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Abstract: Process measurements are contaminated by random and/or gross measuring errors, which
degenerates performances of data-based strategies for enhancing process performances, such as
online optimization and advanced control. Many approaches have been proposed to reduce the
influence of measuring errors, among which expectation maximization (EM) is a novel and parameter-
free one proposed recently. In this study, we studied the EM approach in detail and argued that
the original EM approach is not feasible to rectify measurements contaminated by persistent biases,
which is a pitfall of the original EM approach. So, we propose a modified EM approach here to
circumvent this pitfall by fixing the standard deviation of random error mode. The modified EM
approach was evaluated by several benchmark cases of process data rectification from literatures.
The results show advantages of the proposed approach to the original EM in solving efficiency and
performance of data rectification.

Keywords: data rectification; expectation maximization; bias detection

1. Introduction

With the advancement of smart manufacturing, process measurements play a more
and more important role in modern chemical manufacturing plants [1–3]. The measure-
ments are unavoidably contaminated by random errors and often by large-sized gross
errors, too, which degenerate performances of process monitoring, control and optimiza-
tion strategies based on measurements [1]. To recover the true values of process variables
from the contaminated measurements, many approaches to data rectification, i.e., reducing
the random and gross errors simultaneously from the measurements, have been proposed
since 1960s [2].

Traditionally, there are three ways of process data rectification, namely, statistical
test [4,5], robust estimator [6,7] and mixed integer programming [8,9].

The first way identifies gross errors with a statistical test by assuming random errors
follow a normal distribution [10], then a procedure of data reconciliation, i.e., solving a
constrained least squares problem whose objective is minimizing the difference between the
measured values and reconciled values satisfying process models, is carried out to estimate
the true values of the measurements not contaminated by gross errors, while the true values
of the measurements contaminated by gross errors are treated as unknown parameters to
be estimated. Although the algorithmic parameters, such as critical values of a statistical
test, can be chosen with clear statistical meanings, only one gross error can be identified
at a time because of the smearing effect of a large-sized gross error, so the approaches of
a statistical test must identify gross errors one by one and elegant frameworks must be
designed to promise the performance of data rectification [11].

The second way is based on robust estimators [6], which can simultaneously reduce
the influences of random and gross errors by solving a constrained nonlinear least squares
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problem once. Different from the approaches of the statistical test described above, it is
assumed that measurements contaminated by random and/or gross errors can be described
by a heavy tail statistical distribution, such as contaminated normal [12], Cauchy [6],
redescending [13], quasi weighted least squares (QWLS) [14] and correntropy [15] etc.,
which can effectively reduce the smearing effect of gross errors. The advantages of robust
estimators for data rectification are: (1) gross errors can be identified with data reconciliation
simultaneously; (2) the parameters of the robust estimators can be determined via Monte
Carlo methods with clear statistical meanings [16] or online line search methods based on
the Akaike information criterion (AIC) [13]. Currently, the robust estimators may be the
most popular approach for process data rectification.

The third way is based on mixed integer programming (MIP) techniques [8–10], whose
objective is to minimize the number of identified gross errors and the difference between
the measured and rectified values, where the trade-off can be realized by the AIC [10,13] or
a predetermined weighting factor of the objective function [9,17]. The MIP techniques show
competitive or comparable performances to robust estimators for process data rectification,
and the MIP technique based on the AIC is free from setting algorithmic parameters to
balance the fitness and complexity of the model; although a critical value of identifying
gross errors still needs to be determined, this value can be easily obtained from daily
operation experiences of instrumentation engineers [10,17].

Recently, a novel way of process data rectification based on statistical inference was
proposed, such as the approaches of Bayesian inference [18]. Being a widely used method
of statistical inference, expectation maximization (EM) [19–25] has also been applied to
process data rectification [26,27]. The statistical inference approaches are based on the
Bayes rule [18], which inferences the unknown parameters by combining the information
from collected data (measurements) and the prior probability distribution of the inferenced
parameters. Although current works assume prior distribution before process data rectifica-
tion, some reasonable prior information on the random and gross errors of measurements,
such as standard deviation of random errors and occurrence of gross errors for a specified
sensor, can be collected and modeled from the experiences of plant operators and historical
process data [18,27,28]. So, the authors believe that the statistical inference approach to
process data rectification deserves to be studied.

