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Abstract: In order to reduce pollutants of the emission from diesel vehicles, complex after-treatment
technologies have been proposed, which make the fault detection of diesel engines become in-
creasingly difficult. Thus, this paper proposes a canonical correlation analysis detection method
based on fault-relevant variables selected by an elitist genetic algorithm to realize high-dimensional
data-driven faults detection of diesel engines. The method proposed establishes a fault detection
model by the actual operation data to overcome the limitations of the traditional methods, merely
based on benchmark. Moreover, the canonical correlation analysis is used to extract the strong
correlation between variables, which constructs the residual vector to realize the fault detection of
the diesel engine air and after-treatment system. In particular, the elitist genetic algorithm is used
to optimize the fault-relevant variables to reduce detection redundancy, eliminate additional noise
interference, and improve the detection rate of the specific fault. The experiments are carried out by
implementing the practical state data of a diesel engine, which show the feasibility and efficiency of
the proposed approach.

Keywords: diesel engine; fault detection; canonical correlation analysis; variable selection; data-driven

1. Introduction

In recent decades, diesel engines have been widely used in automobiles with cu-
mulatively high fuel efficiency, thermal efficiency, and power. Diesel engines with large
application scales emit various pollutants, especially nitrogen oxides (NOx) and particulate
matter (PM), causing increasingly serious urban air pollution problems [1]. Therefore,
the China VI emission standards have been promulgated and implemented to prevent
environmental pollution caused by vehicle exhaust [2]. Facing these challenges, researchers
in the automotive industry have been continuously working on reducing vehicle emission
through innovative solutions in the areas of advanced engine combustion and exhaust
after-treatment technologies [3,4]. The integrated application of basic emission reduction
technologies, such as diesel oxidation catalyst (DOC), diesel particulate filter (DPF), selec-
tive catalytic reduction (SCR), and ammonia slip catalyst (ASC), can constitute effective
emission reduction solutions. [5]. At present, the main technical route of heavy diesel
vehicles is the efficient SCR scheme (DOC + DPF + SCR + ASC) [2,6]. However, the com-
plexity caused by the integration of various technologies will inevitably lead to frequent
abnormalities and difficulties in terms of detection, which may make the vehicle fail to
meet the aforementioned emission standards in practical applications [7]. Therefore, it is
necessary to conduct research regarding operating status monitoring and fault detection
on diesel engine after-treatment systems, to timely deal with emission faults, and ensure
the latest emission regulations are met.
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With increasingly strict emission standards, many scholars have improved fault iden-
tification methods of emission technologies [8–10]. Liu et al. [9] established a simulation
model of the diesel engine with wall flow ceramic DPF and diagnosis of the blocking
DPF, with an instantaneous exhaust pressure spectrum analysis. Wang et al. [10] proposed
an on-board fault diagnosis and fault-tolerant integrated control method to maintain the
NOx conversion performance of the SCR. However, these studies often focus on a sin-
gle after-treatment technology and use benchmark test data for verification, which has
limitations in practical applications. In addition, remote monitoring technologies have
been studied to realize diesel vehicle emission monitoring and warnings of exceeding
standards. Jhou et al. [11] used the vehicle monitoring system, which integrated with a
wireless network, an on-board self-diagnosis system, and cloud computing technology,
to monitor the dynamic vehicle data in real time and transmit it to the cloud server for
fault diagnosis and analysis. Wang et al. [12] designed a remote monitoring system for
heavy-load diesel vehicles based on big data and a wireless sensor network to monitor
the actual driving cycle. However, the above research simply used the fault code of an
on-board diagnostic system for diagnosis. To the best knowledge of the authors, little
research for diesel engine fault detection, based on the actual operation data accumulated
by an on-board diagnosis system technology and remote emission monitoring technology
have been implemented. Therefore, motivated by the above problems, this paper uses
massive engine status data to extract typical features, and establishes a data-driven fault
detection model, which can, in turn, support the monitoring of diesel engines.

