
 

Supplementary Materials: Predicting the Potency  

of anti-Alzheimer Drug Combinations Using Machine Learning  

Thomas J Anastasio 

This supplement contains items relevant to the above-referenced article. The article 

describes the results of studies using machine learning to extract the knowledge contained 

in two Alzheimer Disease (AD) databases, and then using that knowledge to predict com-

binations of drugs that could be effective in AD treatment. The study was entirely com-

putational. All computations were performed using MATLAB™ running on Intel Core i5 

computers, operating in parallel over all four cores. This supplement contains information 

that supports the narrative developed in the main text. See main text for references.  
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Supplementary Note N1 

The two AD databases providing data for this study were assembled by the Rush 

Alzheimer Disease Center (RADC) and the National Alzheimer Coordinating Center 

(NACC). Both of them contain data on elderly participants and focus on AD and other 

dementias, but they are distinct nevertheless. NACC contains data from the 29 Alz-

heimer’s Disease Centers (ADCs) that are funded by the National Institute on Aging. 

ADCs are largely tertiary-care dementia centers, and most of the participants already suf-

fered AD or another dementing disease. NACC grew from the Minimal Data Set (MDS) 

initiated at Rush University in 1997, and this format was used to compile data from vari-

ous centers in 1998. As its name implies, the MDS was a brief, 50-item description of ADC 

participants. In 2002 NACC created an improved format for standardized, longitudinal 

clinical evaluations known as the Uniform Data Set (UDS), and a new version of the UDS 

was implemented in 2015. As of 2019, the NACC UDS contains data from over 42,000 

participants, and is one of the largest dementia databases in the world. 

 
RADC records data from the Religious Orders Study (ROS) and the Memory and 

Aging Project (MAP), initiated in 1994 and 1997, respectively. The two are collectively 

known as ROSMAP, and are included together in the RADC database, which now has 

over 3300 participants. ROSMAP is distinct from NACC in several ways. The most im-

portant distinction is that ROSMAP is focused on aging rather than on dementia specifi-

cally. Also, ROSMAP is community based rather than clinically based. Whereas most 

NACC study participants entered as ADC patients and already suffered dementia, ROS-
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MAP participants entered as members of a community whether or not they already suf-

fered dementia. Other differences are that ROSMAP requires an agreement for organ do-

nation but NACC does not, while NACC requires data in the UDS format but ROSMAP 

does not. ROSMAP data are not recorded in UDS format.  

 
Despite their differences, ROSMAP and NACC share essential features. Both are 

based on US cohorts and on studies funded by the National Institute on Aging. Both are 

large, highly regarded, and used by researchers worldwide. Both are concerned with de-

mentia generally and AD specifically. Both record similar data fields: age, demographics 

(sex, race, etc), tobacco/alcohol use, comorbidities, drug use, and the scores on many tests 

of cognitive function. Because NACC encompasses data from 29 ADCs it has many re-

dundant fields; these were removed as part of the preprocessing required to make the 

NACC dataset suitable for machine learning (see main text). Despite that, NACC has 

fewer drug fields than ROSMAP. Nevertheless, the NACC and ROSMAP databases have 

17 drug fields in common. The 100K+ possible combinations of those drugs provide an 

extensive testbed for the comparison of predictions that result from machine learning on 

the datasets contained by the ROSMAP and NACC databases. 

 
ROSMAP data is not included in NACC but RADC is one of the 29 ADCs, and it 

contributed early on to NACC. Specifically, about 1.4% of the NACC dataset is legacy 

RADC data. All RADC data were removed from the NACC dataset for this study. The 

two datasets analyzed in this study are completely independent.  

 
Age is the main AD risk factor, so it was of critical importance in this study for ma-

chines to learn how age was related to all the other variables. Machine learning was car-

ried out on age-advancing sequences of at least ten database entries. Though ROSMAP 

includes many fewer participants than NACC (3300 compared with 42,000; more than an 

order of magnitude fewer) it is more thorough, so the percentage of participants with ten 

or more entries was much higher for ROSMAP than for NACC. ROSMAP has 1086 se-

quences of 10 or more entries for a total of 15,689 entries, while NACC has 2348 sequences 

of 10 or more entries for a total of 26,434 entries. Restriction to age-advancing sequences 

of ten or more entries not only enriched the machine-learning dataset with long sequences, 

but it also served to even out the numbers of entries in the two datasets. The number of 

machine-learning training iterations was twice the number of sequences for either the 

ROSMAP (2171) or NACC (4696) datasets.  

