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Abstract: In this article, chaotic search based constrained equilibrium optimizer algorithm (CS-
CEOA) is suggested by integrating a novel heuristic approach called equilibrium optimizer with a
chaos theory-based local search algorithm for solving general non-linear programming. CS-CEOA
is consists of two phases, the first one (phase I) aims to detect an approximate solution, avoiding
being stuck in local minima. In phase II, the chaos-based search algorithm improves local search
performance to obtain the best optimal solution. For every infeasible solution, repair function is
implemented in a way such that, a new feasible solution is created on the line segment defined by
a feasible reference point and the infeasible solution itself. Due to the fast globally converging of
evolutionary algorithms and the chaotic search’s exhaustive search, CS-CEOA could locate the true
optimal solution by applying an exhaustive local search for a limited area defined from Phase I. The
efficiency of CS-CEOA is studied over multi-suites of benchmark problems including constrained,
unconstrained, CEC’05 problems, and an application of blending four ingredients, three feed streams,
one tank, and two products to create some certain products with specific chemical properties, also to
satisfy the target costs. The results were compared with the standard evolutionary algorithms as PSO
and GA, and many hybrid algorithms in the same simulation environment to approve its superiority
of detecting the optimal solution over selected counterparts.

Keywords: chaotic mapping; constrained optimization; equilibrium optimizer; non-linear optimiza-
tion; petrochemical engineering application

1. Introduction

An exhaustive investigation of both theoretical and practical areas of the constrained
non-linear programming problems (CNPPs) can be the subject matter of this paper. CNPPs
have many characteristics, such as non-differentiable, non-convex, unimodal, and multi-
modal. Owing to the complexities of the CNPPs that often occur, researchers are trying to
implement efficient optimizers to deal with non-linear programming problems NLP.

From the view of mathematical optimization methods, there are two main classifica-
tions: (1) deterministic optimization techniques, and (2) stochastic optimization techniques.
Linear programming and non-linear programming methods [1,2] are of the most common
deterministic methods that are used by searching for space and finding a solution using
problem gradient knowledge. These methods are useful for problems with linear search
areas (unimodal functions), but in problems having non-linear search areas, like real-world
applications with non-convex formulation, they are vulnerable to local optima impair-
ment [3,4]. This problem can be combated by modifying or hybridizing the algorithm [5]

Processes 2021, 9, 200. https://doi.org/10.3390/pr9020200 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-8115-0638
https://doi.org/10.3390/pr9020200
https://doi.org/10.3390/pr9020200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9020200
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/2/200?type=check_update&version=3


Processes 2021, 9, 200 2 of 20

with different initial design. Another alternative method for these traditional methods
is the stochastic-based optimization methods that implement random variables. These
methods are used to explore the search space globally to detect optimal global or opti-
mal solution close-to-global solution. Their advantages include simplicity, independence,
problem flexibility, and non-gradient nature [6].

Among the existing stochastic methods, famous algorithms such as genetic algo-
rithms based approaches [7–10], artificial immune system [11], neural network-based
methods [12], particle swarm based methods [13–15], ant colony based methods [16], artifi-
cial bee colony based methods [17], bacterial foraging based algorithm (BFA) [18,19], cat
swarm based optimization algorithm (CSO) [20], glowworm swarm based optimization
algorithm(GSOA) [21], firefly-based optimization algorithm (FOA) [22], monkey-based
algorithm (MA) [23], krill herd algorithm (KHA) [24], cuckoo search based algorithm [25],
whale optimization algorithm (WOA) [26], sine cosine algorithm [27,28], grasshopper based
optimization algorithm (GOA) [29], salp swarm based algorithm [30], equilibrium opti-
mizer based optimization algorithm (EOA) [31], gradient-based optimizer (GBO) [32], slime
mold-based algorithm (SMA) [33], and Harris hawks optimization (HHO) [34], and others.