In fact, fault detection methods based on actual data have been widely applied in the
process industry, especially multivariate statistical analysis, mainly including principal
component analysis (PCA), partial least squares (PLS), canonical correlation analysis (CCA),
etc. [13–15]. PCA models focus on extracting the main variance information of process data
and are generally used to remove collinearity [15–17]. PLS is commonly used for quality-
related or key performance indicator-oriented process monitoring [18,19]. Specifically,
as an extension of the PLS method, CCA implements fault detection by describing the
correlation between two sets of process variables, which are suitable for processes with
strong coupling [20–23]. Chen et al. [20] used CCA to extract the correlation of the state data
to establish the residual signal and constructed static and dynamic fault detection methods
for alumina evaporation processes. Jiang et al. [21] proposed a CCA method based on the
representation of positive correlation features, which not only reduced the redundancy in
the feature space, but also verified the effectiveness in terms of the step and slow drift type
faults. Similarly, in the SCR scheme of heavy diesel vehicles, the components of the scheme
are installed closely and interact with each other during operation. The measurement data
have strong correlation and the variables near the fault equipment have abundant fault
information [6]. Based on the above discussion, this work extracts the correlation changes
from the actual operation data via CCA for diesel engine fault detection.

However, the measurement variables that are far from the fault equipment may not
contain valid information for detecting the fault. In addition, due to the atrocious working
environment of diesel engines, the actual measurement signals are usually polluted by
strong noise. Accordingly, a proper selection of variables would be beneficial to improve
the performance during the modeling phase, which will reduce the modeling variables,
reduce the degree of freedom, and eliminate additional noise interference [24,25]. The elitist
genetic algorithm (EGA) is widely used to solve complex optimization problems because it
is not limited to the type of the model. Elitism or elitist selection keeps the best individuals
in each generation, which greatly benefits the convergence of the algorithm. Therefore, the
current study uses EGA to achieve optimal/near-optimal variable selection based on some
frequent fault data. That is, before the CCA detection model is established, the EGA will
be used to optimize the modeling variable subset of a particular diesel engine fault. The
variables of the optimal subset are defined as fault-relevant variables in the article.

Accordingly, this paper proposes a data-driven fault detection method with fault-
relevant canonical correlation analysis (EGA–CCA) for diesel engines. To the best of our
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knowledge, the EGA–CCA scheme has not been applied in the field of diesel engine fault
detection and other fault detection problems. Thus, the main contributions of this work are
highlighted as follows:

1. This paper proposes a novel EGA–CCA scheme for fault detection, in which the EGA
is used to optimize variables for the specific fault conditions for improving detection
performance, while the CCA is used to extract the correlations between variables to
establish a detection model.

2. The EGA–CCA scheme is applied to establish fault detection models with operating
data of the heavy diesel vehicle in practice, which successfully detects three faults in
the air and after-treatment systems of the diesel engine.

2. Process and Problem Description
2.1. Process Description

In this paper, the object of study is a heavy-load diesel engine that integrates tur-
bocharging technology and the SCR scheme to meet the China VI emission standard. Its
air intake system, exhaust system, and after-treatment system are shown in Figure 1. In
the intake system, air enters the engine cylinders through the turbocharger, intercooler,
and intake manifold. In the exhaust system, exhaust gas enters the after-treatment system
through the exhaust manifold and turbocharger. The turbocharger drives the turbine to
rotate and compresses the air by the energy of the exhaust gas to increase the intake air
volume. The air system consists of an intake system and an exhaust system. Additionally, in
the after-treatment system, the DOC converts pollutants of emission to harmless products
by oxidation reactions. The DPF captures PM in the exhaust gas and oxidizes the trapped
particulates to regenerate the particulate trap. The SCR converts NO and NO2 to N2 and
H2O in a lean diesel exhaust environment with the aid of a catalyst and reductant, in which
the reductant is ammonia (NH3) carried in AdBlue [26]. The ASC reduces the unreacted
ammonia in the exhaust gas by catalytic oxidation [2]. The fault detection of the air system
and the after-treatment system is essential, because each link has its own function, and the
failure of each link may cause excessive emission of pollutants.
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Figure 1. Diagram of diesel engine intake, exhaust, and after-treatment systems.

