-direction by the half diameter. Note that in the
former situation, the spheres are in contact along the ‘x’- and ‘z’-directions. In the latter, the
spheres touch one another only along the ‘z’-direction, whereas in the ‘x’-direction, there
are small gaps between them. In the following analyses, these configurations are denoted
by the letter ‘o’ or ‘s’ added to the case name, e.g., S1.0o, S1.0s, S2.0o, etc. At this point, one
should mention that an alternative approach to the constant overall spheres surface would
be to assume the same volume of spheres. However, the present settings seem to be more
meaningful for the heat transfer processes, which directly depend on the surface area being
in contact with a flowing medium.
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(a)

(b)

Figure 3. Ordered (a) and shifted (b) arrangement of sphere rows. Subfigures show the localizations
of the control points.

3.2. Computational Meshes

The computations were performed for two computational meshes consisting of
400× 96× 100 and 600× 144× 150 nodes in the ‘x’-, ‘y’- and ‘z’-directions, respectively.
In both cases, the meshes were uniform in the ‘x’- and ‘z’-directions and compacted to-
wards the walls up to the region slightly above the largest sphere, as can be seen in
Figure 4a,c showing the coarse mesh and the spheres in the configurations S0.5 and S2.0
visible in the background. In the vicinity of the spheres and flat walls, the cell sizes in
the ‘y’-direction were uniform and set such that y+ = uτ∆y/ν in the near-wall point was
equal to y+ = 2.05 (coarse mesh), and y+ = 0.995 (dense mesh). Note, that depending
on the sphere sizes, their volumes were discretised by different numbers of mesh points.
Table 1 shows the ratios of the sphere diameters to the cell sizes ∆x, ∆y and ∆z on the coarse
and dense mesh. It can be seen that in the ‘y’-direction, there are significantly more points
across the spheres than in the ‘x’- and ‘z’-directions. The preliminary computations with
different mesh densities have shown that the mesh resolution in the ‘y’-direction is crucial
for obtaining accurate results. The test simulations performed with the help of the ANSYS
Fluent code were performed for the configuration S1.0. In this case, the mesh was fitted
to the sphere surfaces, as shown in Figure 4b, and consisted of 17.5× 166 cells compacted
towards the wall such that y+ < 1.0 both on the flat channel parts and on sphere surfaces.
These computations were carried out using the LES method with the WALE subgrid model.
The aim of these computations was to verify the solution accuracy of the IB–VP approach
without employing any turbulence model. They were aimed to verify the solution accuracy
of the IB-VP approach without employing any turbulence model. As will be shown the
agreement is good that proves that the present DNS-like solutions are reliable.
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Table 1. Characteristics of the computational meshes.

S0.5 S1.0 S2.0

Mesh D/∆x D/∆y D/∆z D/∆x D/∆y D/∆z D/∆x D/∆y D/∆z

Coarse 5.0 13.81 5.0 10.0 27.63 10.0 20.0 55.26 20.0
Dense 7.5 28.11 7.5 15.0 56.22 15.0 30.0 112.44 30.0

(a) (b)

(c)

Figure 4. Computational meshes in the vicinity of the spheres for the configurations S0.5 (a), S1.0
with the mesh used for the computations using the ANSYS Fluent code (b) and S2.0 (c).

4. Results
4.1. Instantaneous Flow Behavior

In all cases, the computations started with the uniform velocity in the ‘x’-direction
equal to U = 15.0, with random disturbances at the level of 0.1U assumed for all velocity
components. These artificial fluctuations induced the appearance of natural turbulent
structures and the flow adapted to the forcing imposed by the constant pressure gradient.
After the initial transient phase (t > 20), the flow could be considered as fully developed.
Figure 5 shows the Q-parameter (Q = 415) in the vicinity of the lower walls in the
configurations S2.0o and S2.0s. The Q-parameter is one of the quantities that are often
used to indicate vortical structures. It is defined as Q = 1/2(ΩijΩij − SijSij), where Sij and
Ωij are the symmetrical and anti-symmetrical parts of the velocity gradient tensor. Here,
the Q-parameter shows long streamwise-oriented vortices formed in between the spheres
and small vortices occurring on the sphere surfaces. It can be seen that on the flat parts of
the channel, flow behavior is very similar, whereas significant differences are seen in the
vicinity of the spheres. In the configuration S2.0o, the number of long vortices is distinctly
larger and its occurrence is more regular. In the zoomed figures of the regions of the first
rows of the spheres, it can be seen that the longitudinal thin vortices originate in the gaps
between the spheres. Depending on sphere arrangement, they either extend along the
‘x’-direction being pulled by the mean flow (S2.0o) or are destroyed by the subsequent row
of the spheres (S2.0s). In both cases, however, these vortices reveal strongly turbulent flow
behavior near the spheres.
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Figure 5. Q-parameter iso-surface in the configurations S2.0o (upper figures) and S2.0s (lower figures).

