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Abstract: In this study walnut shells, an inexpensive and readily available waste, were used as
carbonaceous precursor for preparation of an innovative adsorbent (walnut-shell powder (WSP))
which was successfully tested for the removal of FeII from synthetic acid mine drainage (AMD). Then,
the exhausted iron-contaminated adsorbent (WSP-FeII) was recovered and treated with sodium boro-
hydride for the reduction of adsorbed FeII to Fe0. The resulting material (WSP-Fe0) was subsequently
tested for the removal of CrVI from aqueous solutions. Treatability batch experiments were employed
for both FeII and CrVI-contaminated solutions, and the influence of some important experimental
parameters was studied. In addition, the experimental data was interpreted by applying three kinetic
models and the mechanism of heavy metal removal was discussed. The overall data presented in
this study indicated that fresh WSP and WSP-Fe0 can be considered as promising materials for the
removal of FeII and CrVI, respectively. Furthermore, the present work clearly showed that water
treatment residuals may be converted in upgraded materials, which can be successfully applied
in subsequent water treatment processes. This is an example of sustainable and environmentally-
friendly solution that may reduce the adverse effects associated with wastes and delay expensive
disposal methods such as landfilling or incineration.

Keywords: sustainable water treatment; water treatment residuals; innovative adsorbent; heavy met-
als; acid mine drainage; hexavalent chromium

1. Introduction

In last decades, water pollution with heavy metals has become an increasingly im-
portant worldwide threat. Numerous heavy metals have been introduced into natural
water environments, especially as a result of human industrial activities, but also due to
agricultural, transport and waste disposal practices. Among the most important industrial
activities that contribute to contamination of aquatic systems by metallic ions (Cr, Ni, Zn,
Cu, Zn, Pb, Fe, Cd etc.) are: electroplating, surface finishing of metals, production and
recycling of electronics, metallurgy, mining, leather tanning, paper and pulp production,
fertilizer and pesticide production, batteries production [1–4]. Most heavy metals cause
toxic effects to living species, not only at excessive exposures, but also at low concentra-
tions, because they do not have any biological role in living cells, do not degrade into
harmless end products, and are bioaccumulative in nature. In addition, even heavy metals
which are necessary in small amounts as micronutrients for the normal development of
biological systems (e.g., Cu, Fe, Zn, Cr etc.) exert harmful effects to biological organisms
at high concentrations [4–6]. Therefore, the removal of heavy metals from contaminated
waters, prior to their discharge into natural effluents, is a necessary step in order to reduce
their adverse effects. The World Health Organization guidelines of some heavy metals in
drinking water are summarized in Table S1.
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Various methods have been applied for the removal of heavy metals from aqueous
solutions; these include chemical precipitation, membrane technologies, ion exchange,
electrochemical treatment, floatation, coagulation-flocculation, adsorption, evaporation,
photocatalysis [1,3,7–11]. Among all these methods, adsorption is generally considered
to be one of the best for the removal of heavy metals, due to its simplicity, ease of opera-
tion, selectivity and high efficiency. Activated carbon is the most widely used adsorbent
in water and wastewater treatment, owing to its high surface area and high degree of
surface porosity and reactivity. The heavy metal adsorption capacities reported in the
literature for commercial activated carbon are in the range of 0.29–146 mg/g [12]. Un-
fortunately, in spite of its excellent adsorption capacity, this material is also expensive,
which makes the costs of adsorption processes high, and, therefore, less economically
viable, especially in low income developing countries [4,13,14]. Therefore, over the last
decades, there has been an intense activity directed at the development of inexpensive
and easily available alternatives to commercially available activated carbon (e.g., clay min-
erals, industrial/agricultural wastes/byproducts etc.) which should decrease the cost of
the adsorption process, while still being efficient in improving the quality of the treated
effluents [3,4,14–19]. The heavy metal adsorption capacities reported in [12] for natural
materials, agricultural and industrial wastes are in the range of 0.003–83.3, 0.001–158 and
0.0002–133.35 mg/g, respectively; thus, it is obvious that low-cost adsorbents may exert
excellent metal removal capabilities, comparable to commercial activated carbon [12].

On the other hand, water treatment technologies should be not only efficient and
affordable, but also environmental-friendly. Therefore, great attention has been paid in
the last years to handling and disposal of water treatment residues (WTRs), which are
challenging tasks for today environmental scientists. One of the traditional and most
common methods of WTR management is by landfilling. However, today, this is no
longer considered a viable solution because of: (1) soil and groundwater contamination,
(3) high operating costs, and (3) difficulties in finding and operating new landfill sites,
under the circumstances of more and more strict environmental regulation. Hence, recov-
ery, recycling and reuse should be the preferred solution for the sustainable management
of WTR [20]. The use of groundwater treatment residuals (Fe and Mn (hydr)oxides) and
floculation-coagulation residuals (Fe and Al (hydr)oxides) as adsorbents, to remove pol-
lutants (e.g., heavy metals, metalloids, pesticides etc.) from aqueous solutions, has been
reported in the last years by numerous studies [21–24]. Instead, to our knowledge, few re-
searchers have addressed the issue of reusability of cheap exhausted adsorbents, resulted
from the removal of a particular heavy metal, in treatment processes of aqueous effluents
polluted with a different type of heavy metal [25]. In this previous study, bentonite was
used for sequential adsorption of heavy metals from aqueous solutions, proving not only
that reusability of exhausted adsorbents is possible, but also that some adsorbed metals
may have a beneficial role in the subsequent adsorption process. However, this research
also revealed that using bentonite as adsorbent suffers from multiple drawbacks, including
low adsorption capacity and leaching of structural iron at strong acidic pH [25].