In addition, the operational data of diesel engines is acquired and stored by sensors,
electronic control units (ECU), controller area networks, and on-board diagnostic systems.
As shown in Figure 1, the measurements include inlet pressure (P1), inlet pressure, and
temperature after the intercooler (P2 and T1), upstream NOx content (NOx

1), upstream
temperature of DOC (T2), upstream temperature of DPF (T3), differential pressure of DPF
(∆P), upstream and downstream temperature of SCR (T4 and T5), downstream NOx content
(NOx

2), etc. For instance, the actual measurements of P1,P2,T4,T5 are shown in Figure 2.
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The abscissa intervals represent 300 samples, which sampled every second. It can be seen
that the actual operating data of diesel engines have strong correlation and are interfered by
noise, which will lead to unsatisfactory detection performance if monitored by conventional
methods.
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2.2. Faults in the Air and after-Treatment Systems

In this paper, three kinds of high frequency faults of air systems and after-treatment
systems are discussed, which include excessively low AdBlue consumption of SCR (i.e.,
Fault 1), excessive carbon load of DPF (i.e., Fault 2), and excessive pressure deviation of
turbocharger (i.e., Fault 3).

Fault 1 means insufficient injection of ammonia, which would result in low conversion
efficiency of NO and NO2, and further makes NOx emission substandard [10]. The fault
may be caused by the blockage and leakage of the pipeline in the after-treatment system and
the blockage or damage of the urea pump or nozzle. There are limitations in the traditional
methods of fault determination, which depend on the percentage of urea consumption
and fuel consumption. Fault 2 is easy to cause the occurrence of the plugging fault. When
the engine is running at a high speed and the exhaust volume is large, the fault causes the
displacement of the DPF carrier and liner, and even the phenomenon of the liner rupture
and DPF carrier perforation. Currently, DPF pressure drop is used to estimate carbon
load [9]. However, exhaust gas flow and the temperature of DPF also carry efficient fault
information in actual vehicle operation. Fault 3 will lead to insufficient oxygen content in
the intake system and inadequate fuel combustion, which causes the emission of pollutants
and economic loss. It is usually detected when pressure deviation goes beyond limits.
Based on the above discussion, the current detection methods for the three kinds of faults
do not make full use of the information of the actual measurement variables. Therefore,
this paper will introduce the canonical correlation analysis method to carry out data-driven
fault detection research on the three faults.

3. Fault Detection Scheme Based on Optimal Selection of Fault-Relevant Variables

In this section, we propose a novel fault-relevant feature selection method based on
the high-dimensional operational data of the diesel engine. In this method, the optimal
variables are selected and the correlation among them is analyzed for fault detection.
The general framework and the details of the proposed method will be discussed in
the following.

3.1. The Framework for Optimal Selection of Fault-Relevant Variables

The framework of the proposed data-driven fault detection method is shown in
Figure 3, which includes the selection of process variables, construction of the sub-model,
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optimization of variable selection, and test of the optimal sub-model. The selection of
process variables forms the fault-relevant variable subsets by randomly selecting the
training variables. The fault-relevant variable is defined as the variable that can provide
useful information for detection modeling and the number of sub-models, defined as P.
The construction of the sub-model establishes CCA fault detection sub-models based on
the fault-relevant variable subsets, and uses the fault data in the training set to evaluate the
performance of sub-models. The optimization of variable selection uses the EGA method to
optimize the subset of fault-relevant variables until obtaining a suitable optimal sub-model.
Finally, the optimal sub-model is tested with the corresponding data in the testing set,
according to the fault-relevant variables of the optimal sub-model, which can obtain the
final fault detection results.
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3.2. CCA-Based Fault Detection Method

As a standard multivariate analysis method, canonical correlation analysis is widely
used in data-driven multivariate statistical monitoring. To be specific, for the N dimensional
normalized input and output data vectors, or two measurement vectors
U = (u1, u2, · · · , uN) ∈ Rl×N and Y = (y1, y2, · · · , yN) ∈ Rm×N , where l and m are
the number of variables dimension in u and y, the CCA generate residual signals by an-
alyzing the correlation between them [22]. It seeks to acquire two canonical vector sets
J ∈ Rl×k and L ∈ Rm×k such that correlation coefficients between JTU and LTY can be
maximized. The objective function with arguments J and L is formulated as Equation (1)

