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Abstract: As an easily adapted culture, with overloaded production in some parts of the globe, ap-

ples and their by-products are being redirected to pharmaceutical, canning and beverages indus-

tries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioa-

vailability of bioactive compounds found in apple, by impacting, through a high degree of changes, 

the product’s properties, including composition and health-promoting attributes, as well as their 

sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and 

healthy products by the consumers. Recently, contributions to human health, both in vivo and in 

vitro studies, of non-alcoholic fermented apple-based products have been described. This review 

highlighted the advances in the process optimization of apple-based products considering vinegar, 

cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on 

physical-chemical, nutritional and sensory profiles of these products are also presented. Addition-

ally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple 

spirits are illustrated. New trends of fermented apple-based products applicability in tangential in-

dustries are summarized.  

Keywords: apple pomace; cider; vinegar; probiotic beverage; spirit; alcoholic fermentation; malolactic 

fermentation; acetic fermentation  

 

1. Introduction 

Apple species belong to the genus Malus of the Rosaceae family, and thousands of 

cultivars are grown all around the world. This is in fact one of the most important eco-

nomic fruit species, according to the Food Agriculture Organization (FAO). The last avail-

able statistics from FAO are for the year 2018 and they report that at worldwide level the 

area for apple cultivation was 4904 thousand ha with a total production of 86,142 thou-

sand tones, representing a trade value of around 8 billion US$ [1–3]. 

Apples are extensively consumed in all countries around the world, being very pop-

ular because of their appreciated taste, juiciness, color, texture and nutritional contribu-

tion. Additionally, they have a good preservation capacity, they are available year-round 

in markets, at relatively low prices and they are seen as a healthy food [4–7]. Besides being 
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consumed fresh, apples can also be transformed into many different kinds of apple prod-

ucts, according to the processing technology used [1]. Some of these apple products in-

clude juices [8,9], dehydrated [10–13], canned [1,14] or purées [15,16]. Additionally, other 

apple products are obtained through fermentation processes, such as probiotic fermented 

apple juices [17–19] and cider [20–22], or fermented products obtained from apple pomace 

generated as industrial by-products [23–26].  

Fermentation is a process of transforming one substance into another, carried out by 

microorganisms, such as bacteria and fungi, under certain circumstances, and which can 

occur under aerobic and/or anaerobic conditions. The specific product resulting from a 

certain fermentation process is determined by the type of microorganism, the processing 

conditions, and the substance in which the fermentation takes place [27,28]. A successful 

fermentation process depends on four basic points: the microorganism or microorganisms 

used, the culture medium, the way of conducting the process and the stages of product 

recovery [29–31]. Care must be taken to ensure good compatibility between the microor-

ganism used and the culture medium, in order to promote the conditions for the microor-

ganism to perform the necessary metabolic functions and thus obtain the desired result. 

If all these factors are adequately controlled, the growth of the microorganisms will be 

highly effective and in this way the product synthesized will be of good quality and the 

production yield will be satisfactory. Among the processing conditions that must be con-

trolled for effective fermentation to take place are the pH, temperature, humidity, aeration 

(in the case of aerobic fermentation), medium bed thickness and agitation speed [32–35]. 

Apples are recognized as providing a high amount of bioactive compounds with 

health promoting benefits. They are major dietary sources of flavonoids, being particu-

larly rich in the flavonol quercetin and its derivatives [36], which are bioactive compounds 

object of several studies that confirm their antioxidant [37], anti-inflammatory [38] and 

antimicrobial [39] properties, as well as antidepressive [40] and anticarcinogenic [41,42] 

effects. Additionally, these compounds also protect against arteriosclerosis [43], diabetes 

[44], and neurodegenerative [45], cardiovascular [46] and oral [47] diseases [48]. Other 

studies have demonstrated that apple compounds like phenolic acids [49], flavonols, 

flavones and anthocyanins [50], triterpenoids [51], pectin and pectic oligosaccharides [52] 

and apple polysaccharides [53] have a beneficial effect on colorectal cancer and intestinal 

inflammation [5]. However, the concentrations and type of bioactive molecules present in 

apples can vary noticeably according to species and cultivar, and depends on the climatic, 

agronomic, harvest and postharvest conditions as well as food processing operations and 

storage [36,54]. 

The operation of fermentation has a strong impact on the product’s properties, 

promoting a high degree of changes, some of them related with composition and 

nutritional value, others with organoleptic properties and others related with the effects 

on the human body, namely by impacting the bioactive compounds or by adding 

probiotic bacteria. A great deal of fermented food products acquire, through the action of 

the bacteria present, characteristics that improve their health effects. The study by Peng et 

al. [17] analyzed the properties of fermented cloudy juices obtained from different apple 

cultivars, and they observed important changes in the chemical composition, sensory 

profiles as well as bacterial counts, according to the cultivar. In the work by Roberts et al. 

[18] it was postulated that fermented apple juice could be successfully used as a functional 

food, which is particularly suitable for consumers who seek for non-dairy probiotic 

beverages.  

The objective of this review was to highlight the most recent developments in the 

field of fermented apple products, including products such as, for example, vinegar, cider 

and pomace. For this, different fermented apple products were selected to focus from 

different points of view, namely, the technological aspects related with their preparation, 

including the fermentation process, but also focusing on the properties of the products, 

like for example physical-chemical properties or sensorial properties, and finally the 

health effects of fermented apple products. 
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2. Methodology  

The methodology that was followed in the elaboration of this review included, in a 

first step, the selection of the topic to be addressed. For this, a previous search was 

conducted on the literature to evaluate whether such a review had already been 

undertaken, which demonstrated that this was a field in which it would be suitable to 

gather in a review paper the information available scattered around the scientific 

literature. After establishing the study subjects, a search was conducted on the following 

scientific databases: Web of Science, Science Direct, Scopus, DOAJ, Medline and Pubmed, 

by selecting appropriate keywords. Some criteria of inclusion were established for each of 

the read articles based on the relevance for the particular aspects focused on in this review, 

with the publication date being as recent as possible.  

The bibliographic sources used for this review were analyzed using the software 

VOSviewer, resulting in the diagram presented in Figure 1, which resulted from the 

analysis of co-occurrence links between keywords, considering those keywords that 

appeared at least twice. In Figure 1, the size of the circles and the corresponding label 

represent the number of keyword occurrences, while the relations between the keywords 

are given by the proximity of circles/labels, and were established according to the number 

of sources in which those keywords occurred jointly [55]. The results in Figure 1 indicate 

that the most relevant keywords were cider (24 occurrences), fermentation (20), volatile 

compounds (14), polyphenols (13), quercetin (13), humans (13), apple pomace (11) and 

lactic acid bacteria (10). 