Supplementary Note N2 

The artificial neural networks (ANNs) considered as candidates for the optimal ANN 

for this application had three layers: input, internal, and output. The numbers of units in 

the input and output layers are fixed by the numbers of inputs and desired outputs in the 

dataset used to train the ANN. The internal layer, in contrast, can have many more de-

grees of freedom. The internal layer of the candidate ANNs in this study was composed 

of specialized, compound units known as long short-term memory units (LSTMs). The 

LSTMs received not only forward connections from input units but also recurrent connec-

tions from the other LSTMs in the internal layer. The recurrent connections formed many 

feedback loops between the LSTMs. These external loops could work in conjunction with 

internal loops within LSTMs.   

LSTMs have a complex structure. Each LSTM contains an internal feedback loop. In 

addition, each LSTM incorporates five nonlinear units: an input and output unit and three 

gate units, one each that gates (modulates) the input, output, or internal feedback loop. 

(The input and output units internal to an LSTM are called “in” and “out” in the main text 

for simplicity.) All five units in each LSTM receive both forward and recurrent connec-

tions. Additionally, the three gate units receive peephole connections from the internal 

feedback loop. Thus, recurrent networks of fully featured LSTMs have eight distinguish-

ing characteristics: external loops between LSTMs, internal loops within LSTMs, three 
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gates, and three peepholes. Altogether there are 256 combination of these 8 characteristics. 

An ANN with any one of these 256 combinations is viable in that it can be trained to im-

prove its performance over the dataset. The best configuration for a given application may 

be a simplification of a recurrent network of fully featured LSTMs. That was the case for 

this study: for both the ROSMAP and NACC datasets, the best network had only one of 

these eight characteristics: the input gate (see main text and Supplementary Note N3). 

 

Supplementary Note N3 

The standard genetic algorithm (GA; the GA can take various forms) operates on a 

population of artificial chromosomes, where each chromosome contains multiple genes 

and each gene encodes the value of a property to be optimized. The standard GA involves 

selection from the population according to fitness, and generation of a new population 

through variation via random recombination and random mutation of selected chromo-

somes. The chromosomes in the initial population are random, but the GA improves the 

fitness of the population as it moves it through the generations. The solution of a GA run 

is the fittest chromosome in the final generation. Because of the randomness inherent in 

GAs, the best solution represent the consensus over multiple GA runs.  

 
The standard GA was used to optimize the characteristics of ANNs used to extract 

knowledge from the two AD databases (RADC or NACC). Because the optimal parame-

ters of the machine learning (ML) algorithms used to train ANNs can depend on their 

configurations, the GA optimized ML parameters and ANN characteristics simultane-

ously. The ANNs considered as candidates for this study had three layers: input, internal, 

and output, which had forward connections between them. The internal layer was com-

posed of specialized neural units known as long short-term memory units (LSTMs), which 

could be interconnected with recurrent connections (Supplementary Note N2). The ML 

algorithm used to train recurrent networks with LSTMs is backpropagation through time 

(BPTT). The version of BPTT used here had three parameters: starting and ending learning 

rate and fixed momentum (see main text).  

To use the GA to optimize ANN characteristics and ML parameters simultaneously, 

artificial chromosomes were configured with twelve genes. The first gene specified the 

presence or absence of recurrent loops between LSTMs. The second through eighth genes 

specified the presence or absence of the LSTM features: internal loops, each of the three 

gates, and each of the three peepholes (see Supplementary Note N2). The ninth gene spec-

ified the number of LSTMs in the network. The tenth through twelfth genes specified the 

ML parameters: starting and ending learning rate and fixed momentum. The ANN with 

characteristics and ML parameters as specified by each chromosome was randomized, 

retrained, and retested ten times and the generalization errors were averaged (see main 

text).  