(J, L) = argmax
JTΣUY L

(JTΣU J)
1
2 (LTΣY L)

1
2

(1)

A standard way to solve the optimization problem Equation (1) is given below. Per-
forming a singular value decomposition on matrix K gives

K = Σ−
1
2

U ΣUYΣ−
1
2

U = RΣVT (2)

with
R = [r1, r2, · · · , rl ] ∈ Rl×l

V = [v1, v2, · · · , vm] ∈ Rm×m

Σ = [
Σk 0
0 0

]
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where Σk = diag(λ1, · · · λk), k ≤ min(m, l) with λ1 ≥ λ2 · · · ≥ λk arranged in descending
order. The λi(i = 1, 2, · · · , k) represent the canonical correlation relation between U and Y.
The corresponding canonical correlation vectors are derived according to

J = Σ−
1
2

U [r1, r2, · · · , rk] ∈ Rl×k

L = Σ−
1
2

Y [v1, v2, · · · , vk] ∈ Rm×k
(3)

Based on these properties, the residual signal for fault detection is generated in the
following form:

r = JTu− ΣLTy (4)

Thus, the T2 statistic can be developed based on CCA as

Tr
2 = rTΣ−1

r r (5)

where Σr = Il − ΣΣT .
Note that the statistical framework of hypothesis testing is used for determining

whether a fault exists in a process. A measurement model is formulated as Equation (6)

r = f + ε ∈ Rn (6)

where ε ∈ N (0, Σ) and Σ is the actual covariance matrix; f implies the fault. The χ2 is a
basic statistic constructed as follows:

χ2 = rTΣ−1r ∼ χ2(n) (7)

In the data-driven framework, the covariance matrix Σ is the estimated value in the
case of sufficient data volume, which replaces the actual value. So χ2 statistic becomes T2

statistic for multivariate statistical fault detection.
Therefore, the control limits T2

th can be determined by the upper bound of T2 statistics
at level of significance α, that can be formulated as Equation (8)

T2
th = χ2

α(n) (8)

where χ2
α(n) is the value of the Chi-square distribution at α level of significance with n

degrees of freedom.
Then the fault detection logic can be formulated as{

T2 < T2
th

∣∣⇒ faulty− free
T2 > T2

th

∣∣⇒ faulty
(9)

which means the fault would be detected by the statistics model when the value of T2

exceeds T2
th.

Besides, the threshold T2
th of T2 test statistic is a constant that only depends on signifi-

cance α and freedom degrees n. The measurements model with different noise levels as

ra = f + εa
rb = f + εb

(10)

where εa ∈ N (0, Σa) and εb ∈ N (0, Σb).
Under the condition that Σa < Σb and T2

tha = T2
thb = χ2

α(n), it becomes evident that

f TΣ−1
a f > f TΣ−1

b f (11)

Hence, compared to T2
thb = rT

b Σ−1
b rb, T2

tha = rT
a Σ−1

a ra can provide better fault
detectability.
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Tr
2 test statistic of this paper realizes optimal fault detection with a given significance

level.
In addition, fault detection rate (FDR) and false alarm rate (FAR) are two important

indicators for evaluating the performance of fault detection methods. For the T2 statistics
of CCA model, the statistical definitions of FDR and FAR are expressed by Equation (12).
Among them, prob{·} refers to the probability.

FDR = prob
{

T2 > T2
th

∣∣faulty
}

FAR = prob
{

T2 > T2
th

∣∣faulty− free
}
= α

(12)

The CCA can be used to extract the correlation between the actual state data of diesel
engines and realize the fault detection. However, the fault of the air system and after-
treatment system usually only affect the parameters of the front and rear components and
the final emission index in practice. When all of the variables are involved in the detection,
the Chi-square distribution will have a large degree of freedom, and the control threshold
will be relaxed, thereby limiting the fault detection effect. Therefore, it is the key to reduce
the degree of freedom by selecting the fault-relevant variables and eliminate unfavorable
information to increase the accuracy of specific fault detection.