 

Figure 1. Analysis of co-occurrence links between keywords, selecting those that occurred at least twice. 

3. Fermentation Technology Applied to Apple Products 

Fermented apple beverages are very common in different countries around the world 

with some specificities. According to Figure 2, it is possible to produce many different 

products from apple using a fermentation process. Many of the products can be obtained 

directly from the fruit or the juice, while others are produced from apple pomace, which 

is the solid residue obtained after juice, cider, jam and vinegar production. This byproduct 

can be used as a raw material in many other food products, improving their commercial 

value and health benefits [56]. 



Processes 2021, 9, 223 4 of 27 
 

 

 

Figure 2. Fermented apple products. 

3.1. Apple Pomace 

Fruits that do not present good quality for consumption in natura generate large 

amounts of residues, composed of peel and pulp (95%), seeds (2% to 4%) and stems (1%) 

[57]. Apple pomace can be used as raw material in other food products, like for example 

apple pomace spirits [58], or used as a source from which to extract valuable components, 

such as pectin [59], aroma compounds [60], edible fibers [61,62], and antioxidant 

polyphenols [63], or to obtain protein-enriched feeds [64], to synthesize pectolytic 

enzymes [65], or to produce natural aroma compounds by fermentation [66].  

The nutritional composition of apple pomace differs according to the fruit variety 

used in the industrial process and the juice extraction processes applied. Despite the 

above-mentioned differences, this residue presents high moisture content, high amount 

of carbohydrates such as cellulose, hemicellulose, lignin and simple sugars (glucose, 

fructose, and sucrose), small amounts of minerals, proteins, vitamins, besides being a 

natural source of pectic substances [67–69]. 

Given its nutritional value, apple pomace has been used for fermentation, mainly 

solid-state fermentation, because it contains all the nutrients necessary for the 

microorganisms to grow. 

Apple pomace extract was used as a carbon source in an aerobic-fed batch process 

[70] for the production of baker’s yeast. The results of this work showed that the dough-

raising capacity of the baker’s yeast grown on the apple pomace extract was kite the same 

as that of commercial yeast, so, apple pomace extract could be used as a substrate 

providing carbon for baker’s yeast production. 

Wang et al. [71] studied the applicability of apple pomace as a natural stabilizer to 

increase the consistency and cohesiveness in yoghurt fermented with a mixture of 

Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. 

Given that apple pomace contains approximately 84.7% carbohydrate, 5.6% starch, 

and 54.2% total sugar [72], it could also be used in the production of alcoholic beverages 

or flavorings. Ricci et al. [73] in their studies concluded that the fermented apple pomace 

could be used as beer flavoring. In this case, the applicability of fermented apple pomace 

induced a more complex aroma profile, making it a viable option to aromatize alcoholic 

beverages, such as beer. Cider is mainly produced directly from the apple fermentation, 
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as mentioned above; however, according to Li et al. [74], apple pomace can be added to 

this beverage as a fruity flavoring. Additionally, Madrera et al. [75] in their study 

concluded that fermented apple pomace can be used as a natural flavoring in beverages. 

Apple pomace is also used to produce alcoholic beverages. The pomace spirits could 

be produced by fermentation of apple pomace with their indigenous microflora followed 

by a subsequent distillation [76], or by adding commercial yeasts. Madrera et al. [58] made 

apple spirits from dry apple pomace and the yeast strains used in this process were 

Saccharomyces cerevisiae, Hanseniaspora uvarum and wine dry yeast with ß-glucosidase 

enzyme [58]. The spirits were distilled twice, until an alcohol strength of 60% (v/v). In this 

case, it is very important to pay attention to the methanol content in the final beverages 

given the higher amount of pectins in the raw material [77].  

3.2. Cider 

The specific definition of cider is country dependent. In some countries where the 

cider production dates back centuries, cider definition and labelling is well defined, while 

in other countries, such as Eastern European countries, where the latest statistics place 

cider as the fastest growing market [78], the regulation is still adapting. According to 

European Cider and Fruit Wine Association, cider may be defined as an alcoholic 

beverage obtained exclusively by the complete or partial fermentation of fresh or 

concentrate apple juice. Apple cider alcohol content may vary within the range of 1.2–

8.5% of alcohol by volume (ABV), and should maintain the character of the fermented 

apple juice. On the market there are also reduced-alcohol ciders, such as alcohol-free cider, 

containing less than 0.5% ABV, and low-alcohol cider, with alcohol content between 0.5 

and 1.2% ABV. Among modern ciders, there are flavored ciders (that besides the apple 

base contain juices of other fruits, extracts and flavorings) and ice ciders (made without 

the addition of water, sugar or alcohol). 

With the worldwide increase in the production of apples, processing the fruit into 

cider is becoming an important and a promising trend. The processing of apple cider 

consists of few steps: apple washing, apple sorting, crushing (small pieces of 4-5 mm 

thickness) and pressing in order to separate the apple juice, followed by clarification and 

depectinization, yeast inoculation, alcoholic fermentation, nutrient addition for the lactic 

acid bacteria (LAB), malolactic fermentation, stabilization and maturation (wood ageing, 

optional). The aroma composition of apple cider differs based on geographical 

provenance, apple cultivars, apple native bacterial diversity or types of microorganisms 

used for fermentation, as well as the processing methods applied. 

Even though the consecrated cider assortments are the English and French ones, the 

cider market is continuously changing, and new variants are being developed. Recent 

studies have tested the use of unconventional apple cultivars such as dessert apples with 

good results in terms of quality and consumer preference [79,80]. Sparkling cider, a 

specialty product obtained by the secondary fermentation of ciders in bottles 

(“Champenoise method”) has been the subject of several studies [81–83]. 

Given the seasonality of apples, as a mainly cost-efficient alternative to fresh apple 

juice, the concentrated apple juice may be successfully used in cider making. When using 

concentrated apple juice, better results are obtained when the fermentation medium is 

supplemented with nutrients [84]. 

The pre-fermentation treatments made to apple juice prior to fermentation can 

significantly influence the quality of apple cider [85]. While centrifugation has only a 

minor effect on the phenolic content of apple juice, the oxygenation of juice strongly 

contributes to a decrease in all classes of native polyphenols [86], especially of catechins 

and procyanidins.  