4.2. Time-Averaged Results

The time-averaging procedure was started at the time moment t = 25 and lasted up
to t = 105, which was long enough to obtain well convergent mean quantities. Figure 6a
presents the iso-surface of the time-averaged streamwise velocity equal to 〈U〉 = −0.1. One
can easily deduce that in the front of the first row and in between the spheres, the recirculation
zones are formed that intensify the mixing process. Figure 6b presents the contours of the
streamwise velocity in the ‘x-y’ cross-section plane at z = 2.5D = 2.5π/5 that for the case
S2.0o corresponds to the localization across the spheres. The velocity vectors show how
the flow recirculates in between the spheres. The sizes of the recirculation regions and the
length of the recirculation zones formed downstream of the last rows of the spheres are
largely dependent on the diameters of the spheres and their spatial distribution.

(a)

Figure 6. Cont.
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(b)

Figure 6. Iso-surface 〈U〉 = −0.1 of the time-averaged streamwise velocity (a) and their contours in
the ‘x-y’ cross-section (b) in the configuration S2.0o.

Figure 7 shows the contours of the time-averaged streamwise velocity that was ad-
ditionally averaged along the ‘z’-direction. Point A indicates the localization of the last
row of the spheres, points B and C correspond to the length and height of the recirculation
zones, respectively. It can be seen that these parameters change depending on the sphere
diameter and arrangement. Their detailed values are given in Table 2.

Figure 7. Contours of the time-averaged streamwise velocity in the ‘x-y’ plane.

One can notice that in the case of the smallest spheres (S05o and S0.5s), the arrange-
ment of the spheres (one after another or shifted) has no impact on the size of the recir-
culation zone. Differences are seen only when the sphere diameter is larger. In general,
when the spheres are placed one after another, the recirculation zone is greater, whereas
when the sphere rows are shifted, the recirculation zone is longer. In effect, the inclina-
tion angles of their upper border, approximately reflected by the ratio |AC|/|AB|, change
significantly. For instance, for the cases S2.0o and S2.0s, the difference in respect to the
mean value (|AC|/|AB|mean = 0.136) reaches 15%. The overall region of the recirculating
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flow computed as the surface area (S) of the triangles formed by the sections |AC| and
|AB| is larger for the cases with the spheres distributed one after another. As shown by
Niegodajew et al. [27], the near-wall recirculation impacts on the skin friction, with its effi-
cient control regarded as one of the most important issues in wall-bounded flows. Hence,
based on the obtained results, one can assume that the methodology of sphere distribution
on the wall can be treated as one of the parameters of skin friction control.

Table 2. Characteristic dimensions of the recirculation zones.

Case |AC| |AB| |AC|/|AB| S = 1/2 |AC||AB|
S2.0o 0.19 1.30 0.146 0.123
S1.0o 0.10 0.97 0.103 0.048
S0.5o 0.04 0.46 0.087 0.009
S2.0s 0.17 1.35 0.126 0.115
S1.0s 0.09 0.98 0.092 0.044
S0.5s 0.04 0.46 0.087 0.009

4.2.1. Profiles of the Mean Velocity and Its Fluctuations

Figure 8 shows the profiles of the time-averaged streamwise velocity and the fluctua-
tions of the streamwise and wall-normal velocity components along the channel height
at x = 0, z = Lz/2 for all analyzed configurations. The results denoted as S1.0o-c and
S1.0s-c were obtained on the coarser mesh, while the square symbols denote the solutions
obtained using the ANSYS Fluent code for the case S1.0o. Firstly, it can be seen that the
agreement of the results is very good. Both the mean velocity and its fluctuations fit well,
which confirms that the applied IB–VP method yields accurate results. Secondly, one
can observe that the impact of mesh density is very small, which can be attributed to the
applied high-order discretization method that, in theory, should ensure grid-independent
results on moderately dense meshes. It seems that this property is well reflected in the
present simulations.