3.3. The Optimal Selection of Fault-Relevant Variables with EGA

To solve the problem formulated above, EGA–CCA is proposed, which uses EGA to
select the fault-relevant variables and realize the variable optimization of CCA models.
Specifically, EGA needs to construct a fitness function as the optimization objective. As
shown in Equation (13), FDR is defined as the fitness function for EGA optimization, which
is a major performance indicator of fault detection. Notably, variables that are affected
by faults and contain useful information for fault detection are defined as fault-relevant
variables (FRVs). Variables that are not affected by faults and cannot provide effective
information for fault detection are defined as fault-irrelevant variables in this paper.

maxFDRFRVs =
NF,F,FRVs

NF

s.t. FAR =
NN,F
NN
≤ α

(13)

where FDRFRVs is the detection rate of FRVs sub-model; NF,F,FRVs is the number of fault
samples detected in the FRVs sub-model; NF is the number of fault samples; NN,F is the
number of normal samples considered to be faulty; NN is the number of normal samples; α
is the significance level. The FDR of the fault can be maximized by searching FRVs subset
for optimizing the fitness function.

For a given training data set, the EGA method divides the variables into a subset of the
fault-relevant variables and a subset of the fault-irrelevant variables through the following
steps. The corresponding optimization process is shown in Figure 4.

Step 1: Define chromosomes. Generally, the variables are encoded by genes in the
chromosome, and the value of a gene indicates the corresponding variable is selected or
not. A chromosome can be designed as A = [ 1 0 1 · · · 1 ] ∈ R1×(l+m), where
‘1’ represents selecting the corresponding variable and ‘0’ represents not. As an example,
“01010000” indicates that only the second and fourth variables are selected and included in
the detection model while the remaining 6 variables are not.

Step 2: Calculate fitness values. The subset of fault-relevant variables can be expressed
based on the initial population. Then, the CCA method is performed with subset data of
FRVs, respectively. Finally, the training fault data set is used to calculate the FDRFRVs of
each model as the fitness value of each chromosome.

Step 3: The parental generations produce offspring through selection, crossover, and
mutation, and then calculate offspring fitness values, like in Step 2.

Step 4: The elitist selection is achieved by retaining the chromosomes with larger
fitness values through comparing the fitness values of the parents and progeny species in
the population.
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Step 5: Repeat steps 2, 3, and 4 until the maximum fitness value is obtained or
the termination condition is met. In the end, the “1” gene of the best individual in the
chromosome represents the fault-relevant variables.

The above steps are the concrete implementation of the EGA–CCA scheme proposed
in this paper. The proposed method can eliminate the non-beneficial information variables
and only select the fault-relevant variables to establish the optimal CCA analysis model for
specific faults via EGA.

4. Experiment and Analysis
4.1. Data Description and Analysis

The fault detection performance of the above method (implemented with MATLAB
R2019a) was verified in 1-year practical running data of a vehicle diesel engine. The
dataset has 86-dimensional measurements, including engine air system relevant variables,
after-treatment system relevant variables, and fault codes; the key measurements can be
found in Figure 1. In order to obtain the appropriate training data set for better modeling
performance, it is necessary to preprocess the raw data. The pipeline with the pre-treatment
operations of the data is shown in Figure 5, which includes the main four parts as follows:

(1) Cleansing: the Boolean variables, fault codes, and unsatisfactory variables for which
the ratio of null exceed over 50%, would be filtered out. Moreover, the null and
outliers in the remaining variables would be deleted as well.

(2) Filtering: the significant noise will be filtered by the moving the average method.
(3) Resampling: the uniform sampling is selected to obtain appropriate modeling and

test data sets.
(4) Standardization: the original data subtract the mean and divide by the standard

deviation to obtain normally distributed data, with a mean of 0 and standard deviation
of 1, which makes different variables have the same weighted influence on the model.
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Through the above pre-treatment operations of the data, a 30-dimensional candidate
variables X = (x1, x2, · · · , x30)

T for diesel engine fault detection is obtained and shown
in Table 1. It includes speed, torque, exhaust gas flow, exhaust gas pressure, temperature,
pressure, differential pressure of DPF, and other key signals, which consist of the latent
operating condition information of the diesel engine.