A key aspect during the alcoholic fermentation is the optimal consumption of 

nutrients by the yeast. By defining the optimal moment for biomass removal [87] or by 

applying the ultrasound-assisted fermentation [88], the degree of nutrient consumption 

for a high quality apple cider was determined.  
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Several fermentation yeasts have been tested to evaluate the cider volatile 

compounds: S. cerevisiae, Saccharomyces uvarum, Torulaspora delbrueckii, Hanseniaspora 

osmophila, H. uvarum, Starmerella bacillaris and Zygosaccharomyces bailii [89]. Ciders’ 

discrimination suggested possible strain-specific effects on the aroma fraction. Still, a 

recent study concluded that fermentation yeast might have little influence on the volatile 

profile of cider, but phenolic compositions of the juices and ciders might contribute to 

significant differences in astringency and bitterness sensory perceptions [90]. 

Apples and pears tend to have lower nutrient levels compared to grapes, which are 

also consumed by the S. cerevisiae yeasts during the alcoholic fermentation. Nutrient 

supplementation during malolactic fermentation is required to obtain a balanced apple 

cider, and consists of inactivating yeast mixtures rich in amino acids, mineral cofactors 

and vitamins. Those mainly responsible for malolactic fermentation in apple cider are the 

lactic acid bacteria (LAB)—Lactobacillus spp., Leuconostoc spp., Oenococcus spp. and 

Pediococcus spp. [91]. Many papers have studied the malolactic fermentation of wine [92–

96], while few data are available regarding the LAB performances in cider processing [97–

99]. Considering the performances of the dominant species involved in cider malolactic 

processes in the spontaneous cider production, the most adequate for use as a malolactic 

starter culture in cider production has been proved to be Oenococcus oeni, when compared 

to Lactobacillus collinoides and Pediococcus parvulus [98]. Good results were also obtained 

by using O. oeni for the deacidification of hard apple cider via the malolactic fermentation 

[99] or by the simultaneous malolactic fermentation using O. oeni with S. cerevisiae in the 

red-fleshed apple cider processing [100].  

When aged in wood contact, alcoholic beverages get an improved quality and 

sensory profile. A study established an optimal dosage of medium toasted French and 

American oak chips of 4 g/L for 30 days of wood contact [101]. Still, even though it is a 

common practice, the wood aging of cider is not an intensively studied topic.  

3.3. Vinegar 

In ancient times, fermentation, namely acetic acid fermentation, was a practice used 

for food preservation. As apple harvesting regions are extremely large, apple being an 

easily adapted culture, apple production is overloaded in some parts of the globe. Apple-

based processed products typically belong to the canning industry and the beverages 

industries, both alcoholic and non-alcoholic.  

Considering the overproduction of apple cider, this product is often redirected to 

vinegar processing. Apple cider vinegar is consumed in Western European countries as a 

functional alcohol-free beverage. Apple vinegar, known as cider vinegar, is made with 

apple juice or concentrated apple juice via a double fermentation process—alcoholic 

fermentation followed by acetic fermentation.  

Vinegar is highly consumed in the daily diet as a food flavoring agent, as a food 

preservative and with therapeutic objectives. Recent studies have found that acetic 

fermentation might improve the nutrients content and functionality. The alcoholic 

fermentation followed by the acetic acid fermentation change the nutritional profile of a 

beverage into a more complex one [102,103], even though the bio-accessibility of phenolic 

antioxidants from vinegar is a matter of great interest being subject of previous studies 

[104].  

The composition is regulated by each state producers, considering mainly acidity, for 

which the minimum legal limit is 4% (w/v) acetic acid. Based on a traditional procedure, 

apple cider vinegar is made from fresh, crushed apples, then fermented, and matured in 

wooden barrels. Both fermentations—alcoholic and acetic—take place in the same barrel, 

with the spontaneous microflora (yeasts and acetic acid bacteria) contribution. The 

naturally occurring fermentation takes about 5–6 months to complete the entire 

fermentation process. The disadvantage in this case is the long process duration, 

incomplete or interrupted fermentation, and low acetic fermentation yield [105].  
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The chemical composition of apple cider, the raw material for apple vinegar 

production, may vary according to cultivar and harvesting areas. The European apple cider 

cultivars (at the optimal ripened stage) have total soluble solids ranging between 10 and 15 

°Brix (average 9–11 °Brix), a titratable acidity of 0.12–0.31% malic acid, tannin content 

(responsible for the apples astringency) of 37 to 233 mg/100 mL, pectin content of 0.25–0.75% 

(the main responsible for the body or viscosity of apple juice), pH ranges 3.0–3.8. The 

optimal ripening stage is extremely important for the apple juice quality because unripe 

fruits will originate juices having lower total soluble solids and less aroma, a higher content 

of starch and acids and a bitter or astringent flavor, while overly mature apples will give 

lower yields due to the difficulty in extraction procedure, and exhibit a sweeter, but flatter 

flavor [105].  

One solution for the increase of apple juice yield could be the use the pectolytic enzymes 

[106]. In traditional cider processing, a system with hydraulic, roller or pneumatic pressure is 

used to rupture and compress the cells until the recoverable juice is separated from cellular 

solids. This procedure presents some difficulties, such as increase of non-sugar solids that 

might cause haze and color formation. The prolonged process, compared to industrial one, 

along with the impossibility of total avoidance of air exposure, facilitates the microbial (yeasts, 

molds and acid tolerant bacteria) growth, causing the shortening of apple juice shelf-life. To 

avoid these disadvantages, the concentrated apple juice might be used instead [84]. When 

preparing fermentable juice, the apple concentrate is diluted with water and the mixture is 

supplemented with nutrients (ammonium phosphate and thiamine) prior to the alcoholic 

fermentation to support the vitality of yeast. Still, when using freshly pressed apples, different 

blending procedures can serve to define a specific flavor profile and chemical composition of 

the apple juice.  

Alcoholic fermentation of apple juice is mainly carried out using S. cerevisiae yeast (pure 

culture inoculation or indigenous yeasts) and other indigenous yeast species such as H. 

uvarum (anamorph Kloeckera apiculata) that predominate at the beginning of fermentation 

process and are followed by S. cerevisiae at the end of fermentation, and Dekkera (anamorph 

Brettanomyces) species during the maturation phase. The final alcohol content varies 

depending on the initial apple sugar content, fermentation procedure or producer (5–10% 

ABV). The resulting apple cider is clarified and prepared for acetic fermentation. When cider 

vinegar is used to inoculate the new batch, one part of the ‘mother vinegar’ is added to five 

parts of apple cider. Increased acetic fermentation yields are recorded when pure culture of 

acetic acid bacteria is used. There are many processing methods for vinegar production, but 

only two are commercially used: the Orléans process—the traditional method for vinegar 

making, known as the “surface method”, and “submerged culture”, where oxygen is supplied 

in fermentation. The first method mentioned is recognized to make the best flavored apple 

cider vinegars, while the second is used to increase the acetic acid production and to decrease 

the duration of fermentation [107]. Cider vinegar might be stored and matured in wooden 

barrels in which case the product is impacted with respect to color and wood-derived flavor 

compounds [105]. Other treatments to assure the products’ stability are applied, such as 

ultrafiltration, pasteurization and use of chemical stabilization agents (sulphur dioxide, pectin, 

arabic gum, citric acid, potassium ferrocyanide).  