The established EM approach [26] is an interesting statistical inference approach
because it has no algorithmic parameter to be determined before data rectification, but just
assumes that measurement errors follow a finite Gaussian mixture distribution. The large
number of parameters to be estimated with the EM algorithm [29] lead to its low-efficiency
solving procedure, and from experiences of the authors, the original EM approach cannot
be applied to rectify process measurements contaminated by persistent biases, because the
estimated standard deviation of the random error mode is close to that of the gross error
mode, which leads to difficulty of bias identification.

In this work, we argue that, for the original EM approach, the estimated value of
standard deviation of random error mode is unavoidably enlarged by a persistent bias and
leads to difficulty of bias detection. To circumvent this problem, we present a modified
EM approach, where the standard deviation of random error mode is estimated before
the EM iterations with a robust method [30], so the standard deviation of random error
mode will not be enlarged by a persistent bias and it is possible to detect bias from the EM
calculation result. Compared to the original EM approach, the modified one also reduces
the number of parameters to be estimated and the time consumption of EM iterations can
also be significantly reduced.

The remainder of this paper is organized as follows. Section 2 introduces the prin-
ciples of the established EM approach for data rectification. The proposed modified EM
approach and detailed calculation steps are presented in Section 3. Section 4 describes the
performance analysis procedure used herein. The performance modified EM approach
is evaluated and compared to the original one in Section 5. Finally, Section 6 concludes
the paper.
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2. Data Rectification Approach of Expectation Maximization
2.1. Data Rectification Problem

Except for the random errors following normal distribution, three types of gross errors,
namely, drift, outlier and persistent bias, also usually contaminate measurements, which
are shown in the following Figure 1.

Figure 1. Illustration of different types of gross errors.

Figure 1 shows how different types of gross errors contaminate a process measure-
ment whose true value is 1 in steady state. Obviously, any one of the systematic errors
significantly reduces the reliability of a process measurement, which is the basis of online
decision-making during the enhancement of the process performance and a systematic
error cannot be eliminated with data reconciliation methods, because a zero mean of ran-
dom error is assumed for the methods of data reconciliation. Essentially, outliers in a
measurement horizon are also random errors with larger variance than random noises,
and the original EM algorithm can identify and estimate outliers well. A persistent bias as
shown in Figure 1 is not random, which will enlarge the estimated variance of the original
EM algorithm, as shown in the following Section 3.1. On drift error of a sensor, it is also a
non-random one with increasing error size and it will also lead to an enlarged estimated
variance as a persistent error, supposing an average of a measurement horizon is taken as a
representative of the horizon. In the following, we show how a data rectification problem
is set up as a statistical inference problem.

Supposing a measurement horizon
{

yj,h

}t

h=t−H+1
is collected at time t, which involves

H data points measured at different time point k for the jth process variable and a data
matrix Y ∈ RJ×H whose rows represent measurement horizons of all the J measured
process variables, where yj,h is an element at the jth row and hth column of Y. A steady-
state process data rectification can be formulated as a maximum likelihood estimation
problem described as the following Equation (1).

max
x

ln[P(Y|x)]

s.t.
{

f (x) = 0
g(x) ≤ 0

(1)

In Equation (1), the objective function is the logarithm likelihood of the sampled
measurements yj,h under the condition that the true value of the jth measurement is xj and
the jth element of vector x is xj; f (x) represents the process model and g(x) denotes the
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inequality constraints for the process variables, considering operational specifications and
experienced bounds.

Assuming different distributions of the measurement errors, the formulation of the
objective function of Equation (1) varies [6]. For the data reconciliation problem considering
random errors only, it is assumed that random errors follow a normal distribution, and the
logarithm of the objective function is a quadratic one. If a heavy tail distribution is assumed
for measurement errors, as in the situation of data rectification using robust estimators,
the logarithm of the objective function shows a more complex formulation, sometimes the
function is nonconvex or even discontinuous [6].

In both the situations described above, we fix the distribution parameters of mea-
surement errors. For the data rectification using the EM approach, the parameters of
measurement error distribution are inferenced with the Bayes rule, as described in the
following section.

2.2. Expectation Maximization Approach

For the EM approach [26], the difference between the hth measurement and the true
value of the jth process variable, namely, ε j,h = yj,h − xj, is described with the finite
Gaussian mixture model shown with Equation (2) [26].