The fruit and vegetable processing industry operates globally, producing huge amounts
of products and being a well-known generator of large volumes of agricultural wastes [26,27].
The world production of walnuts has been relatively stable over the last years, at about
2 million tons (in-shell basis), with China and the USA accounting for nearly three-quarters
of the total production [28]. Since the kernel represents approximately 45% of the walnut
mass (depending on the size and the variety of the walnut), it is obvious that the remaining
shells are an abundantly available waste that could be used as cheap adsorbent materials.
Consequently, the present study has two main objectives. Firstly, to investigate the use of
walnut shells, in powdered form (WSP), as cheap adsorbent in the remediation process of
synthetic acid mine drainage (AMD) containing FeII. To the best of our knowledge, removal
of FeII with agricultural waste derived adsorbents are few [29,30], while walnut shells in
their natural form (i.e., not activated by any chemical or physical method) were not re-
searched yet. The second objective of this paper was to recover the water treatment residue
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(WSP-FeII) resulted from the AMD remediation process, for further reuse in the removal of
CrVI from aqueous solutions. Since during the last two decades Fe0 was acknowledged as
an efficient reactive material for remediation of heavy metal contaminated effluents [31],
the water treatment residue (WSP-FeII) resulted from AMD remediation was treated with
sodium borohydride, in order to reduce the adsorbed FeII to Fe0, and the resulted material
(WSP-Fe0) was then used for the removal of CrVI. The effect of several important experi-
mental parameters (pH, heavy metal concentration, temperature, and ionic strength) on
efficiency of both treatment processes was investigated. Furthermore, the kinetic parame-
ters of the remediation processes were determined and the mechanisms of FeII and CrVI

removal were discussed.

2. Results and Discussion
2.1. Adsorbent Characterization
2.1.1. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis

The FTIR spectra of the adsorbents were recorded within the range of 500–4000 cm−1.
The spectra of native WSP and WSP-FeII are given in Figures S1 and S2 (Supplementary
Material). The analysis of Figure S1 reveals a wide band near 3440 cm−1, indicating the
presence of hydrogen-bonded hydroxyl groups on the WSP surface [32]. This can be
correlated with the intense band around 1040 cm−1, characteristic for the valence vibration
of C-O bond in primary alcohols [33,34]. Peaks observed around 2920 and 1380 cm−1 can
be assigned to the stretching vibration of C-H bonds in methyl and methylene groups [35].
The flat peak located at about 2100–2200 cm−1 corresponds to C≡C groups stretching
vibration [34]. The bands around 1750 and 1720 cm−1 are indicative for the C=O group
stretching vibration in carboxyl and carbonyl groups [35,36]. Peaks around 1370 and
1330 cm−1 may be attributed to the O-H in-plane deformation characteristic for alcohols
and phenols [33,37]. Absorption bands near 1650, 1600, 1510, 1260, 800, 670 and 600 cm−1

can be related to complex vibrations related to aromatic compounds (e.g., lignin) [32–35,37].
By comparing the spectra of WSP (Figure S1) and WSP-FeII (Figure S2), a strong decrease
in intensity of peaks at 3440, 1600, 1260, 1040 and 800 cm−1 could be observed after the
adsorption of FeII; if we assume that FTIR spectra were recorded by following the same
procedure (i.e., pellets were prepared by mixing and pressing exactly the same amounts of
sample and KBr), this may suggest participation of some of the above mentioned functional
groups (hydroxyl, carboxyl and carbonyl) in metal binding. Similar changes in intensity of
the bands was observed also after the reaction of CrVI solution with WSP and WSP-Fe0

(Figures S1, S3–S5, Supplementary Material).

2.1.2. Scanning Electron Microscopy (SEM) Analysis

The SEM analysis enables the observation of the surface morphology of the stud-
ied adsorbents materials. Visual examination of the SEM micrographs (Figures S6–S10,
Supplementary Material) showed that external surface of prepared materials has an irreg-
ular rugged morphology, containing macropores with sizes of 1–2 µm, homogeneously
distributed all over the surface. No noticeable differences can be observed in SEM micro-
graphs before and after the adsorption process; no accumulation of contaminant on the
exhausted adsorbent can be discerned too, presumably due to the low amount of retained
metal at surface of the adsorbents.