3.4. Apple Spirit 

According the European Regulation EC 110/2008 [108], fruit marc spirits is defined as a 

“drink with an alcoholic strength higher than 37.5% (v/v), and a quantity of volatile substances 

higher than 200 g per hectoliter of pure alcohol, that could be produced by the distillation of 

fermented fruit mash, juice or pomace”. 

The final quality and aroma of the apple spirit, as well the methanol quantity, is related 

to the fruit used in the fermentation process, which could be influenced by the fruit variety, 

their geographical origin, ripening index and storage conditions until further processing [109–

111]. 
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To make apple spirit, firstly, it is necessary to extract the juice from the fruit, which is then 

fermented to produce cider. After that, it is necessary to produce a distillation (or double 

distillation) of the fermented juice. Although it is more usual on the market to find apple spirit 

without ageing in wood barrels, this process can be considered to improve the final quality of 

the beverage. Coldea et al. [112] in their study showed that apple spirit ageing for 60 days in 

wood impacted phenolic and volatile profiles regardless of the final beverage. The same 

authors concluded that the major volatile compounds were not affected by the ageing process 

except for 2-butanol, which increased over time. Wood ageing also accentuated some flavor 

compounds associated with the apple, such as isobutyl-acetate, hexyl-2-methylbutanoate and 

ethyl-nonaoate.  

The most popular apple spirit is “Calvados”, which is produced by a combination of 

selected fruits with an appropriate sweet, tart and bitter flavor, that are fermented to produce 

cider. After that, the cider is double-distilled, followed by an ageing processes in wood [113]. 

The aroma profile of apple spirit is highly influenced by the cider [114]. When this process 

is longer, the apple distillate develops an aroma with more sweet and spicy characters, higher 

levels of ethyl acetate, ethyl succinate, ethyl lactate, and volatiles compounds derived from 

bacterial metabolism, such as 2-butanol, 4-ethylguaiacol, eugenol, and 2-propen-1-ol. 

Additionally, the yeast species influence the production and aroma of spirits namely in the 

aromatic composition [58]. 

To intensify the juice extraction before the fermentation process of apple spirit, some 

enzymes like pectinase can be added. However, this treatment could increase the methanol 

content in the beverage [115]. Additionally, if apple pomace was used in the spirit production, 

the methanol content could increase, given the higher quantities of pectin resulting from the 

apple seeds and peal. Concerning the legal limits of methanol and the problems with this 

compound for health, this must be very carefully monitored in the production process 

[77,116]. The selection of the yeast used in the fermentation processes could be also an 

important step. Some studies conclude that use of indigenous yeasts could be favorable for a 

low concentration in methanol in the final product [58]. Another process that could be used to 

reduce the methanol content of the apple spirit is to perform a pasteurization of fruit prior to 

alcoholic fermentation [110]. 

3.5. Probiotic Fermented Apples 

Fermentation food technology is mainly used to change the flavor, odor and texture of 

the vegetables and fruits to increase their nutritional value, preservation capacity and decrease 

the needs of refrigeration and freezing [117]. Additionally, fermentation of foods could reduce 

some toxic compounds and produce antimicrobial substances, which increases the safety of 

the final product [118]. These fermented food products, with beneficial effects on human 

health, are usually called probiotics. 

The aforementioned changes in aroma, flavor and texture are associated with the LAB 

that promote acidic taste, and are associated with proteolytic and lipolytic activities [119,120]. 

Ellendersen et al. [121] studied the best conditions in which to develop an apple juice 

(Gala variety) fermented with Lactobacillus casei. According the same authors, the developed 

beverage was characterized by a typical apple aroma from the raw material, a caramel color, 

and an acidic apple taste.  

Dimitrovski et al. [122] developed a probiotic beverage made with apple juice and lactic 

acid bacterium Lactobacillus plantarum PCS 26 as fermentation agent. In this study, free and Ca-

alginate-embedded bacteria were studied and authors concluded that apple juice is an 

appropriate raw material for the preparation of a functional drink with good sensory 

acceptance and appropriate shelf life. 

Like for other food products, the final quality of probiotic fermented apples depends on 

fruits cultivars, which could influence mainly the taste and aroma of the final beverage [17]. 

This variation is explained by the fact that different varieties of apple have differing aroma 

and flavor characteristics due to their different compositions, namely total soluble sugars, 

organic acids and volatile compounds [123]. 
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4. Properties of Fermented Apple Products 

Fruit juices have been proposed as an alternative vehicle for LAB fermentation due 

to their high nutritive value with respect to vitamins, minerals, dietary fiber and 

antioxidant compounds. Therefore, fermented fruits with LAB can be a good and healthy 

alternative functional food, containing probiotics and giving better nutritional, physical-

chemical and sensorial properties [124,125].  

The major sugars of apple juice (fructose, glucose and sucrose) can be used by LAB 

during fermentation for cellular growth and bioconversion into lactic acid, promoting a 

decrease of all the sugars after the process, particularly fructose [126]. However, the 

carbohydrates’ metabolism in cloudy apple juice (CAJ) by a mixture of Lactobacillus spp. 

varies according to cultivar. In the study of Peng et al. (2021), which used nine apple 

cultivars, the highest total sugar consumption (fructose, glucose and sucrose) was 

observed in the Golden Delicious cultivar, and fructose showed a major sugar decrease 

during the fermentation process. Moreover, Wu et al. [127] observed that the contents of 

total sugars in Fuji apple juice could decrease by up to 23% during fermentation with 

commercial LAB strains. 