ε j,h = yj,h − xj = wj,1N
(

0, σ2
j,1

)
+ wj,2N

(
0, σ2

j,2

)
s.t.
{

wj,1, wj,2 ≥ 0
wj,1 + wj,2 = 1

(2)

In Equation (2), wj,1 represents the probability of a random error mode with a zero
mean and standard deviation σj,1, and wj,2 represents the probability of a gross error mode
with a zero mean and standard deviation σj,2 that is larger than σj,1 under the occurrence of

a gross error. Supposing θj =
{

σj,k, wj,k

}
k=1,2

, the likelihood of ε j,h for the kth error mode

can be described with the following Equation (3) [26].

pj,h,k = P
(

yj,h

∣∣∣zj,h = k, xj, θj

)
=

1√
2πσ2

j,k

exp

−
(

yj,h − xj

)2

σ2
j,k

 (3)

In Equation (3), zj,h is a latent variable to be estimated and zj,h = k represents that the
error mode of yj,h is the kth one, where k = 1 represents a random error mode, and k = 2
means a gross error mode. Considering both error modes, the whole likelihood of ε j,h is
represented as following Equation (4).

pj,h =
2

∑
k=1

wj,k pj,h,k (4)

Based on the above descriptions, the previously mentioned Equation (1) can be written
as the following Equation (5).

max
xj ,θj

ln

[
J

∏
j=1

H
∏

h=1
pj,h

]
s.t.
{

f (x) = 0
g(x) ≤ 0

(5)
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It is difficult to solve Equation (5) directly, because wj,k cannot be obtained explicitly.
Hence, an EM approach was applied to solve Equation (5), by replacing Equation (5) with
the following Equation (6) [26].

max
Θ

Q
(

Θ, Θ(t)
)

= Ezj,h=k|yj,h ,Θ(t)

[
ln

J
∏
j=1

H
∏

h=1
p
(

zj,h = k, yj,h

∣∣∣Θ)]
=

J
∑

j=1

H
∑

h=1
Ezj,h=k|yj,h ,Θ(t) ln p

(
zj,h = k, yj,h

∣∣∣Θ)
=

J
∑

j=1

H
∑

h=1

2
∑

k=1
p
(

zj,h = k
∣∣∣yj,h, Θ(t)

)
· ln p

(
zj,h = k, yj,h

∣∣∣Θ)
s.t.
{

f (x) = 0
g(x) ≤ 0

(6)

In Equation (6), Θ =
{

xj, θj
}

j=1,...J and Θ(t) represent the estimation result of Θ at
the tth iteration, which means the probability of error mode for a measurement, namely,
p
(

zj,h = k
∣∣∣yj,h, Θ(t)

)
, is estimated from yj,h and Θ(t) using the Bayes rule, as described

with Equation (7).

P
(

zj,h = k
∣∣∣yj,h, Θ(t)

)
=

P(zj,h=k,yj,h ,Θ(t))
P(yj,h ,Θ(t))

=
P(yj,h ,zj,h=k,Θ(t))

P(yj,h ,Θ(t))

=
P(yj,h|zj,h=k,Θ(t))·P(zj,h=k,Θ(t))

P(yj,h ,Θ(t))

=
P(yj,h|zj,h=k,Θ(t))·P(zj,h=k,Θ(t))

P(yj,h ,Θ(t))

=
P(yj,h|zj,h=k,Θ(t))·P(zj,h=k|Θ(t))·P(Θ(t))

P(yj,h|Θ(t))·P(Θ(t))

=
P(yj,h|zj,h=k,Θ(t))·P(zj,h=k|Θ(t))

P(yj,h|Θ(t))
=

pj,h,k ·wj,k
2
∑

l=1
pj,h,l ·wj,l

(7)

In Equation (7), pj,h,k is calculated with Equation (3) and P
(

zj,h = k
∣∣∣Θ(t)

)
= wj,k

because Θ =
{

xj, θj
}

j=1,...J and θj =
{

σj,k, wj,k

}
k=1,2

. The calculation of the probability of

P
(

zj,h = k
∣∣∣yj,h, Θ(t)

)
is noted as the expectation step (E-step).