Table 1. Candidate variables of the diesel engine.

Candidate Variables Variable Meaning Candidate Variables Variable Meaning

x1 Exhaust gas flow 1 x16 Actual value of intake pressure

x2 Engine torque x17
Closed-loop control deviation of
supercharging pressure

x3 Intake pressure after the intercooler x18
DPF observation model carbon load Carbon
load of DPF observation model

x4 Intake temperature after the intercooler x19 Differential pressure of the DPF (filtered)

x5
Calculated value of the intercooler cooling
efficiency x20 Exhaust volume flow

x6 Filter value of the intercooler cooling efficiency x21 Mass flow of NOx

x7
Lower limit of particulate matter differential
pressure x22 Pressure of urea pump

x8 Rotating speed x23 Urea level

x9 Upstream NOx x24
Downstream temperature of selective catalytic
reduction (SCR)

x10 Downstream NOx x25 upstream temperature of SCR

x11
Upstream temperature of the diesel
oxidation catalyst x26 Urea temperature

x12
Upstream temperature of the diesel particulate
filter (DPF) x27 Throttle opening

x13 Differential pressure of the DPF (unfiltered) x28 Urea injection quantity
x14 Exhaust gas flow 2 x29 Duty ratio of urea pump
x15 Fuel-injection quantity x30 Speed

In addition, the correlation analysis is performed on the 30-dimensional candidate
variables of the diesel engine to obtain the heat map of the correlation coefficient, as shown in
Figure 6. The darker the color of the small squares, the stronger the correlation between the
horizontal and vertical variables. From Figure 6, it can be seen that there are plenty of red and
dark blue squares, which implies the actual data of the diesel engine has strong correlation.
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4.2. Experimental Settings

For every fault studied in this paper, the fault detection model is established with 3000
samples of non-fault training data. The fault training data with 1000 samples is used to
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calculate the fitness value of the sub-model, and the final model detection performance
is verified with another 1000 samples of fault testing data. Each dataset contains 30-
dimensional candidate variables, as shown in Table 1. CCA-based fault detection of diesel
engines establishes a fault detector for a specific fault using variables with greater influence
of fault included in Y and the remaining candidate variables included in U. The details of
U and Y about the three faults are shown in Table 2, and the Tr

2 is T2 test statistic.

Table 2. The CCA-based modeling variables for diesel engine fault detection.

Fault No Candidate Variables U Candidate Variables Y

1 x1, x3, x4, x5, x6, x7, x11, x12, x13,
x14, x16, x17, x18, x19, x20, x21, x27

x2, x8, x9, x10, x15, x22, x23,
x24, x25, x26, x28, x29, x30,

2 x1, x3, x4, x5, x6, x7, x9, x10, x11, x15, x16,
x17, x21, x22, x23, x24, x25, x26, x27, x28, x29

x2, x8, x12, x13, x14,
x18, x19, x20, x30

3 x1, x7, x9, x10, x11, x12, x13, x14, x15, x17, x18,
x19, x20, x21, x22, x23, x24, x25, x26, x28, x29

x2, x3, x4, x5, x6,
x8, x16, x27, x30

In addition, the significant level α is 0.05 in the CCA fault detection model. Moreover,
the parameter values of the elitist genetic algorithm in this study are shown in Table 3.
Specifically, the crossover operator in the EGA method chosen in this paper is the classic
single-point crossover operator, in which the crossover rate is set as 1. Mutation operation
produces a random number at each gene site in the crossover offspring. If the number is
less than the mutation rate 0.01, the bit is reversed; otherwise the bit remains the same.

Table 3. Parameters of the EGA model.