Throughout the fermentation process, the LAB strains exhibit various aroma-forming 

activities to metabolize diverse substrates and produce different aroma compounds and 

organic acids that impact the balance of flavor, color, taste, chemical stability, storage 

quality and acceptability of final products [128]. Hence, LAB strains can exert a distinct 

effect on the flavor compounds produced during apple juice fermentation. The use of L. 

casei in Gala apple juice fermentation promoted the reduction of malic acid by 87%, while 

the lactic acid content increased by 31% [121]. The fermentation of apple juice with four 

strains of LAB (Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus casei and 

Lactobacillus plantarum) produced larger concentrations of total acids, with the 

corresponding decrease in pH, but the common feature of the formation of lactic acid at 

the expense of decline in malic acid was most evident in the apple juice containing L. 

acidophilus [19]. The sharp increase of lactic acid throughout apple juice fermentation and 

the parallel decline of malic acid highlight that malolactic fermentation occurs during the 

fermentation of apple juice by LAB [127]. Lactic acid, acetic acid, and tartaric acid were 

the dominant acids identified in fermented CAJ from nine cultivars with a mixture of 

Lactobacillus spp. [17]. Tartaric acid was found in the original juice, whereas lactic acid and 

acetic acid were formed during fermentation. Additionally, pyruvic acid decreased over 

the entire storage of fermented apple juice [19]. The higher content of lactic acid at the 

expense of the lower values of acetic acid enhances the flavor of the fermented CAJs [129]. 

The changes observed during fermentation for other acids in fermented CAJs, such as 

succinic, quinic, oxalic, and tartaric acid contents are dependent on the apple varieties 

[130]. 

Fermentation by LAB could significantly affect the volatile profile of fruit products 

and, consequently, impact their aroma. In fermented clear and CAJ, around 50 volatile 

compounds were identified, including esters, alcohols, aldehydes, ketones and acids, 

among others [17,19,127]. Any differences in the aromatic compounds of fermented apple 

juice can be attributed to the apple cultivar and to the different metabolic patterns of LAB 

in the fermentation process, thus resulting in different concentrations of organic and 

volatile compounds that lead to differences in the global flavor profile of fermented juice. 

Esters were one of the major aromatic components in fermented clear or CAJ that 

contain key contributors to fruity and sweet odor, such as hexyl acetate, ethyl butyrate, 

ethyl hexanoate, butyl acetate, and ethyl 2-methylbutyrate [17,19,127]. 

Alcohols are another large group of volatiles detected in fermented apple juice, with 

total concentrations at least ten times greater than the apple juice [19]. The most 

predominant alcohols in fermented apple juice are 1-butanol and 1-hexanol that 

contribute to the sensation of sweetness; 2-methyl-1-butanol, which is associated with 

onion aroma, malt and wine; and 2-ethylhexanol, which has floral and fruity attributes. 

However, the high odor-detection thresholds of these alcohols resulted in a lower 
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contribution to the flavor, except (E)-2-hexen-1-ol, which has an odor activity value (OAV) 

higher than one and is responsible for leafy, green and walnut aromas [17,19,131,132]. 

New alcohols, including 2-methyl-1-propanol, isobutenylcarbinol, trans-2-hexen-1-ol, 

benzyl alcohol, 1-octanol, β-citronellol and geraniol, can appear after LAB fermentation 

and enrich the background flavors of fermented apple juice [127]. 

The predominant aldehydes detected in fermented apple juice are hexanal and (E)-2-

hexenal that can confer fatty and green leaf flavor notes [127,130,132,133]. Other 

aldehydes, namely octanal, decanal, 2-nonanal, and (Z)-2-heptenal, are present in low 

amounts in the fermented CAJ, but contribute to the aroma because of their very low 

olfactory thresholds [17]. 

Acids are an important group of volatile compounds that contribute to the 

complexity and the fruity aromatic equilibrium of fermented apple juice. Acetic acid is the 

dominant and characteristic flavor compound in fermented CAJ, and can help create a 

pungent, sharp and vinegary odor, conferring a characteristic flavor [17,134]. 

Ketones, characterized by intense flavors, are present in low concentrations but could 

synergistically contribute to the aroma profile of fermented apple juice. The major volatile 

ketones identified were 6-methyl-5-hepten-2-one and β-Damascenone (usually present in 

apple juice) and 2-undecanone, 2-heptanone and 2-nonanone, 4-heptanone, 4-

cyclopentene-1,3-dione, only produced after fermentation by the microbial oxidation of 

fatty acids or by decarboxylation pathways [17,19,135]. 

Other compounds, such as D-limonene and eugenol, may play important roles in the 

unique aroma profile of fermented CAJ. D-limonene gives citrus, orange, lemon and sweet 

aroma, whereas eugenol provides a spicy odor [134,136]. 

Most of the volatile compounds associated with the typical aroma of apple juice are 

retained or enriched after fermentation and storage, but some new compounds like 

alcohols, esters, aldehydes and ketones are generated from LAB fermentation, suggesting 

the improvement of aroma complexity in fermented apple juice [19,127]. Table 1 

summarizes the predominant compounds present in LAB fermented apple products. 

Table 1. Predominant compounds present in LAB fermented apple products [17,19,121,127,131–133,135,136]. 

Classes Compounds 

Esters hexyl acetate, ethyl butyrate, ethyl hexanoate, butyl acetate, ethyl 2-methylbutyrate, hexyl butyrate, 

ethyl acetate, methyl isovalerate, isoamyl isovalerate, methyl salicylate 

Alcohols 1-butanol, 1-hexanol, 2-methyl-1-butanol, 2-ethylhexanol, (E)-2-hexen-1-ol, 2-methyl-1-propanol, 

isobutenylcarbinol, trans-2-hexen-1-ol, benzyl alcohol, 1-octanol, β-citronellol, geraniol, 2-methyl-1-

pentanol, 3-hexen-1-ol (Z) and 2-hexen-1-ol (E) 

Aldehydes hexanal, (E)-2-hexenal, octanal, decanal, 2-nonanal, (Z)-2-hexenal, acetaldehyde 

Acids acetic acid, butanoic acid, lactic acid, isovaleric acid, tartaric acid 

Ketones 6-methyl-5-hepten-2-one, β-Damascenone, 2-undecanone, 2-heptanone, 2-nonanone, 4-heptanone, 4-

cyclopentene-1,3-dione 

Others D-limonene, eugenol, linalool 

Apple juice is also the raw material of alcoholic fermented drinks, like cider (also 

called apple wine in some areas), by inoculation with different species of yeasts. Cider has 

several sensory attributes, such as acidity, color, turbidity, odor, sweetness, astringency 

and foam that can vary between producers. Cider taste depends primarily on apple 

cultivar, whereas aroma composition of volatiles depends on fermentation conditions, 

yeast strains, maturation, storage conditions and variety, ripeness and concentration of 

aromatic compounds derived from apples [123,137–142]. Many of the aroma compounds 

are lost in their processing and most of the aroma compounds in cider are synthetized 

during fermentation, forming a specific flavor that can differentiate one cider from 

another [140]. 
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The most important volatile compounds identified in juice are esters, whereas in 

apple ciders, a wider variety of different chemical classes was found, including higher 

alcohols and esters, corresponding, respectively, to 56–68% and 30–42% [141], followed 

by fatty acids, and to a lesser extent acids, aldehydes and ketones (Figure 3). These 

compounds, mainly produced in the alcoholic fermentation as secondary metabolites, 

showed an important contribution to cider aroma that could be related with sensory 

analysis [132,143–145]. 