After the E-step, we estimate Θ using the maximization step (M-step), namely, solving
Equation (6) with fixed P

(
zj,h = k

∣∣∣yj,h, Θ(t)
)

calculated at the E-step, then a new estimation

of Θ, i.e., Θ(t+1), is the result. It must be noted that ln p
(

zj,h = k, yj,h

∣∣∣Θ) is calculated with
Equation (3) and the Bayes rule, as described by Equation (8).

ln p
(

yj,h, zj,h = k
∣∣∣Θ) = ln

[
p(yj,h ,zj,h ,Θ)

p(Θ)

]
= ln

[
p(yj,h|zj,h ,Θ)·p(zj,h ,Θ)

p(Θ)

]
= ln

[
p
(

yj,h

∣∣∣zj,h, Θ
)
· p
(

zj,h

∣∣∣Θ)]
= ln pj,h,k + ln

[
p
(

zj,h

∣∣∣Θ)]
= − ln

(√
2πσj,k

)
−
( yj,h−xj

σj,k

)2
+ ln wj,k

(8)
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To solve Equation (6), a coordinate search method is applied to estimate wj,k and σj,k
separately, as the following Equations (9) and (10) show [26].

σ
(t+1)
j,k =

√√√√√√√√
H
∑

h=1
γ
(t)
j,h,k ·

(
yj,h − x(t)j

)2

H
∑

h=1
γ
(t)
j,h,k

, (9)

w(t+1)
j,k =

H
∑

j=1
γ
(t)
j,h,k

H
. (10)

In the above equations, γ
(t)
j,h,k = P

(
zj,h = k

∣∣∣yj,h, Θ(t)
)

, which is calculated with Equation (7).

At last, x(t+1)
j is estimated by solving Equation (6) with wj,k and σj,k fixed as Equations (9)

and (10) [26].
With the new estimation of Θ, i.e., Θ(t+1), obtained, we return to the E-step and check

the difference between Q
(

Θ, Θ(t)
)

and Q
(

Θ, Θ(t+1)
)

of Equation (6), if the difference is
not obvious we stop the iteration, or the else we continue [26].

3. Modified Expectation Maximization Approach
3.1. Standard Deviation of the Original EM under Persistent Bias

Although the EM approach was successfully applied to several situations, such as
non-persistent gross errors and concurrent errors of different types [26,27], there is still a
little space for improvement in the situation of measurements contaminated by persistent

biases, where
(

yj,h − x(t)j

)2
in Equation (9) is relatively large and unavoidably leads to a

large σ
(t+1)
j,k even for the random error mode, whose standard deviation shall be relatively

small, as can be argued in the follows.

Supposing that αj,h,k = γ
(t)
j,h,k/

H
∑

h=1
γ
(t)
j,h,k, Equation (9) can be rewritten as following

Equation (11):

[
σ
(t+1)
j,k

]2
=

H

∑
h=1

αj,h,k ·
(

yj,h − x(t)j

)2
, αj,h,k ∈ [0, 1] and

H

∑
h=1

αj,h,k = 1 (11)

With h′ = argmin
h

{(
yj,h − x(t)j

)2
}

and αj,h′ ,k = 1, it is easy to infer that Equation (11)

arrived at its minimum, namely,
[
σ
(t+1)
j,k

]
min

=
∣∣∣yj,h − x(t)j

∣∣∣
min

, which fluctuates around the
magnitude of the bias contaminating the jth measurement and leads to a large size standard
deviation for random error mode of Equation (2), namely, σj,1. Under this situation, it is
impossible to set ±3σj,1 as the critical value for bias detection and the original intention of
Equation (2) is violated, too.

To verify the above argument, the simple linear data rectification case of Ripps [31] is
used here to show the influence of persistent bias to the standard deviations of random
mode. The Ripps case involves four streams with measured flowrates and three linear
mass balance equality constraints are shown as the following Equation (12).