2.1.3. Energy Dispersive X-ray Spectroscopy Analysis (EDX) Analysis

The EDX spectra of the adsorbents before and after CrVI adsorption are shown in
Figures S11–S15 (Supplementary Material). The absence of alkali and alkaline earth metals
(Ca2+ and K+) in the WSP-FeII sample (Figure S10) indicated that the adsorption process
may have involved an ion-exchange mechanism; furthermore, the EDX spectra of WSP-FeII

revealed additional Fe signals in comparison to WSP, indicating retention of Fe at the
surface of adsorbent. The EDX analysis also confirmed the retaining of CrVI onto the
surface of both WSP (control experiments) and WSP-Fe0; nevertheless, a visual comparison
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of EDX spectra of CrVI-loaded WSP-Fe0 and WSP (Figures S14 and S15) clearly reveals that
more Cr was bound on WSP-Fe0. In addition, the suppression of one Fe band in the EDX
spectra of WSP-Fe0 after reaction with CrVI may suggest that the Fe0 sites were involved in
removal of CrVI anions.

2.2. AMD Treatability Experiments
2.2.1. Effect of pH

Earlier studies have shown that pH of the aqueous solution is a highly important
factor in adsorption processes, capable to control the mechanism, and therefore, to enhance
or decrease the amount of metal retained at the adsorbent surface [38]. The effect of pH on
the removal of FeII was studied by varying the pH of the metal ion solution from 1.0 to
4.1. These pH values were selected because they are within the range of levels reported
for pH in AMD environments [39,40]. In addition, pH values below 4.5 also ensure that
removal of FeII occurs solely due to adsorption. Figures 1 and 2 clearly show that both
efficiency of FeII removal and adsorption capacity of WSP increased with increasing pH
from 1.0. to 4.1. While only limited AMD remediation was observed at pH 1.0 and 2.1,
an important enhancement of the adsorption process was achieved as pH was increased to
2.5, and then further gradually raised up to 4.1. This is in accord with results of previous
works using alternative vegetal adsorbents like thermochemically-activated walnut shells
and orange peels, which indicated increased removal efficiency with increasing pH of the
solution [29,30].
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Carboxyl and hydroxyl (fenolic) groups are among the most important functional
oxidized groups (active centers) existent at surface of natural carbon-based agricultural
residues, which are able to take part in specific adsorption processes with metal cations,
according to [20,41]:

WSP-C6H5-OH + Men+ ⇔WSP-C6H5-OM(n−1)+ + H+ (1)

WSP-COOH + Men+ ⇔WSP-COOM(n−1)+ + H+ (2)
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However, carboxyl and hydroxyl groups are also involved in acido-basic equilibria
which may be described as following:

WSP-C6H5-OH + H+ ⇔WSP-C6H5-OH2
+ (3)

WSP-C6H5-OH + HO− ⇔WSP-C6H5-O− + H2O (4)

WSP-COOH + H+ ⇔WSP-COOH2
+ (5)

WSP-COOH + HO− ⇔WSP-COO− + H2O (6)

In the present work, the pHpzc of the WSP was found to be 6.4; accordingly, the net
charge of WSP surface was positive over the entire studied pH range. Nevertheless, it is
clear from the above equations that an increase in solution pH (i.e., more HO- anions
available for Equations (4) and (6) causes an increase in the number of negative charges
existent at WSP surface, even though the net charge still remains positive at pH < 6.4.
Hence, on the one hand, the efficiency of adsorption will increase at higher pH due to
enhanced electrostatic attraction between cationic FeII species and negatively charged
centers at WSP surface. On the other hand, the competition with hydronium cations for
anionic exchanging sites at WSP surface also decreased as the pH was raised in the range
1.0–4.1, contributing thus to the increased sorption of FeII cations.

2.2.2. Effect of FeII Initial Concentration

The influence of FeII concentration was studied within the concentration range of
25–100 mg L−1. These concentrations were selected because they are within the range of
FeII levels reported in AMD environments [39,40]. As revealed in Figure 3, the efficiency
of FeII uptake by WSP was found to decrease proportionally with the increase of FeII

concentration. This is attributable to the fact that available sorption sites become progres-
sively insufficient for the increasingly number of FeII ions at higher concentrations; hence,
a more rapid saturation of the adsorption centers will occur and, as a result, the percentage
removal of FeII ions decreases. Figure 3 also shows that adsorption of FeII proceeds in
two steps: a rapid decrease of metal concentration within the first stage (first 60 min),
when the amount of available sites was still much higher than the amount of FeII ions to be
adsorbed, followed by a strong decrease in the adsorption rates in the second phase, due to
continuous diminishing of the number of negatively charged functional groups throughout
the adsorption experiment. This phenomenon was previously reported by several studies
employing agro-based waste adsorbents in the process of heavy metal removal from aque-
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ous solutions [16]. In contrast, Figure 4 indicates that adsorption capacity of WSP firstly
increased with increasing the initial FeII concentration, and then reached a saturation value.
The maximal adsorption capacity of WSP was found to be about 5.8 mg g−1, achieved at
the concentration of 100 mg L−1 FeII. The higher amount of FeII retained per unit mass
of adsorbent (mg g−1) at higher initial concentration is the result of increased FeII con-
centration gradient at solution-adsorbent interface (i.e., increased probability of collision
between metal ions and adsorbent surface), which led to enhanced mass transfer driving
forces to overcome all mass transfer resistances [42]. Our results are in agreement with
findings reported by several earlier workers for FeII adsorption on agro-wastes, such as
thermochemically-activated walnut shells and orange peels [29,30].
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2.2.3. Effect of Temperature