The key aroma components present in ten ciders from Shaanxi (China) Fuji apple 

(average parameters: alcohol: 11.3 vol.%; residual sugar: 3.5 g/L; total acidity: 5.7 g/L; 

volatile acidity: 0.7 g/L; pH: 3.5), processed with different yeasts, technological methods 

and apple orchards, were ethyl acetate, acetic acid isobutylester, isopentylacohol acetate, 

ethyl caprylate, ethyl 4-hydroxybutanoate, isopentylalcohol, 3,4,5-trimethyl-4-heptanol, 

nonyl alcohol, 3-methylthio-1-propanol (four esters, four alcohols, and one acid), 

contributing for 85.61% of the total variance in cider aroma components [140]. 

Rita et al. [146] identified 16 volatile compounds in yeast fermented juice aroma 

obtained from two apple varieties (‘Lietuvas Pepins’ and ‘Auksis’), but the main 

compounds were 2-hydroxyethylhydrazine, 3-methyl-1-butanol, hexanoic acid ethyl ester 

and acetic acid hexyl ester. In fermented apple juice of the variety ‘Lietuvas Pepins’ other 

main alcohols—hexan-1-ol and phenylethyl alcohol—and esters—hexyl acetate, ethyl 

octanoate, hexyl hexanoate, 2-methylbutyl acetate—were identified [141]. 

Qin et al. [132] characterized the flavor profiles of 14 commercial apple ciders 

(ethanol content ranged from 4.5 to 7.0% (v/v), pH values varied from 2.91 to 3.89, levels 

of titratable acidity between 2.23 and 6.39 g/L) from the United Kingdom and 

Scandinavian region. In apple ciders, it a total of 72 volatile compounds were identified, 

including 33 esters, 16 alcohols, 4 aldehydes, 3 ketones, 4 fatty acids, 4 terpenes, 3 phenols, 

3 furans, 1 acetal, and 1 C13-norisoprenoid compound. Each cider was composed of 36 to 

53 of these volatile compounds. Moreover, sweet, sour, apple, cooked apple and yeasty 

were the most predominant sensory attributes (taste and aroma) to describe the 

similarities and differences of apple cider. Ciders from the Scandinavian region had 

diverse sensory profiles, whereas most of the UK apple ciders were characterized by these 

complex odors and taste, notes of sour, bitter and astringent. Moreover, apple cider 

characterized by cooked/fresh apple, citrus and tropical fruit odors had marked content 

of acetate esters. This group of compounds was more often present in sweet ciders from 

Normandy than those from Britany, reflecting important differences in the yeasts acting 

during the fermentation [147]. Other volatile compounds, like 4-ethylcatechol, could be 

used to differentiate the maturation stage of Asturian and Basque ciders [148]. 



Processes 2021, 9, 223 12 of 27 
 

 

 

Figure 3. Major volatile compounds preset in apple cider. 

Acidity has a low impact on volatile profile but is considered to be an essential 

element in cider and must be enough to give a clean and refreshing impression to the final 

products [123,141,149]. The most abundant acids in cider are lactic acid and malic acid, 

followed by citric acid and succinic acid [132,150,151]. 

Phenolic compounds are also important compounds of cider that contribute to 

notable differences in sensory quality of the ciders, such as astringency, bitterness or color 

[152–155]. Moreover, interactions between the volatile compounds and polyphenol matrix 

of cider may influence the release of volatile compounds [152]. 

The most abundant classes found in cider are hydroxycinnamic acid derivatives 

(phenylpropanoid structures), followed by different groups of flavonoids: flavan-3-ols 

proanthocyanidins, flavonols, and dihydrochalcones. While phenolic acids play an 

important role in the development of astringency and bitterness, the flavonoids, especially 

flavan-3-ols, influence the color, aroma and oxidative browning of ciders. Flavonols and 

dihydrochalcones are mainly related to the antioxidant properties of cider [90,156–158]. 

Volatile phenols are generally considered to be major markers of organoleptic defects 

of many fermented alcoholic beverages. The most problematic phenolic off-flavors 

causing defective ciders (4-ethylphenol, 4-vinylphenol, 4-ethylguaiacol, 4-vinylguaiacol 

and 4-ethylcatechol) are produced by yeast, from caffeic, p-coumaric and ferulic acids 

[159,160]. 

Cider apple pomace is also a valuable source of polyphenols, as flavanols, 

dihydrochalcones (phloridzin and phloretin-2′-xyloglucoside), flavonols and cinnamic 

acids (chlorogenic and caffeic acids) [63].  

Apple cider vinegar is another apple fermented product that has polyphenolic 

compounds like catechin, caffeic acid, gallic acid, chlorogenic acids and p-coumaric acid 

[161]. 

Besides phenolic compounds, apple cider vinegar characteristics and fermentation 

quality are optimized by applying a nutrient feeding strategy. For example, Qi et al. [162] 

reported that using four specific amino acids (aspartate, glutamate, proline and 

tryptophan) is pivotal for optimizing nutritional composition of cider. They observed an 

improvement in the conversion into acetic acid by reducing the final concentrations of 

oxalic acid, tartaric acid, malic acid, lactic acid, citric acid and succinic acid. Additionally, 

the concentrations of most of the esters and volatile organic acids were also improved, 

thus contributing to the aromatic profile of the cider, particularly with respect to eight 
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compounds: ethyl acetate, γ-methylbutyl ethanoate, caprylic acid, capric acid, 

phenylethyl alcohol, hexanoic acid, acetate-ethyl-2-methylpropanoate, and 2-phenylethyl 

ethyl acetate [162]. 

5. Health Effects of Fermented Apple Products 

In general, fermented foods and beverages are considered safer than their 

unfermented counterparts, with this improved food safety owing to a great extent to the 

presence of LAB, which is a predominant group of bacteria found in most fermented 

products [91]. The LAB act as probiotic bacteria, and they produce exopolysaccharides 

with several health benefits. Saadat et al. [163] present a comprehensive review regarding 

the health effects of these compounds, emphasizing the immunomodulatory effect and 

anti-cancer properties, high antioxidant activity, capacity to decrease blood glucose and 

cholesterol, anti-ulcer properties and antihypertensive activity [164–167]. 