0.1x1 + 0.6x2 − 0.2x3 − 0.7x4 = 0
0.8x1 + 0.1x2 − 0.2x3 − 0.1x4 = 0.
0.1x1 + 0.3x2 − 0.6x3 − 0.2x4 = 0

(12)

The true values of all the flowrates are x1 = 0.1739, x2 = 5.0435, x3 = 1.2175 and x4 = 4,
with corresponding standard deviations σ1 = 2.89× 10−4, σ2 = 2.5× 10−3, σ3 = 5.76 × 10−4,
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and σ4 = 4 × 10−2 for random noises. Here we assume that x3 is contaminated by a bias
with sizes being 5σ3, 10σ3 and 15σ3, respectively, then 50 Monte Carlo simulations are
carried for each bias size, with all the variables being added random noises with zero mean
and corresponding standard deviations. For each Monte Carlo simulation, the sign of the
bias is assigned randomly with equal probability. The minimum ratio of estimated σ3,1 to

σ3, namely,
(

σ3,1
σ3

)
min

, is shown in Figure 2 as follows.

Figure 2. The influence of bias size on the estimated value of standard deviation of random
error mode.

As Figure 2 shows, as in the above argument, the minimum estimated standard
deviation of random noise mode is several times of that of the true, so it is impossible to
detect a bias with the traditional 3 σ rule, as the original EM approach did [26].

3.2. Modification to the Original EM Approach

To apply the EM approach to the situation of measurements contaminated by persis-
tent biases, a simple modification is presented herein for the original EM approach, namely,
we directly estimate the variance of the random error mode in Equation (2), i.e., σ2

j,1, but not

via the EM iterations. It has been shown that σ2
j,1 can be estimated efficiently and robustly

from process measurements even when the measurements are contaminated with gross
errors [30]. Then all the other parameters of Θ in Equation (6) are still estimated using
the above original EM procedure. Obviously, the influence of bias on the estimation of
standard deviation of random error is avoided by this modification.

After Θ in Equation (6) being estimated, a criterion must be set up to detect bias for
measurements. There are two established ways for detecting bias. The first one is shown
by Equation (13), namely, a measurement is contaminated by a bias if the probability of
gross error mode is larger than the random error mode [12]. The second one is using the
deviation of reconciled value from the corresponding measured value [26], namely, if the
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following Equation (14) holds where yj is the average of measurement horizon of the jth
process variable, then a bias is detected for the jth measured variable.

wj,2

H

∑
h=1

1√
2πσ2

j,2

exp

−
(

yj,h − xj

)2

σ2
j,2

 > wj,1

H

∑
h=1

1√
2πσ2

j,1

exp

−
(

yj,h − xj

)2

σ2
j,1

, (13)

∣∣∣yj − xj

∣∣∣ > 3σj,1. (14)

Obviously, the original EM approach can only use the first way of bias detection
because the estimated value of σj,1 is enlarged by a persistent bias. While three criteria
can be applied to the modified EM approach, i.e., a bias is detected when Equation (13)
holds, which is noted as probability criterion (PC); or Equation (14) holds, which is noted
as deviation criterion (DC); or both Equations (13) and (14) hold simultaneously, which is
noted as a probability and deviation criterion (PDC).

Based on the above description, the proposed modified EM approach can be shown
in Table 1.

Table 1. Modified expectation maximization (EM) approach for data rectification.

1. Input measurements matrix Y.
2. Estimate σ2

j,1 from Y by using a robust direct approach [30].

3. Initialize parameters: w(0)
j,1 = 0.5, σ

(0)
j,2 = σj,1, x(0)j =

H
∑

h=1
yj,h/H and set t = 1.

4. E-step. Calculate P
(

zj,h = k
∣∣∣yj,h, Θ(t)

)
using Equation (7).

5. M-step. Calculate σ
(t+1)
j,2 and w(t+1)

j,k using Equations (9) and (10), respectively, calculate x(t+1)
j

by solving Equation (6) with σj,2 = σ
(t+1)
j,2 and wj,k = w(t+1)

j,k fixed.

6. Terminate if
∣∣∣[Q(Θ, Θ(t+1)

)
−Q

(
Θ, Θ(t)

)]
/Q
(

Θ, Θ(t)
)∣∣∣ ≤ 10−3, or else t = t + 1 and return

to step 4.
7. Detect bias for each measurement with PC, DC or PDC.

The modified EM with PC, DC or PDC for bias detection is noted as MEM-PC, EM-DC
and EM-PDC, respectively.

The advantages of the modified EM algorithm over the original EM algorithm are:
(1) the standard deviation of random error is not affected by a persistent bias, because a
direct and robust variance estimation method [30] is used; (2) fewer variables need to be
estimated by the modified EM algorithm, which means that the modified EM algorithm
converges faster than the original EM algorithm.