The standard GA (with genetic operators of crossover and mutation) operated on a 

population of 100 chromosomes, each with 12 genes encoding ANN and ML properties as 

outlined above. The GA moved the population through the generations until the average 

decrease in generalization error over several succeeding generations failed to exceed a 

tolerance of 1e3. This always occurred within 100 generations. The GA was implemented 

in parallel using the MATLAB ga command, with the maximal number of generations set 

at 100. Ten GA runs were performed separately for the ROSMAP and NACC datasets, 

producing twenty runs altogether. The results of these twenty runs are shown in Supple-

mentary Table T1.  

The GA results were consistent between the two datasets and the consensus was ob-

vious. The best generalizing ANNs use neither external nor internal memory loops (Ext 

Mem or Int Mem, columns 1 and 2 of Supplementary Table T1). This is less surprising 

than it may at first appear. The external and internal loops mediate memory in the net-

work. Because age is included as an input, the network does not need to infer age from its 

previous unit activations, rendering memory inessential. Because the networks do not 
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make use of the internal memory, the forget gate, which modulates the internal memory, 

and the three peepholes, which provide views onto the internal memory for the three 

gates, are not relevant (NR, columns 5 through 8 in Supplementary Table T1).  

The best generalizing ANNs use either the input gate or the output gate but not both 

(In Gate or Out Gate, columns 4 and 5 of Supplementary Table T1). A minority use neither. 

Slightly more networks use the input gate rather than the output gate so the consensus 

network would use the input gate only. However, in LSTMs lacking internal feedback 

(such as in the consensus network), there is functionally little difference whether the input 

or the output gate is used to modulate the response before it is transmitted from the LSTM 

to the output layer. The average number of LSTMs in the best generalizing ANNs was 

about 80, while the average starting and ending learning rates and the fixed momentum 

were 0.0600, 0.0006, and 0.0002, respectively. All drug combination potency predictions 

were derived from trained ANNs having structure and ML parameters as specified by the 

consensus chromosome. In the consensus ANN, the internal units, which are highly sim-

plified versions of LSTMs, are referred to as compound units (CUs) to distinguish them 

from fully featured LSTMs (Figure 1 of main text).  

 

 Ext Mem Int Mem In Gate Out Gate 
Mem 

Gate 
In Peep Out Peep 

Mem 

Peep  

Num 

LSTM 
LR Start LR  End 

Fixed 

Mom 

 

ROS 

MAP 
0 0 1 0 NR NR NR NR 90 0.0622 0.0006 0.0002 

 0 0 1 0 NR NR NR NR 69 0.0580 0.0004 0.0001 

 0 0 0 1 NR NR NR NR 90 0.0756 0.0007 0.0002 

 0 0 1 0 NR NR NR NR 29 0.0691 0.0009 0.0003 

 0 0 1 0 NR NR NR NR 83 0.0616 0.0006 0.0000 

 0 0 1 0 NR NR NR NR 87 0.0574 0.0010 0.0003 

 0 0 0 1 NR NR NR NR 90 0.0770 0.0007 0.0002 

 0 0 1 0 NR NR NR NR 82 0.0838 0.0007 0.0004 

 0 0 0 1 NR NR NR NR 96 0.0686 0.0008 0.0001 

 0 0 0 1 NR NR NR NR 81 0.0845 0.0007 0.0001 

 

NACC 1 0 0 1 NR NR NR NR 98 0.0557 0.0003 0.0003 

 0 0 0 0 NR NR NR NR 61 0.0297 0.0004 0.0001 

 0 0 0 0 NR NR NR NR 97 0.0471 0.0008 0.0003 

 0 0 0 1 NR NR NR NR 94 0.0938 0.0004 0.0004 

 0 0 1 0 NR NR NR NR 98 0.0917 0.0006 0.0002 

 0 0 0 0 NR NR NR NR 95 0.0341 0.0002 0.0001 

 0 0 1 0 NR NR NR NR 87 0.0704 0.0005 0.0002 

 0 0 0 0 NR NR NR NR 81 0.0350 0.0009 0.0002 

 0 0 0 0 NR NR NR NR 81 0.0305 0.0010 0.0001 

 0 0 0 0 NR NR NR NR 81 0.0302 0.0004 0.0002 

 

Cons 0 0 1 0 0 0 0 0 80 0.0600 0.0006 0.0002 

Supplementary Table T1  

Results of optimization of ANN structure and ML parameters. All optimizations 

were carried out using a genetic algorithm (GA). The table shows the best chromosome 

from each of ten GA runs on either the ROSMAP or the NACC dataset. Each chromosome 

bore twelve genes. The data types were binary for the first eight genes (external and in-

ternal memory; input, output, and forget gate; and input, output, and memory peephole), 

integer for the ninth gene (number of LSTMs), and real for the rest (starting and ending 

learning rate, and fixed momentum). The memory gate and the three peepholes are not 

relevant (NR) because the internal memory is absent in all of the best chromosomes. The 
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consensus chromosome (Cons) is based on the averages of the best chromosomes in round 

numbers.  