The effect of temperature was investigated over the range of 6–33 ◦C. The results
presented in Figures 5 and 6 show that uptake of FeII on WSP was positively affected by
the increase of temperature; nevertheless, it is important to point out that an improvement
in FeII adsorption was observed only when temperature was increased from 6 to 22 ◦C;
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a subsequent rise of temperature to 33 ◦C led to no discernible enhancement the FeII uptake.
The observed temperature dependence is indicative of an endothermic adsorption process.
The enhancement of adsorption efficacy with increasing temperature may be attributed
to better interactions between FeII and WSP as a result increased rates of intraparticle
diffusion of FeII ions into the pores of WSP, or to creation of new adsorption sites at
higher temperatures [43]. The positive effect of temperature on the adsorption efficacy
was reported also in early works investigating removal of FeII from aqueous solutions by
adsorption on thermochemically-activated walnut shells and orange peels [29,30].
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2.2.4. Effect of Ionic Strength

To investigate the influence of ionic strength, adsorption of FeII on WSP was con-
ducted in the co-presence of NaCl concentrations of 0, 0.01, 0.03 and 0.05 M as background
electrolyte. NaCl was used as indifferent electrolyte, in accord to previous studies investi-
gating the effect of ionic strength [44]. From Figures 7 and 8 it results that the process of
FeII adsorption was progressively hindered in the presence of increasingly concentrations
of competing Na+ cations. The trend of the change of metal adsorption with ionic strength
can be used for differentiating between the two main adsorption processes that may be
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involved in binding of anions onto minerals: physical (non-specific) adsorption, and chem-
ical (specific) adsorption. In our case, the observed effect can be interpreted as indicating
non-specific weak interactions (physisorption) being involved in adsorption mechanism of
FeII [44].
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2.3. CrVI Treatability Experiments
2.3.1. Effect of pH

In this series of tests the impact of initial pH was studied within the pH range of
1.0–5.9. The results of the present experiments (Figure 9) indicated that CrVI removal with
WSP-Fe0 was significantly hindered by the increase of pH; moreover, at pH ≥ 5.1 CrVI

removal was almost totally inhibited. Control experiments with WSP showed the same
trend of decreasing efficacy of CrVI removal with increasing pH (Figure 9). Our results may
be attributed, on the one hand, to a decrease in the number of positive charges existent
at WSP surface with increasing pH, which hinders electrostatic attraction of anionic CrVI

species. On the other hand, removal of CrVI at Fe0 centers is known to be a complex
process also inhibited by the increase of pH [45]. Similar maximum adsorption efficiency
in the acidic range has been most often reported in the literature for retaining of CrVI
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on adsorbents developed from different agricultural wastes (acid-activated rice husk,
ZnCl2-activated wood, acid-activated saw dust, ZnCl2-microwave-activated sawdust,
date pits, tea-waste) [32,46–48]. However, different influence of pH has also been observed;
for instance, the effective pH range for Chrysophyllum albidum seed shells-based adsorbents
was found to be 4.5–5 [49].
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Two important observations can be made by analyzing the findings of pH influence
experiments: (1) higher CrVI removal efficiencies for WSP-Fe0 than for WSP were observed
over the pH range of 1.0–4.1, and (2) no CrVI removal and low CrVI removal efficiency was
noticed over the pH range of 5.1–5.9 for WSP-Fe0 and WSP, respectively. The existence of
Fe0 centers at surface of WSP-Fe0 may explain both the better CrVI removal at pH 1.0–4.1
and the lack of CrVI removal at pH 5.1–5.9, observed for WSP-Fe0. It is well known that
CrVI removal at Fe0 surface (adsoption + possible reduction) is pH-dependent: the lower
the pH, the higher the removal efficiency [45]. However, CrVI adsorption at WSP surface
is also favored by an acidic pH. Therefore, it is apparent that adsorption at surface of
Fe0 centers was more severely hindered at pH 5.1–5.9 than adsorption at surface of WSP
surface. This is a relevant evidence of the importance of Fe0 centers in the process of CrVI

removal with WSP-Fe0.
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2.3.2. Effect of CrVI Initial Concentration

The influence of initial concentration was examined by varying the initial metal
concentration from 1 to 5 mg L−1. These concentrations were selected because they are
within the common levels both for subsurface CrVI-contaminated groundwater [50] and for
wastewater effluents [51,52]. Figure 10 depicts the influence of initial CrVI concentration on
removal efficiency. It can be easily seen from this figure that initial concentration of CrVI

is another parameter which plays an important role in the process of CrVI removal with
WSP-Fe0: the higher the initial CrVI concentration, the lower the efficacy of the removal
process. The same outcome was noticed also for the control experiments conducted with
WSP (Figure 10): uptake of CrVI was inhibited at higher CrVI concentrations; nevertheless,
Figure 10 clearly reveals that, for same CrVI initial concentration, better removal yields
were always obtained for WSP-Fe0 than for WSP, which is attributable to existence of
Fe0 at surface of WSP-Fe0. The results of the influence of initial concentration are con-
sistent with previous findings reporting removal of CrVI from aqueous effluents by use
of other biosorbents (acid-activated rice husk, ZnCl2-activated wood, acid-activated saw
dust, ZnCl2-microwave-activated sawdust) [32,47,48]. The negative effect of initial CrVI

concentration is similar to the one observed in the process of FeII removal, and has an
identical explanation: the more rapid saturation of the reactive centers existent at surface
of WSP-Fe0 (available for the interaction with CrVI) with increasing CrVI concentration.
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2.3.3. Effect of Temperature