Parameter Variable Value

Chromosomal Gene 30

Population Size 50

Iterations 300

Crossover Rate 1

Mutation Rate 0.01

4.3. Experimental Results and Analysis Based on EGA–CCA

In order to verify the effectiveness of the method proposed in this paper, we use
four methods to detect the three faults mentioned above. The CCA is compared with
the conventional PCA. The EGA–PCA scheme is formed by replacing the CCA method
in the EGA–CCA scheme with PCA. The CCA model is established by the formula in
Section 3.2, whose FDR is that the number of samples ( T2 > T2

th

∣∣ f aulty ) divided by total
fault testing samples. The EGA–CCA and EGA–PCA schemes are used to find the subsets
of fault-relevant variables of sub-models, respectively. Every iteration uses the selected
variables to establish a fault detection sub-model based on training data. The 1000 samples
of fault training data for each fault are used to calculate the FDR of the sub-model as the
population fitness value. Then, the modeling variables are optimized according to the steps
in Section 3.3. The optimization results are obtained and the fault-relevant variable models
are established.

Here, the full PCA/CCA fault detection model denote PCA/CCA model that use all
of the candidate variables. The detection results of full PCA are shown in Figure 7, and the
detection results of full CCA are shown in Figure 8. The abscissa of the statistical graph
represents the sample, and the ordinate represents the statistical value. Figure 7a shows the
detection result of full PCA for Fault 1, and Figure 8a shows the detection result of full CCA
for Fault 1. Comparing the two figures, we find that the detected points are increased and
the non-detected points are decreased. The CCA method can successfully detect most fault
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points of Fault 1, but the PCA method cannot detect them. Similar results are found for
Fault 2, as shown in Figures 7b and 8b. Moreover, the fault points not detected by the CCA
method concentrate in the 50–250th samples. The detection results of full PCA and CCA
for Fault 3 are presented in Figures 7c and 8c respectively, from which the non-detected
points still account for the majority, and the detection performance of the CCA method is
not significantly improved for Fault 3.
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Figure 7. PCA-based fault detection results for (a) Fault 1, (b) Fault 2, and (c) Fault 3.
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Figure 8. CCA-based fault detection results for (a) Fault 1, (b) Fault 2, and (c) Fault 3.

The results show that the CCA method can extract the correlation of the actual run-
ning data and realize the fault detection of the diesel engine. However, the detection
effectiveness needs to be further improved. In fact, in actual industrial production, only
using all candidate variables to model and extract abnormal correlation changes cannot
detect specific faults completely. For a specific fault, if there is enough fault data for the de-
velopment of the detection model, the non-useful information variables can be eliminated
by optimizing the subset of fault-relevant variables to improve the accuracy and sensitivity.
The optimal sub-model established for the specific fault based on the EGA–CCA scheme
can do this.

Specifically, the EGA–CCA and EGA–PCA schemes are applied to optimize fault-
relevant variables of the three faults. Additionally, the optimization of EGA–PCA and
EGA–CCA schemes for Fault 3 are shown in Figure 9, in which the red lines denote the
fitness convergence, and the blue bar charts represent final subset of the fault-relevant
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variables. Both the initial fitness value and the optimized fitness value of the EGA–PCA
scheme are smaller than that of the EGA–CCA scheme. For the three faults, the optimal
fault-relevant variables XFRVs by EGA–PCA and the optimal results UFRVs, YFRVs with
EGA–CCA are shown in Table 4, which mean that the number of modeling variables in the
optimal sub-model are less than that of the full model. The figures and tables show that
the optimization of fault-relevant variables reduces the dimension of modeling variables,
and can improve the final fault detection performance.
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Figure 9. The results of variables optimization for Fault 3 (a) EGA– principal component analysis (PCA), and (b) EGA–CCA.

Table 4. Optimized results of fault-relevant variables.