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

(a)

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

(b)

Figure 8. Profiles of the time-averaged streamwise velocity (a) and the profiles of the fluctuations of the streamwise and
wall-normal velocity components (b) along the channel height at x = 0.
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Table 3 shows the maxima and spatially averaged mean values of the streamwise
velocity and fluctuations of the wall-normal and streamwise velocity component. Re-
garding the differences between the particular configurations, the following observation
can be made: (i) the impact of row arrangement (one after another or shifted) is small
and decreases with the increasing sphere diameter; (ii) the maxima and mean velocity
values decrease with the increasing sphere diameter; this is related to different blockage of
the channel, as explained in Section 3, and differences in the flow behavior between the
spheres in the central part of the channel, as will be discussed later; it is worth noting that
the gradient of the mean velocity profile in the vicinity of the wall increases with sphere
diameter (see Figure 8a); (iii) the absolute values of the streamwise velocity fluctuations are
the largest for the case S0.5; note that in the configurations S1.0 and S2.0, the fluctuation
profiles are flattened in the region of −0.9 < y < −0.6 (see Figure 8b); the wall-normal
fluctuations have maximum values for the cases S1.0 and they exceed approximately 15% of
the fluctuation level observed for S0.5; this means that the larger spheres induce a stronger
flow in the ‘y’-direction; note that when the mean velocity fluctuations are normalized by
the mean streamwise velocity, their largest values are found for the case S2.0.

Table 3. Maxima and mean values of the streamwise velocity and fluctuations of the wall-normal
and streamwise velocity.

Case Max〈U〉 Mean〈U〉 Max〈uu〉1/2 Mean〈uu〉1/2

Mean〈U〉 Max〈vv〉1/2 Mean〈vv〉1/2

Mean〈U〉

S2.0o 8.435 6.259 1.509 0.156 1.014 0.094
S1.0o 12.423 10.399 1.862 0.116 1.019 0.060
S0.5o 15.869 13.394 2.429 0.099 0.877 0.047
S2.0s 8.470 6.338 1.517 0.154 1.015 0.093
S1.0s 12.623 10.239 1.887 0.120 1.019 0.063
S0.5s 15.928 13.470 2.569 0.101 0.878 0.049

Figures 9 and 10 show the profiles of the time-averaged streamwise velocity and its
fluctuations in the control points X1-X6 and Y1-Y2 marked in Figure 3. Note that the
points X1Y1, X3Y1, and X5Y1 are placed on the centers of the sphere surface and the
remaining points lie in between the spheres. The presented results were obtained for the
denser mesh. For reference, the solutions obtained for the configuration S1.0o using the
ANSYS Fluent code are also shown in Figure 9. Again, it can be seen that the agreement
of the results is very good, and subtle differences between the profiles in different control
points are accurately captured. A general remark is that in the central part of the channel,
i.e., −0.5 < y < 0 the mean velocity profiles and the profiles of velocity fluctuations are
not significantly dependent on sphere configuration. Although there are some evident
quantitative differences between particular profiles, all solutions show similar qualitative
behavior. Important differences are seen only when moving closer to the sphere surfaces.
There, in addition to different values of the velocity, the character of the flow changes.
In some cases, the recirculation zones appear, which is manifested as negative values of
mean velocity. The fluctuation maxima significantly differ in the values and the place
where they occur above the spheres. The irregularity of the fluctuation profiles increases
with the sphere diameter, which can be regarded as a control parameter for turbulence
intensity modulation.
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Figure 9. Profiles of the time-averaged streamwise velocity (a,c,e) and its fluctuations (b,d,f) along the channel height at the
selected control points X and Y defined in Figure 3a. The results for the configurations S0.5o, S1.0o, and S2.0o.