Supplementary Note N4  

Creation of the standard input occurred in seven steps. First, an age-advancing se-

quence of 100 ages (non-integer, real numbers) from 50 to 110 years was generated (see 

main text). Second, all input data for all participants in either database were ordered ac-

cording to the age of the participant at the time of each database entry. These ages were 

not uniformly spaced. Third, a vector of uniformly spaced ages, one for every database 

entry, was generated. Fourth, all of the input points in each data field were connected via 

linear interpolation. Fifth, the interpolated data were resampled at the ages in the vector 

of uniformly spaced ages. Sixth, the resampled, interpolated data were digitally low-pass 

filtered below the antialiasing frequency (Nyquist frequency) corresponding to the age-

advancing sequence of 100 ages. Seventh, the filtered input in each data field was 

resampled at the 100 ages in the age-advancing sequence. The fourth through seventh 

steps were accomplished using the MATLAB resample command.  

 

 

Supplementary Figure S1  

The combined cognitive scores as predicted by a single ANN for each age in the age-

advancing sequence for 65 representative drug combinations (every 2000th combination 

selected from the full set of 131,072 combinations of 17 drugs). Each output unit repre-

sented the score of a different cognitive test, so the combined cognitive score was the av-

erage over the output unit activations. The combined cognitive score in the no-drug case 

is shown as a heavy red line. This ANN was trained on the NACC dataset. The results for 

ANNs trained on the ROSMAP dataset are similar (see Figure 2 of main text). For both 

ROSMAP- and NACC-trained ANNs, many drug combinations are associated with 

higher cognitive scores than for no-drugs over most or all of the age range. The main dif-

ference between the ROSMAP- or NACC-predictions is that the predicted scores rise in 

the decade from the 50’s to the 60’s for NACC but not for ROSMAP. This difference likely 
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results because the NACC dataset consists mainly of AD patient entries, and many pa-

tients in their 50’s likely had early onset AD. In contrast, the ROSMAP database consists 

of elderly participant entries, and most of the participants were not demented when they 

entered the Religious Orders Study or the Rush Memory and Aging Project, which pro-

vided the data for the ROSMAP database (Supplementary Note N1).   

 

Supplementary Figure S2 

Regressing ROSMAP on NACC predicted potencies, rather than the other way 

around. Each blue dot locates one of the 131,072 combinations of 17 drugs according to its 

ROSMAP versus NACC predicted potency. To fit a line to the ROSMAP and NACC pre-

dicted potency data, it was necessary to declare one the independent variable (x-axis) and 

the other the dependent variable (y-axis), but that selection is arbitrary in this case because 

the ROSMAP and NACC datasets are completely independent of one another. Figure 3A 

of the main text shows the line resulting from the regression of NACC against ROSMAP. 

Shown here is the line resulting from the regression of ROSMAP against NACC. Although 

the slopes and intercepts of the two lines are different, the orderings of drug combinations 

according to their projections onto the regression line are identical (Supplementary Figure 

S5).  
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Supplementary Figure S3  

Predicting beneficial drug combinations jointly from ANNs trained separately on the 

ROSMAP or NACC datasets for the 65,536 combinations of 16 drugs that exclude the anti-

Alzheimer drugs. (A) Drug combination potencies predicted by ANNs trained on the 

ROSMAP or NACC datasets are strongly correlated. Each blue dot represents one drug 

combination, located by its ROSMAP and NACC predicted potency (r is the correlation 

coefficient, and p is the probability that the correlation occurred by chance). (B) All 65,536 

drug combinations are ranked according to predicted potency (top is highest) and dis-

played as a heat map (yellow, drug present; blue, drug absent). The most beneficial drug 

combinations include antipsychotic and antidepressant drugs.  
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Supplementary Figure S4 