4. Performance Analysis

To evaluate the performance of the proposed modified EM algorithm, the following
three performance metrics, namely, overall performance (OP), average number of Type-I
error (AVTI) and relative error reduction (RER), defined as following Equations (15)–(19)
are used here [9].

OP =
number of correctly identified bias
number of gross errors simulated

, (15)

AVTI =
number of wrongly identified bias

number of simulation trials
, (16)

RER =

M
∑

j=1

(
MREj − RREj

)
M
∑

j=1
MREj

, (17)
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MREj =

∣∣∣∣∣ xj − xt
j

xt
j

∣∣∣∣∣, (18)

RREj =

∣∣∣∣∣ xj − xt
j

xt
j

∣∣∣∣∣. (19)

The following Monte Carlo simulation procedure [6] is carried here to evaluate the
performance of data rectification.

(1) For all the measured variables, add random noises with zero mean and corresponding
standard deviation.

(2) Add bias to each measurement with a predefined probability pb, the bias size randomly
distributes in the range of 5 and 25 times of standard deviation of random noise, the
sign of the bias, namely, ‘+’ or ‘−‘, is randomly assigned with equal probability.

(3) Calculate performance of data rectification with Equations (15)–(19) for each
evaluated method.

Four well-known test cases of process data rectification were used here to evaluate and
compare the performances of the proposed MEM approach to the original EM approach,
which are described as following.

The first case is the famous steam metering network (SMN) [32], which involves
11 units interconnected by 28 streams with measured flow rates, whose flowsheet diagram
is demonstrated as Figure 3 with the true values of the flowrates of all the streams shown
in the parenthesis. For each measured variable, the standard deviation of added random
noise is set as 2.5% of its true values.

Figure 3. The steam metering network (SMN) flowsheet with true values of stream flowrates.

The second case is a bilinear process of metallurgical grinding (MG) [33], which
involves four units interconnected by nine streams with measured mass flowrates and 15
measured mass fractions. The flowsheet of the metallurgical grinding is shown in Figure 4
with the true values of all the measured variables, where the true values of flowrates are
shown in the parenthesis and composition shown at the right side of the parenthesis. For all
the measured variables, the corresponding σ of random noise is set as 2.5% of its true value.
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Figure 4. The metallurgical grinding flowsheet with true values of all the measured flowrates and
mass weights of three components.

The third case, i.e., Pai-Fisher (PF) [34], is a typical nonlinear instance of data rectifica-
tion, whose model is shown as the following Equation (20). The true values of the measured
variables are x = [4.5124; 5.5819; 1.9260; 1.4560; 4.8545] and true values of unmeasured
variables are v = [11.070; 0.61467; 2.0504]. For all the measured variables, the corresponding
σ of random noise is set as 2.5% of its true value.

0.5x2
1 − 0.7x2 + x3v1 + v1v2x2

2 + 2x3v2
3 = 255.8

x1 − 2x2 + 3x1x3 − 2x2v1 − x2v2v3 = −111.2
x3v1 − x1 + 3x2 + x1v2 − x3v0.5

3 = 33.57
x4 − x1 − x2

3 + v2 + 3v3 = 0
x5 − 2x3v2v3 = 0
2x1 + x2x3v1 + v2 − v3 = 126.6

(20)

The fourth case, namely, the Swartz case (Sw) [35], is a heat exchanger network, where
streams Ai (i = 1, 2, . . . , 8) is heated by streams Bi (i = 1,2,3), Ci (i = 1,2) and Di (i = 1,2) via
different heat exchangers, as Figure 5 shows. The true values of flowrate and temperature
for each stream [12] are shown in Figure 5, too. The standard deviation of random noise
for each flowrate is set as 2.5% of the corresponding true value of flowrate and 0.75 for
temperature of each stream.

Figure 5. The Swartz flowsheet with true values of measured temperatures and flowrates.
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For the Swartz case, both linear material balance equalities and nonlinear energy
balance equalities for each heat exchanger/junction are used as constraints of data rectifica-
tion. The enthalpy of unit mass of each stream is correlated with its temperature using a
quadratic polynomial as Equation (21) shows, whose coefficients are shown in Table 2 [1].