The dependence of the CrVI removal process with temperature was investigated over
the range of 6–32 ◦C. It is evident from Figure 11 that removal of CrVI with WSP-Fe0 was
highly dependent on the temperature: an increased trend in removal efficiency was noticed
with rise in temperature, indicating the endothermic nature of the process. The observed
influence of increasing temperature can be most probably ascribed to increase in rate
of diffusion of the CrVI ions across the boundary layer. Even though the same effect of
temperature was observed also in control experiments with WSP (Figure 11), however, for
same temperature, higher CrVI removal efficiencies were always obtained for WSP-Fe0

than for WSP, attributable to existence of Fe0 at surface of WSP-Fe0. Our results are in line
with previous findings indicating favorable binding of CrVI on different biosorbents (acid-
activated rice husk, ZnCl2-activated wood, acid-activated saw dust, ZnCl2-microwave-
activated sawdust) at higher temperature [32,47,48].
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2.3.4. Effect of Ionic Strength

To study the influence of this parameter, the ionic strength of CrVI solutions was ad-
justed using NaCl as background electrolyte, in the concentration range of 0–0.05 M. The ex-
tent of CrVI removal with WSP-Fe0 as a function ionic strength is depicted in Figure 12.
As revealed by this figure, the addition of NaCl (i.e., increase of ionic strength) led to a slight
increase in CrVI removal efficiency. The highest improvement in removal efficacy was no-
ticed as the ionic strength was increased from 0 to 0.01 M; a further increase in ionic strength
to 0.03 and 0.05 M lead to removal yields higher than for 0 M, but lower than for 0.01 M.
Thus, it can be concluded that optimal ionic strength for CrVI removal with WSP-Fe0 was
0.01 M. On the other hand, control experiments conducted with WSP revealed that removal
of CrVI was practically not influenced by the increase of ionic strength (Figure 12). Con-
versely, other authors reported a more or less significant adverse influence of ionic strength
on the removal of CrVI with grape stalks, cork, olive stones, thermochemically-activated
walnut shells or surfactant modified spent mushroom [46,53–55]. The two different effects
exerted by the background ionic strength on removal of CrVI with WSP-Fe0 and with WSP
are indicative of two distinct removal mechanisms involved in the two cases. On the one
hand, the absence of any visible influence of ionic strength on CrVI removal with WSP
can be interpreted as indicating a specific adsorption mechanism [44]; on the other hand,
the higher removal efficiencies obtained with WSP-Fe0 at higher ionic strengths may be
ascribed to existence of Fe0 active sites at surface of WSP-Fe0. This is in accord with find-
ings of previous studies which demonstrated that Cl- anion can accelerate Fe0 corrosion
by forming soluble complexes with FeII, which are carried away from the metal surface;
the as formed FeII complexes have two important roles: (1) to delay the formation of oxide
layers at surface of Fe0, and (2), to act as secondary reducing agents for the reduction of
CrVI [56,57].
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2.4. Kinetic Modeling
2.4.1. Identification of the Kinetic Order

The statistical fits of FeII and CrVI removal experimental data to pseudo first and
pseudo second-order equations, and the parameters of the two kinetic models are summa-
rized in Table 1. With regard to FeII removal, as evidenced by the correlation coefficients,
pseudo second-order kinetic model provided the best match for the experimental data.
This conclusion is confirmed also by the fact that equilibrium adsorption capacity value (qe)
predicted by the pseudo second-order model fits the best the experimental value (qe

exp).
These evidences indicate that pseudo second-order kinetic model was the more appropriate
to describe FeII adsorption. This is consistent with results from a previous study using
thermochemically-activated orange peels [30]. The pseudo second-order kinetic model
assumes that the rate-limiting step of the adsorption process is of chemisorption nature,
involving sharing or exchange of electrons between adsorbent and adsorbate [58].

Table 1. Kinetic parameters of FeII and CrVI removal.