Using either ROSMAP or NACC predictions alone to determine the ten best among 

the 1024 combinations of the 10 drugs that do not include estrogen/progestin or that target 

cognitive ability or mood. The ROSMAP alone and the NACC alone ten-best rankings are 

compared with the ranking based on the regression line giving NACC as a function of 

ROSMAP (NACC(ROSMAP)); note that the ranking based on ROSMAP(NACC) is iden-

tical; see Supplementary Figure S5). The ROSMAP alone and NACC alone top-ten combi-

nations are similar to the NACC(ROSMAP) top-ten in that they all include NSAID and 

lipid-lowering drugs, and most of them include antihypertensive and anticoagulant 

drugs. The drug category labels are abbreviations of the labels shown in Supplementary 

Figure S3.  

 

Supplementary Figure S5 

Drug combination predicted potency rankings based on projections onto the regres-

sion line giving the NACC prediction as a function of the ROSMAP prediction or vice-

versa are identical. The drug combination potencies predicted by ANNs trained either on 

the ROSMAP or NACC datasets are highly statistically significantly correlated (see main 

text), and joint rankings in terms of linear regression proceed most naturally from this 

strong correlation. In the main text, the joint determination was made in terms of the pro-

jections of the ROSMAP and NACC prediction points onto the line resulting from the 

regression of the NACC onto the ROSMAP predictions (NACC as a function of ROSMAP, 

or NACC(ROSMAP)). Because correlation is symmetric, rankings based on NACC(ROS-

MAP) or ROSMAP(NACC) regressions are identical, as shown here for the top-ten jointly 

determined combinations. The drug category labels are abbreviations of the labels shown 

in Supplementary Figure S3. 
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Supplementary Figure S6 

Mean combined cognitive score of ROSMAP participants is not better if they suffer 

comorbidities. The ROSMAP database has nine comorbidity fields: hypertension, cancer, 

diabetes, head injury, thyroid disease, congestive heart failure, vascular disease, heart at-

tack, and stroke. Actual ROSMAP participants reported having 298 of the 512 possible 

combinations of those 9 comorbidities. The blue circle and line at the top of the plot shows 

the mean and standard error of the cognitive scores of ROSMAP participants with no re-

ported comorbidities. The other circles and lines show the mean and standard error of the 

cognitive scores of ROSMAP participants with one or more reported comorbidities in the 

remaining 297 combinations. The red circles show the seven comorbidity combinations 

associated with mean combined cognitive scores that are significantly lower than the 

mean associated with no comorbidities. The gray circles show the 290 comorbidity com-

binations associated with mean combined cognitive scores that are not significantly dif-

ferent from the mean associated with no comorbidities. The statistics were computed us-

ing the Bonferroni correction for multiple comparisons.  
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Supplementary Figure S7 

Mean combined cognitive score of NACC participants is not better if they suffer 

comorbidities. The NACC database has 101 comorbidity fields. Nine of them match or are 

closely analogous to the nine ROSMAP comorbidity fields. Actual NACC participants re-

ported having 110 of the 512 possible combinations of those 9 comorbidities. The blue 

circle and line at the top of the plot shows the mean and standard error of the cognitive 

scores of NACC participants with no reported comorbidities. The other circles and lines 

show the mean and standard error of the cognitive scores of NACC participants with one 

or more reported comorbidities in the remaining 109 combinations. The red circle shows 

the single comorbidity combination associated with a mean combined cognitive score that 

is significantly lower than the mean associated with no comorbidities. The gray circles 

show the 108 comorbidity combinations associated with means that are not significantly 

different from the mean associated with no comorbidities. The statistics were computed 

using the Bonferroni correction for multiple comparisons. 
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Supplementary Figure S8 

Participant/visits reporting use of each drug type as a percentage of participant/visits 

reporting use of anti-Alzheimer (anti-AD) drugs (blue bars, anti-AD drugs are not used; 

red bars, anti-AD drugs are used). Percentages are computed separately for ROSMAP or 

NACC. Anti-AD drug use was about 6% and 27% in ROSMAP or NACC, respectively. In 

both datasets, antidepressant and antipsychotic drugs were used more often when partic-

ipants also used anti-AD drugs. Other drug use was about the same whether or not par-

ticipants also used anti-AD drugs.   