Processes 2021, 9, 277 13 of 16

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(a)

0 0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(b)

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(c)

0 0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(d)

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(e)

0 0.5 1 1.5 2 2.5

−0.8

−0.6

−0.4

−0.2

0

S2.0s

S1.0s

S0.5s

(f)

Figure 10. Profiles of the time-averaged streamwise velocity (a,c,e) and its fluctuations (b,d,f) along the channel height at
the selected control points X and Y defined in Figure 3b. The results for the configurations S0.5s, S1.0s, and S2.0s.
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The analysis of the solutions obtained for points X1Y1, X3Y1, and X5Y1 (centers of the
spheres) shows that in these locations, the profiles quickly become very similar along the
channel, i.e., the solutions in the points X3Y1 and X5Y1 are almost identical both for the
ordered- and shifted-row configuration. The situation changes in the locations in between
the spheres in the points X2, X4, and X6. In the cases S1.0o and S2.0o, mean velocity profiles
reveal the occurrence of local recirculation in between −0.86 < y < −0.78. In points X4Y1
and X6Y1, the profiles are still very similar (see Figure 9c) but the recirculation in these
locations is weaker than in X2Y1, although it extends more to the central part of the channel.
Note that the appearance of the recirculation in the flow around the spheres increases the
shape drag. This is the second factor which, along with the larger blockage of the channel
cross-section for the cases S1.0 and S2.0 causes slowing of the mean flow. The velocity
fluctuations in the region of recirculation are characterized by pronounced irregularity
of the profiles (see Figure 9d). Note that in the case S0.5o, there are no negative mean
velocity values.

When the subsequent rows of the spheres are shifted, the mean velocity profile
changes. In the configurations S1.0s and S2.0s (see Figure 10c), the recirculation in between
the spheres occurs very close to the wall, which is accompanied by wavy profiles of
fluctuation. The reason for that is the location of the point Y1, which, when the rows are
shifted, lies in the gap behind the spheres, as can be seen in Figure 3b. This enables the
development of a larger sized recirculation zone. It is worth noticing that for the case
S2.0s the profiles at X2Y1, X4Y1, and X6Y1 are significantly different, particularly taking
into account velocity fluctuations. This is not the case for S1.0s and S0.5s, as in these two
configurations, the profiles of both mean velocity and its fluctuations at X4Y1 and X6Y1 are
hardly distinguishable.

Similar conclusions can be drawn regarding the solutions in the points X2Y2, X4Y2,
and X6Y2. Here, again only for the case S2.0s, the profiles at points X4Y2 and X6Y2 visibly
diverge (see Figure 10e). In comparison to the solutions at points X4Y1 and X6Y1, the
important differences are: (i) the near-wall recirculation zone is weaker; (ii) in the close
vicinity of the spheres (−0.8 < y < −0.7 in the case S2.0s) the mean velocity at the location
X4 is the largest and it is the smallest at X6; in the cases X4Y1 and X6Y1, the opposite
situation is observed, i.e., the mean velocity at the location X6 is the largest. Note, that the
same behavior is found for the fluctuation profiles.

5. Conclusions

The paper presented the results of numerical simulations of the flow in a periodic
channel in which the walls were covered in the central part by spherical elements that
had the same overall surface areas but different radii. The computations were performed
using the high-order code, whereas solid elements were modelled with the help of the
immersed boundary method. For selected cases, the results were validated by comparison
with the solutions obtained using the ANSYS Fluent code on the very dense body-fitted
mesh. It was found that the increase of the sphere diameter causes larger overall drag
force, which is attributed to the larger blockage of the channel cross-section and the
occurrence of the recirculation between the large diameter spheres. In effect, with the
assumed constant pressure gradient forcing term the mass flow decreases and the flow
slows down. Regarding the differences between particular solutions, the velocity profiles
in the vicinity of the spheres are largely dependent on sphere diameter and they rise when
it increases. It was found that the distribution of the spheres plays an important role only
when the spheres are large and when the recirculation zones formed behind them are
characterized by different intensities and sizes. In the neighbourhood of the last rows of
the spheres, the triangular recirculation zones are formed, with their height and length
increasing with the sphere diameter. In the part of the channel far from the spheres, the
velocity profiles seem to be independent of spheres distribution and the solutions for the
cases with the ordered and shifted rows of the spheres are almost identical, yet significantly
influenced by the sphere diameter. One can conclude that the placement of the spheres on
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the walls affects the results only in the region close to the spheres and mainly when they are
large. In such cases, the distribution of the spheres could be treated as a control parameter
influencing the local skin friction, and thus the drag force occurring on the sphere surfaces,
and the turbulence intensity. Its efficient modulation and higher value would facilitate the
control of the mixing process and heat exchange in non-isothermal flows. This subject is
left for future studies.
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