Test

Pseudo 1st Order Pseudo 2nd Order
qe

exp

(mg g−1)k1
(min−1)

qe
(mg g−1) R2 k2

(g mg−1 min−1)
qe

(mg g−1) R2

FeII + WSP 1.4 × 10−3 1.20 0.7936 18.8 × 10−3 3.93 0.9998 4.20

CrVI + WSP 6.9 × 10−3 0.35 0.9891 1.9 × 10−2 0.33 0.9874 0.40

CrVI + WSP-Fe0 1.8 × 10−2 0.46 0.9948 5.9 × 10−2 0.56 0.9923 0.50

From the kinetic data of CrVI removal with WSP-Fe0 it can be seen that regression co-
efficient of the second-order model is lower than of the pseudo first-order model, which im-
plies that removal of CrVI with WSP-Fe0 follows the pseudo first-order kinetics. In addition,
the calculated qe value obtained from the pseudo first-order model agrees better with the ex-
perimental qe

exp value than the one obtained from the second-order model. Consequently,
the retention of CrVI onto WSP-Fe0 could be best described by the pseudo first-order kinetic
model. Control experiments with WSP are in good agreement with WSP-Fe0 experiments,
revealing that adsorption onto WSP also fitted well to the pseudo first-order kinetic model.
The pseudo first-order kinetic model was successfully applied in early works investigat-
ing CrVI removal by different biomaterials (thermochemically-modified Terminalia arjuna
nuts, FeIII impregnated biochar and tea-waste [59–61]), being indicative for existence of
relatively weak electrostatic interactions between CrVI and adsorbent [62]. Nevertheless,
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several other studies, working with ZnCl2-activated S. guttata shell waste or acid-activated
pomegranate husk, indicated that pseudo-second order was the applicable kinetic model
for CrVI removal [63,64].

2.4.2. Identification of the Rate Limiting Step

Removal of a contaminant via adsorption occurs through a mechanism comprising
the following consecutive steps: (1) transport of contaminant in the bulk of the solution,
(2) transport of contaminant through the liquid film surrounding the adsorbent particle,
to its external surface (film diffusion), (3) transport of contaminant from the adsorbent
surface into its pores (intraparticle diffusion), and (4) retention of the contaminant inside the
pores. Generally, phase (1) and (4) are very rapid and do not represent the rate determining
step [65]. The Weber and Morris model was applied in this study to determine whether
film diffusion or intraparticle diffusion is the rate limiting step. If intra-particle diffusion
would be the rate-limiting step, then Weber and Morris plots should pass through the
origin and have a good linearity. Figures 13–15 clearly reveal that, for both FeII and CrVI

removal, the qt versus t0.5 plots show multilinearity, indicating that at least two steps
take place. This implies that intraparticle diffusion was not the only rate-controlling step,
and that diffusion through the liquid film around the adsorbent toward particle surface
is also involved in metal binding onto adsorbent. The first (sharper) region of the Weber
and Morris plots corresponds to the phase of the adsorption which is predominantly
controlled by film diffusion, while the second region describes the adsorption stage where
intraparticle diffusion played the major role, being thus rate limiting [66,67]. Accordingly,
the kdif intraparticle diffusion rate constants were derived from the slope of the second
linear portion, while the C values were computed from the intercept of the first linear
portion. The kdif intraparticle diffusion rate constant can be used for evaluation of the
effect of intraparticle diffusion on the adsorption process: the higher the kdif, the lower
the resistance to diffusion inside the pores. The intercept C value provides information
about the thickness of the boundary layer: the larger the intercept value, the greater the
resistance of external mass transfer across the boundary layer [64,67].
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Figure 15. Weber and Morris plot for CrVI removal by WSP.

From the values of intraparticle diffusion model parameters (Table 2) it can be seen
that higher diffusion rate was observed for removal of CrVI with WSP-Fe0 than with
WSP, while similar low C values were determined in both cases. On the other hand,
FeII removal with WSP is characterized by much lower diffusion rate constant and much
higher boundary layer effect than removal of CrVI with both WSP-Fe0 and WSP. Similar
Weber and Morris plots exhibiting multilinearity and not intersecting the origin were
previously reported for the adsorption of acid-activated date palm seed, Eichhornia crassipes
biomass and tea-waste [61,68,69].

Table 2. Weber and Morris diffusion model parameters.

kdiff
(mg g−1 min−0.5) C

FeII removal by WSP 5.3 × 10−3 2.4
CrVI removal by WSP 0.9 × 10−2 2 × 10−2

CrVI removal by WSP-Fe0 1.6 × 10−2 3 × 10−2

2.5. Mechanism of Metal Removal

The remediation of the AMD solution occurs through a pure adsorption process of FeII

at surface of WSP, via mixed physical and chemical mechanisms. Similarly, CrVI removal
with WSP-Fe0 can also be ascribed to adsorption processes. However, in this case, the higher
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removal efficiencies observed for WSP-Fe0 than for WSP are indicative of existence of
differences in mechanism of metal removal. This is attributable to Fe0 centers formed
at surface of WSP as a result of reaction between WSP-FeII and sodium borohydride.
Over the last three decades, Fe0 has been demonstrated to represent a highly efficient
reagent in remediation of water contaminated with a wide variety of pollutants, including
CrVI. Removal of CrVI with Fe0 occurs through a very complex mechanism, which may
involve physicochemical processes such as adsorption, direct reduction, indirect reduction,
co-precipitation/enmeshment in the mass of precipitates; generally, both adsorption and
reduction processes of CrVI in Fe0/H2O system are favored by an acidic pH, being strongly
hindered at pH levels close to neutral values [45]. After being adsorbed at surface of
WSP-Fe0, CrVI can be reduced to CrIII by WSP functional groups, by Fe0 (at very acidic
pH, when it’s not covered by oxides), by FeII-based corrosion products formed at surface
of Fe0 or by dissolved FeII. In addition, under acidic conditions, CrVI reduction may take
place also homogeneously with dissolved FeII. Thus, we can suggest that removal of
CrVI with WSP-Fe0 occurred through a combined adsorption-reduction process. However,
since very low concentrations of dissolved CrIII (~0.2–0.4 mg L−1) were detected only at pH
1.0 and 2.1, and CrIII adsorption/precipitation is inhibited at acidic pH, it can be assumed
that adsorption processes played the most important role in removal of CrVI. This is
in good agreement with similar observations reported by other researchers, indicating
that CrVI removal by natural biomaterials occurs via an adsorption-coupled reduction
mechanism [70,71].