Fault No. EGA–PCA XFRVs EGA–CCA UFRVs EGA–CCAYFRVs

1 x2, x4, x7,
x9, x14, x19, x24

x1, x5, x7, x17,
x19, x20, x21, x27

x2, x9, x10, x15,
x24, x26, x28, x30

2 x2, x3, x6, x8, x14, x15, x16, x18
x19, x21, x23, x24, x26, x28, x29

x1, x3, x4, x5, x6, x10,
x11, x16, x24, x25, x26, x28

x2, x8, x14,
x18, x19, x20, x30

3 x2, x7, x9,
x12, x14, x24, x26

x9, x12, x14,
x20, x24, x28, x29

x2, x3, x5, x6,
x8, x16, x30

The detection results of the EGA–PCA scheme are shown in Figure 10, and the
detection results of the EGA–CCA scheme are shown in Figure 11. Figure 10a shows the
PCA detection result using the optimal variables of Fault 1, from which the PCA model after
variables optimization can detect more fault points than the full PCA. Figure 11a shows the
CCA detection result using the optimal variables of Fault 1. By comparing Figure 8a with
Figure 11a, the detection performance has been significantly improved with EGA–CCA.
As shown in Figures 10b and 11b, Fault 2 has similar results. Moreover, Figure 11b shows
the EGA–CCA scheme can successfully detect the 50–250th fault samples that cannot be
detected by other methods. The CCA detection result of Fault 3 using optimal variables
is shown in Figure 11c, which shows Fault 3 is successfully detected by the proposed
EGA–CCA method. In general, it is intuitively found from the T2 statistical detection
graph that the proposed method can extract the characteristics of diesel engine data and
provide the optimal detection effectiveness. For Figures 7 and 10, it is noteworthy that the
EGA–PCA scheme significantly reduces the number of modeling variables associated with
statistical thresholds, so the statistical thresholds of PCA and EGA–PCA are significantly
different. While for Figures 8 and 11, the statistical thresholds of CCA are calculated by
T2

th = χ2(n), which depends on the dimension n = min(l, m) of residual, so the statistical
threshold is similar between them.

For performance evaluation of fault detection methods, the higher the FDR is, the
better the performance of the corresponding method will be. Table 5 lists the FDR of
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the four methods discussed in this paper for the three faults, which shows that the CCA
method can detect Faults 1 and 2, which cannot be detected by the PCA method. For Faults
1 and 2, the FDR of CCA are 88.4% and 89.3% respectively. In addition, the EGA stochastic
optimization scheme improves the detection quality. The proposed EGA–CCA scheme
generally provides the best detection results for the considered three faults. The FDR of
Faults 1, 2, and 3 are 99.3%, 99.9%, and 94.1% respectively, and the detection performance
is satisfactory.
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Figure 10. EGA–PCA based fault detection results for (a) Fault 1, (b) Fault 2, and (c) Fault 3.
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Figure 11. EGA–CCA based fault detection results for (a) Fault 1, (b) Fault 2, and (c) Fault 3.

Table 5. The fault detection rate (FDR) of the four methods.

Fault No.
Methods

PCA EGA–PCA CCA EGA–CCA

1 2.1% 62.2% 88.4% 99.3%

2 47.2% 72.6% 89.3% 99.9%

3 38.5% 46.4% 46.2% 94.1%

The experimental results show the CCA method can be used to detect the diesel engine
faults with the operation data in practice. Moreover, the CCA method characterizes the
correlation residual statistic to construct the detection model, which improves the detection
rate of the three diesel engine faults. The optimal models of specific faults are established
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by optimizing subsets of fault-relevant variables with EGA–CCA, which further improves
the detection accuracy and sensitivity. Therefore, this methodology can be used to alert the
vehicle operator in case of failure of air and after-treatment systems in emission exceeding
the legal limits.

5. Conclusions

In the present study, an EGA–CCA scheme is proposed for realizing high-dimensional
real data-driven diesel engine fault detection, which has certain practical application
significance. The use of operation data overcomes the limitations that most state-of-the-art
detection methods for diesel engines are based on, e.g., bench test data and simulation
data. The strong correlation of the actual data of the diesel engine is characterized for fault
detection via the CCA method. According to the significant influence of variable selection
on detection performance, variables with non-beneficial information are eliminated by
fault-relevant variable optimization based on EGA, which provides optimal detection
performance for specific faults. The experimental evaluation for the EGA–CCA scheme
is carried out based on actual data sampled during 1 year of a diesel engine. The results
show that the proposed approach improves the fault detection rate effectively, and presents
feasibility and effectiveness.
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