H = v1 + v2T + v3T2 (21)

Table 2. Coefficients of temperature-enthalpy correlation for each stream.

Stream Ai (i = 1, 2, . . . , 8) Bi (i = 1, 2, 3) Ci (i = 1, 2) Di (i = 1, 2)

v1 −6.8909 −14.8538 −28.2807 −11.4172
v2 0.0991 0.1333 0.1385 0.1229
v3 1.1081 × 10−4 7.539 × 10−5 9.043 × 10−5 7.94 × 10−5

For all the tested cases, the Monte Carlo simulations were carried out in a MATLAB
2018 (MathWorks, Boston, MA, USA) environment using a personal computer with Intel
Core Processor (TM) i3 CPU 3120M @ 2.50 GHz, 8GB RAM (Intel, Santa Clara, CA, USA),
random measuring noises were generated by “normrnd” command and “rand” command
was used to assign the size and sign of a bias. The nonlinear programs of the EM were
solved with “fmincon” command.

5. Results and Discussion

To evaluate the performances of different criteria of the modified EM approach, the OP
and AVTI performances of the DC, PC and PDC for all the four tested cases are compared
as shown in Figure 6.

Figure 6. Performances of data rectification of bias detection criteria of modified EM approach. SMN:
steam metering network; MG: metallurgical grinding; PF: Pai-Fisher; Sw: Swartz.

As Figure 6 shows, PC had higher OP and obviously higher AVTI than DC and PDC,
which shows that the probabilities of random and gross error modes are not feasible to
detect a bias because some variables not contaminated by a bias also have higher probability
of gross error mode. The DC and PDC had the same OP and AVTI except for the bilinear
MG case, where PDC detected a little less bias than DC; whether this was a special case
needs to be investigated in the future, since this work focuses on modifying the original
EM approach for rectifying measurements contaminated by persistent biases.

Because MEM-DC and MEM-PDC had almost the same performances of data rectifi-
cation, MEM-DC was selected to be compared to the original EM approach, as shown in
Table 3. As stated in Section 3.2, PC was used to detect bias for the original EM, because
DC does not work in the situation of persistent bias contaminating measurement, the
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standard deviation of random mode, i.e., σj,1, was enlarged by the bias contaminating the
jth measurement, as shown in Figure 1, and DC based on the 3σ rule cannot detect any bias
from experiences of the authors.

Table 3. The performances of the original and modified EM approaches for the tested cases.

Case Total Biases Method OP AVTI RER Time (s)

SMN 6984
EM 0.1668 3.0030 0.3542 8.3979

MEM-
DC 0.5488 1.4330 0.3628 1.0425

Grinding 6061
EM 0.2153 3.0980 0.4489 7.4701

MEM-
DC 0.6976 1.6590 0.4578 2.0415

Pai-
Fisher

1213
EM 0.2003 0.9990 0.4804 0.6180

MEM-
DC 0.6735 1.0200 0.4838 0.5719

Swartz 2564
EM 0.1998 5.4910 0.7348 7.0294

MEM-
DC 0.6895 2.2480 0.7388 0.7423

As Table 3 shows, the original EM had much lower OP and much higher AVTI than
MEM-DC, which shows that the persistent bias influences not only the standard deviation
of random error mode, but also the probability of random and gross error modes. It is
interesting that the original EM approach had only a little worse RER than MEM-DC, which
shows that the rectified values of both approaches are close to each other. At last, MEM-
DC obviously consumed much less time than the original EM, because fewer parameters
needed to be estimated for the former one.

6. Conclusions

In this work, we analyze the influence of a persistent bias on the estimated standard
deviation of the random error mode for the EM approach and argue that the 3σ rule cannot
be used to detect bias under the occurrence of a persistent bias. A modified EM approach
was devised by estimating the standard deviation of random error mode from process
measurements before the EM iterations. The performances of the modified and original EM
approaches were evaluated and compared through four widely used linear and nonlinear
examples of data rectification, and the results show that the original EM approach cannot
be used to detect persistent biases, while the modified EM can; the modified EM consumes
much less time than the original EM due to the reduction of estimated parameters.

The convergence of the modified EM algorithm is not proved and we will study this in
the future to increase our understanding of the EM approach and to increase the reliability
of the proposed EM approach.
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