3. Materials and Methods
3.1. Preparation of the Adsorbent for AMD Treatability Experiments

Walnuts (Juglans regia) were obtained from a local market in Timisoara (Romania).
After crushing the walnuts by hand, shells were separated, rinsed several times with
distilled water to remove impurities, and dried in an oven at 80 ◦C for 24 h. Then, the dried
shells were powdered using an electric grinder. The resultant WSP was washed with
distilled water until no brown coloration of the water was noticed, and then dried again
in oven at 80 ◦C for 24 h, to remove moisture. After cooling, the WSP was ground with
a mortar and pestle, and subsequently sieved to particles size of 0.5–1.25 mm for further
treatability experiments with synthetic AMD solutions.

3.2. Preparation of the Reactive Material for CrVI Treatability Experiments

After each AMD treatability experiment, the exhausted adsorbent (WSP-FeII) was
recovered and dried at room temperature. By means of mass balance calculation, the concen-
tration of adsorbed iron was determined to be about 3 mg FeII/g WSP. Then, the adsorbed
FeII was reduced to Fe0 via the liquid-phase reduction method, using sodium borohydride
(NaBH4) as reducing reagent [72]:

Fe(H2O)6
2+ + 2BH4

− → Fe0 + 2B(OH)3 + 7H2 (7)

About 250 mL distilled water were added over 80 g of WSP-FeII and the obtained
slurry was stirred at a rate of 200 rpm, in order to keep solid particles in suspension. Then,
0.6 g NaBH4 was added in small portions while stirring, in a fume hood; NaBH4 was
used in excess to the stoichiometric needed amount, in order to account for any that may
decompose during the course of the reaction with water. The usual brown color of the
solid material immediately darkened to a black appearance, indicating the formation of Fe0

centers at surface of WSP (Figure S16) [73]. After the addition of NaBH4 was completed
(~60 min), the resulted mixture was stirred for an additional 60 min. The resulted WSP-Fe0

was separated from the solution, washed with distilled water, dried at 80 ◦C for 24 h in an
oven, and kept in vacuum desiccator prior to being used in treatability experiments with
CrVI solution.
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3.3. AMD Treatability Experiments

Synthetic AMD stock solution (1000 mg L−1) was prepared by dissolving the required
amount of AR grade FeSO4·7H2O in distilled de-ionized water. Then, AMD working
solutions with desired FeII concentrations were prepared by appropriate dilution of stock
solution, knowing that Fe is often the main heavy metal present in acid mine drainage [74].
AMD treatability experiments were conducted in batch system, using an Ovan jar tester.
500 mL AMD solution was poured in 800 mL Berzelius flasks, followed by addition of 5 g
WSP. The mixture was stirred (200 rpm) and, at timed intervals, samples were withdrawn,
filtered using a 0.45 µm filter and analyzed for FeII. The pH of FeII solutions was adjusted
before experiments to the required value by addition of small amounts of concentrated
H2SO4. Detailed conditions of AMD treatability experiments are summarized in Table 3.

Table 3. Setup design of AMD treatability experiments.

Investigation of the Influence of

pH FeII Concentration Temperature Ionic Strength

pH 1.0–4.1 4.1 4.1 4.1
FeII concentration

(mg L−1)
50 25–100 50 50

Temperature
(◦C) 22 22 6–33 22

Ionic strength
(mole L−1 NaCl) 0 0 0 0–0.05

3.4. CrVI Treatability Experiments

CrVI stock solution (1000 mg L−1) was prepared by dissolving the required amount
of AR grade K2Cr2O7 in distilled de-ionized water. The stock solution was then further
diluted with de-ionized distilled water in order to prepare the working CrVI solutions.
Batch CrVI treatability experiments were conducted by mixing 1 g of WSP-Fe0 with a
volume 500 of mL CrVI solution in 800 mL Berzelius flasks. The mixture was stirred
using an Ovan jar tester (200 rpm) and, at predetermined times, supernatant aliquots
were collected, filtered through a 0.45 µm filter and sent to CrVI analysis. The pH of CrVI

solution was set by addition of small amounts of concentrated H2SO4 or 1 M NaOH solution.
For comparison purposes, control CrVI treatability experiments with raw WSP were also
conducted, by keeping unchanged all experimental conditions. Detailed conditions of CrVI

treatability experiments are summarized in Table 4.