Recent studies have shown the multiple health benefits brought with by apple 

vinegar consumption, such as attenuation of oxidative stress, reduction of obesity risk, 

balancing the cholesterol levels, antifungal activity [168,169]. Budak et al. [170] assessed 

the effect of consumption of apple cider vinegars obtained with different fermentation 

techniques (surface method with maceration, submersion method with maceration, 

surface method and submersion method) on the blood lipids in high-cholesterol fed rats. 

The addition of 10% apple pomace was used in the maceration step to increase the 

polyphenolic contents. The vinegars obtained by the surface method with and without 

maceration had the lowest pH values and the highest total phenolic contents. Apple cider 

vinegar obtained by the submersion method significantly decreased steatosis. The study 

proved that apple cider vinegar administration has beneficial effects on blood lipid levels, 

liver functions, steatosis and body weight. Beneficial effects of apple cider vinegar were 

recently proven based on a clinical trial considering weight management, visceral 

adiposity index and lipid profile in overweight or obese subjects [171].  

Apple vinegar is rich in polyphenols and acetic acid, which have proven to be 

beneficial allies to modulate plasma lipid profile, glycemic indices or blood pressure [172]. 

Additionally, they reduce inflammation and the prevalence of diabetes [173,174]. These 

beneficial effects are associated with vinegar components; for example, it has been 

reported that intake of acetic acid though beverages helped lowering blood pressure in 

hypertensive patients [175,176].  

The review by Zhang et al. [177] highlights that fermented apple juice is rich in 

polyphenolic compounds, proven beneficial for the prevention of non-communicable 

diseases. The polyphenols profile and content in CAJ varies during the fermentation 

process and according to some variables, like apple variety, fermentation conditions or 

microorganisms’ strains. Through enzymatic reaction, the long polyphenolic molecules 

are transformed into smaller compounds with stronger biological activity. These 

substances are described as being able to prevent cardiovascular diseases and type 2 

diabetes by the different mechanisms described [177].  

The study by Gheflati et al. [178] presented some confirmation that regular low 

dosage apple vinegar consumption can have beneficial effects on glycemic indices and 

oxidative stress in people suffering from diabetes and dyslipidemia. Studies have shown 

that the consumption of apple cider vinegar has positive effects on the management of 

diabetes [179]. Vinegar consumption can suppress postprandial hyperglycemia and can 

improve insulin resistance, in both healthy people as well as in people with diabetes [180–

183]. 

The work by Asejeje et al. [184] suggests that apple cider vinegar has therapeutic 

potential by protecting against renal deficiency and connected malfunction, in an in vivo 

rat model.  

Chiu et al. [185] carried out a double-blinded randomized clinical trial, aimed at 

comparing the performance of athletes who consumed apple cider vinegar with those 

who consumed a commercial sports drink [185]. Their results showed that apple cider 
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vinegar had a similar effect to that of the commercial sports drink, both exhibiting 

ergogenic properties, enhanced blood glucose and improved non-esterified fatty acids, 

while suppressing the production of lactate. Both maintained normal respiratory 

exchange rate and heart beating throughout the endurance exercise. 

Apple cider vinegar has been demonstrated to be a possible ally in weight 

management, helping in reducing appetite, anthropometric measures, visceral adiposity, 

blood triglycerides and total cholesterol levels, while increasing high-density lipoprotein 

cholesterol in overweight or obese patients [171,179]. Acetic acid has also been reported 

to be beneficial for intestinal health and fighting constipation [186]. 

The so-called hard cider is obtained from the fermentation of fresh unsterilized 

apples, and contains a variety of microorganism species, which are underexplored and 

constitute complex microbial populations. Ciders are naturally inoculated with different 

species, but these can change along the fermentation process. It is known that those rich 

microbial communities significantly impact the product characteristics but they can also 

benefit the consumer’s health [91,187]. 

It is possible that apples or apple juice used as raw material for cider production can 

be contaminated with pathogens derived from the orchard soil, from the farm or 

processing equipment or even form human sources. These pathogens may include 

Salmonella spp., Escherichia coli and Staphylococcus aureus. Nevertheless, because fermented 

cider is an acid product owing to the presence of organic acids (especially lactic acid), the 

low pH (ranging from 3.3 to 4.0) prevents the growth of these pathogens, which survive 

for a very short period and do not replicate [188].  

Tyakht et al. [187] evaluated the bacterial and yeast microbiomes present in six 

samples of unpasteurized apple ciders resulting from non-industrialized artisanal 

processes. Since no bacteria are used as starter cultures for cider production, all bacterial 

detections were derived from spontaneous inoculation from the raw materials or the 

environment. The authors found a wide yeast diversity, accounting for many non-

conventional species. Most abundant yeast species include not only Dekkera and 

Saccharomyces, but also other major taxa like Issatchenkia orientalis, Candida ethanolica, and 

Pichia spp. The most prevalent bacteria were LAB belonging to the Leuconostocaceae family, 

while the Lactobacillus were present in minor levels. 

Cider, as with other alcoholic drinks, has to be consumed in moderation. Alcohol 

abuse is associated with increased occurrence of diseases, besides its negative social 

impact [189–192]. 

Cider ethanol content is very variable, commonly around 5–7% [193], but sometimes 

even higher than 10% [194], although there are also cases in which the technology is aimed 

at obtaining ciders with lower alcoholic content [195]. Another alcoholic drink made from 

fermented apple is brandy, produced traditionally in Romania, with an ethanol content of 

over 46% [112,196]. In the northern region of Sardinia, in Italy, distillates are produced 

from regional apples, producing apple brandy, [111]. “Calvados” is also distilled from 

cider in Normandy in northern France, and in the United Kingdom Somerset cider brandy 

is produced [197]. Besides ethanol, methanol can also be generated during the processing 

of these alcoholic beverages, under certain conditions and depending on the raw material 

used for their production [77]. Methanol content must be below a legal limit of 1.20 g% 

mL p.A. established by EC Reg. No. 1014/90 and subsequent amendments [198]. 

Alcohol is absorbed when passing through the gastrointestinal system, moving to the 

liver and lungs to be metabolized. Methanol and its metabolites originate several health 

problems, besides direct toxicity, including oxidative stress as well as increased fatty acid 

ethyl ester accumulation. In the human body, methanol is metabolized into formaldehyde, 

which is toxic and responsible for carcinogenesis and neurologic complications [77,199–

202]. Regarding ethanol, although it is not genotoxic or mutagenic, its metabolite 

acetaldehyde has been reported to be a dangerous carcinogen [189–192]. 