Table 4. Setup design of CrVI treatability experiments.

Investigation of the Influence of

pH CrVI Concentration Temperature Ionic Strength

pH 1.0–5.9 3.0 3.0 3.0
CrVI

concentration
(mg L−1)

2 1–5 2 2

Temperature
(◦C) 22 22 6–33 22

Ionic strength
(mole L−1 NaCl) 0 0 0 0–0.05

3.5. Analytical Procedure

CrVI and FeII concentrations in the filtrate were analyzed by the 1,5-diphenylcarbazide
method (at 540 nm) and, 1,10-ortophenantroline colorimetric method (at 510 nm), respec-
tively, by using a 200 PLUS spectrophotometer (Specord, Germany). Crtotal was determined
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by treating the sample with KMnO4 to oxidize any present CrIII, followed by analysis as
CrVI; then, CrIII was determined from the difference between Crtotal and CrVI [75]. The pH
of the samples was measured using a 7320 pH-meter (Inolab, Germany); three standard
buffer solutions at pHs 4.0, 7.0 and 10.0 were employed for calibration. Point of zero
charge (pHpzc) of WSP surface was determined using the pH drift method [76]. The pre-
pared adsorbents were characterized by Fourier transform infrared spectrometry (FTIR:
VERTEX 70, Bruker, Germany) and scanning electron microscopy (SEM: Inspect S, FEI,
The Netherlands) coupled with energy dispersive X-ray spectroscopy (EDX: GENESIS XM
2i, The Netherlands).

3.6. Kinetic Modeling of Experimental Data

The kinetics of contaminant removal was analyzed using the linearized forms of
Lagergren pseudo first-order model and Ho’s pseudo second-order model [58,77,78]:

log(qe − qt) = log qe −
k1

2303
t (8)

t
qt

=
1

k2q2
e
+

t
qe

(9)

where qe is the equilibrium adsorption capacity (mg g−1), qt is the adsorption capacity
at time t (mg g−1), k1 (min−1) and k2 (g mg−1 min−1) are the pseudo first-order and,
respectively, pseudo second-order adsorption rate coefficients. The product k2qe2 also
represents the initial sorption rate. qe and qt were calculated as follows:

qt =
(C0 − Ct)V

M
(10)

qe =
(C0 − Ce)V

M
(11)

where M is the mass of adsorbent used in the kinetic experiments (g), Ce the equilibrium
concentration of metal (mg L−1), Ct the metal concentration at time t (mg L−1), C0 the initial
concentration of metal (mg L−1); V the volume of solution used in the kinetic experiments (L).

The slope and intercept of the plots of log(qe - qt) vs. t allows computation of pseudo
first-order k1 and of equilibrium adsorption capacity qe; similarly, the plot of t/qt vs. t
enables the pseudo second-order rate constant k2 and qe to be determined from intercept
and slope. In order to further assess the nature of the rate-limiting step of the process
(film diffusion or intraparticle diffusion), experimental data was fitted also to the Weber
and Morris intraparticle diffusion model [64,79]:

qt = kdi f f · t0.5 + C (12)

where qt (mg g−1) is the adsorption capacity at time t, kdiff (mg g−1 min−0.5) is the intra-
particle diffusion rate constant and C is a constant linked to the apparent thickness of the
film boundary layer.

Kinetic modeling was conducted using experimental data acquired at pH 4.1, 50 mg L−1,
22 ◦C, and pH 4.1, 2 mg L−1, 22 ◦C, for FeII and CrVI, respectively.

3.7. Statistical Analysis

All the data represent the mean of two independent experiments and relative error
less than 2% were obtained. Statistical analysis was performed using Microsoft Excel 2016
statistical tool.

4. Conclusions

In last years, the use of agricultural wastes/byproducts as cost-effective alternative
adsorbents for the treatment of water contaminated with a large variety of pollutants
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has attracted significant interest. However, much less interest has shown for finding
environmentally-friendly solutions for the management of residual solids resulted from
such water treatment processes. The present paper presents data on the use of WSP,
a local agricultural waste, for the sequential removal of two heavy metals, namely FeII

and CrVI, from aqueous effluents. Results presented herein clearly demonstrated that
WSP can be considered as a promising adsorbent for the removal of FeII from AMD,
while WSP-Fe0, obtained by treating the FeII-contaminated solid residue (WSP-FeII) with
sodium borohydride, is a suitable reactive reagent in the process of CrVI removal from
contaminated waters. The better capacity of WSP-Fe0 to remove CrVI, compared to fresh
WSP, was ascribed to existence of Fe0 centers at surface of WSP-Fe0. Adsorption kinetics
of CrVI and FeII was successfully fitted by the pseudo first- and pseudo second-order
model, respectively. While binding of FeII on WSP occurred via physical and chemical
mixed adsorption, removal of CrVI with WSP-Fe0 took place through a more complex
mechanism, involving both adsorption and reduction processes. This study provides
compelling evidence that residues resulted from a water adsorption treatment process
can be successfully converted into reactive materials for a subsequent water treatment
technology. The major challenge of this strategy is to identify water treatment processes
with fully compatible pollutants.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-971
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