Some diseases associated with alcohol include steatosis (alcoholic fatty liver), 

alcoholic hepatitis, and fibrosis and/or liver cirrhosis [203]. In Europe, nearly 2% of all 
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deaths occur as a consequence of liver disease. In fact, alcohol is the most important risk 

factor for alcoholic cirrhosis, and even light drinkers, i.e., those with a moderate 

consumption (corresponding to one to two drinks per day), have a higher risk of 

developing alcoholic cirrhosis when compared to abstainers [203,204]. 

In the study by Schutte et al. [205], alcoholic drinks such as cider were shown to be 

associated with increased risk for global mortality, cardiovascular problems, ischemic 

heart disease, cerebrovascular disease and cancer. 

When the gut microbiota is altered due to the intake of alcoholic drinks, it contributes 

to the occurrence of diseases associated with alcohol. Nevertheless, this effect can be 

lightened by an adequate reposition of gut microbiome [189–191]. 

Apple cider and spirits can contain acrolein. The glycerol degradation in these and 

other apple-derived products can, by the action of lactic bacteria, lead to the formation of 

3-hydroxypropanal, which is unstable and can spontaneously be transformed in acrolein 

[197,206]. Acrolein is an unsaturated aldehyde, with a high reactivity, which can 

frequently cause several diseases in humans [207–210]. 

There are other risks associated with apple cider, namely related with the possible 

presence of biogenic amines (BA). The malolactic fermentation has positive effects on the 

organoleptic properties of cider, but some LAB strains can also produce undesirable 

metabolites, like BA [211]. These BA can occur in foods or beverages involving 

fermentation, and are derived from the removal of the alpha carboxyl group from amino 

acids [212]. The most abundant BA found in cider include histamine, tyramine, putrescine 

and cadaverine (Figure 4), but their concentration is influenced by factors such as the type 

of microorganisms present, environmental conditions that include pH, ethanol 

concentration, sulfur trioxide levels, quality of the raw material, the fermentation process 

and its technological conditions [211–215]. The ingestion of high levels of BAs can have 

harmful effects on the human body, causing adverse reactions like rashes, headaches or 

alter blood pressure (hypertension/hypotension). These effects are more problematic in 

people with health conditions that diminish their body detoxification capacity [91]. While 

histamine and tyramine are regarded as highly toxic and are therefore of particular 

importance in terms of food safety, it is also true that putrescine and cadaverine, although 

not so problematic in nature, can have a synergetic effect potentiating the harmful effects 

of BAs [215]. Because there is not a microbiological stabilization after malolactic 

fermentation in cider, the indigenous LAB constitute the predominant vehicles to promote 

the production of BAs [214,216,217].  

 

Figure 4. Most abundant biogenic amines found in cider. 

Some apple-derived products can contain patulin, which is a toxic metabolite 

produced by certain yeast strains that bears several potential risks for human health [218–

221]. Zhao et al. [222] studied a way to eliminate patulin from fermented apple puree by 

using specific fermentation conditions. They used for the fermentation a strain of 

Byssochlamys nivea that had previously been proved to have a high capacity to degrade 

patulin [223]. Their results confirmed that Patulin was degraded after 5 days at 37 °C by 

the used yeast strain, providing that adequate temperature was maintained. Furthermore, 

they observed that pH practically did not influence patulin degradation. Hence, the 



Processes 2021, 9, 223 16 of 27 
 

 

fermented apple puree had improved health safety as compared with the non-fermented 

product.  

Apple by-products, such as peels or pomace, constitute industrial wastes; these can, 

however, be used as sources of bioactive compounds, such as phenolic compounds with 

antioxidant activity [224]. Apple is rich in diverse bioactive phenolic compounds, most of 

them in higher concentrations in the peel, like, for example, epicatechin and quercetin 

glycosides [225–230]. Valorization processes can be used to obtain added value products, 

from which valuable compounds can be extracted. Gulsunoglu et al. [224] studied a 

method for the enhancement of polyphenolic compounds with antioxidant capacity in 

industrial apple waste by means of fermentation using several Aspergillus spp. Their 

results showed that A. niger and A. tubingensis produced eriodictyol, while A. japonicus 

and A. aculeatus produced taxifolin and catechin. These phenolic compounds have several 

health benefits: eriodictyol is a flavonoid with broad biological and pharmacological 

effects [231], including anti-inflammatory effect in osteoarthritis [232], cardioprotective 

effect [233], control of blood vessels permeability [234] and anti-allergic effect [235]; 

taxifolin is also a flavonoid with biological activities at different levels, showing 

antioxidant [236], antibacterial, anti-inflammatory [237] and antiviral [238] activities, 

improving microcirculation and regulating immunity, being used for treatment of 

atherosclerosis, dyslipidemia, cardiovascular diseases and other chronic diseases 

[239,240]; catechin, again in the class of flavonoids, has proven beneficial in cardiovascular 

health and showing several effects on the human body [241], like antioxidant [242], 

antihypertensive [243], anti-inflammatory [244], antiproliferative [245] and anti-

hyperlipidemic [246]. 
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6. Final Remarks 

Apple is the basis for several fermented products, the most abundant being cider and 

vinegar, but also of relevance are spirits, particularly in some European countries, 

fermented juices, and probiotic beverages. Additionally, preferment apple pomace also 

makes it possible to produce added value products, while at the same time minimizing 

the impact of those residues that otherwise would be discarded. The fermentation 

technology and the yeast species used have a great impact on the final properties of the 

obtained fermented products, in terms of chemical composition, sensory profiles and 

effects on the human body, either beneficial or harmful. Some positive health effects of 

apple fermented products are associated with the presence of macro and micronutrients, 

as well as bioactive compounds (like phenolic compounds) and probiotic bacteria. On the 

other hand, some possible health problems can also arise due to the presence of methanol 

or biogenic amines. New developments in fermentation technology and studies on the use 

of different yeast species are continuously being made in order to improve profitability 

and the final qualities of the product, as well as to maximize their positive health effects. 

Future trends in this field will certainly encompass these developments, with the aim of 

increasing fermentation efficiency, optimizing the products obtained in terms of chemical 

composition, sensory properties and health benefits for humans, and also minimizing the 

potential risks associated with these fermented products. Additionally, fermentation can 

be expected to provide an alternative way to add value to residues from the food industry, 

and particularly with respect to apple, such as apple peels, seeds or low-quality raw 

materials. In this way, valorization of residues through fermentation can have positive 

economic and environmental impacts.  
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