There are many stochastic-based methods that have recently been used to deal with
CNPPs such as a carnivorous plant algorithm [35], modified Sine Cosine Algorithm [36]
enhanced a modified SCA with a novel mutation operator, and a transition parameter,
water turbulent flow optimization (TFWO) algorithm [37]. Chaos mechanism based on
quasi-opposition was presented [38], an ABC algorithm with adaptive heterogeneous
competition [39], an improved FOA [40], Bare-Bones Based SCA [41], Group teaching
optimization algorithm (GTOA) [42], Political Optimizer (PO) [43], Refined selfish herd
optimizer [44], etc.

Many scientists and researchers investigated the hybridization between chaos the-
ory and evolutionary optimization techniques to enhance optimization algorithm per-
formance. Wei et al. [45] implemented the tent chaotic map to randomly generate the
initial population for the genetic algorithm to guarantee well-distributed throughout the
search space. Dashet al. [46] presented a novel hybrid evolutionary swarm algorithm by
combining conditional mutual information maximization with a chaotic firefly approach.
Fuertes et al. [47] proposed a new contribution to the chaos-based genetic algorithm and
they investigated the entropy effectiveness in the initial population. Mousa et al. [48]
presented a hybrid evolutionary algorithm based on the sinusoidal chaotic mapping.
El-Shorbagy et al. [49] presented an interesting comparison between 14 chaotic mappings
representing chaotic local search. Abo-Elnaga et al. [50] presented a chaos local Search
based genetic algorithm for dealing with bilevel programming problems.

EOA is a novel optimization approach that simulates control volume mass balance
models, which implemented to determine both dynamic and equilibrium states was pro-
posed by Faramarzi et al. [31]. Each particle (solution) represents a search agent with its
position (concentration) in the EOA. In order to ultimately achieve an optimal balance (op-
timum result), search agents randomly update their attention on the best available choices,
i.e., matching applicants. It has been shown that the term "generation rate" improves the
capability of EOA to escape local minima and to establish a balance between exploitation
operator and exploration operator.

The rising literature shows that EOA is becoming more common in different fields.
For example, a binary EOA for 0–1 knapsack problem had been proposed in [51]. While
an effective EOA with a mutation strategy for numerical optimization had been provided
in [52]. In addition, it was used to calculate the optimal estimate of Schottky diode pa-
rameters [53], to determine the solar photovoltaic parameter [54], and to reconfigure and
distribute generation in power systems [55], etc. The efficacy of EOA enables multidisci-
plinary researchers to further improve its applicability. There are three ways to strengthen
the initial EOA as follows:
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1. Changing EOA parameters or algorithmic procedures to boost algorithm performance;
2. The development of the EOA by modern learning methods to improve the use

of information;
3. Hybridization of the EOA by other search methods;
4. Combining EOA with chaotic search methods.

In this study, CS-CEOA is suggested to solve non-linear programming and an applica-
tion of petrochemical engineering. CS-CEOA is an integration between a chaos-based local
search algorithm, and a new heuristic approach called equilibrium optimizer algorithm
(EOA). The principle of co-evolution, reparation, elitism, and chaotic search are the main
features of the proposed method. The repair method was implemented to co-evolves any
infeasible solution until it becomes feasible, in a way such that, a new feasible solution
is created on the segment defined by the feasible reference point and the unfeasible solu-
tion itself. The elitist strategy is used to elite the best-found solution all the generation,
which gives the proposed algorithm a faster convergence to the optimal solution, while
the chaotic search increasing the CS-CEOA capability to get the global solution. CS-CEOA
is examined using a set of the most well-known benchmark test problems “CEC’05” and
eight constrained benchmark problems elicited from the literature [56,57]. Further, the
proposed algorithm is implemented in solving an application of blending four ingredients,
three feed streams, one tank, and two products to obtain certain products with certain
(required) chemical properties and determining costs. The efficiency of our algorithm was
achieved compared with other algorithms in the literature.

This paper is structured as follows. In Section 2, we explain the standard formulation
of the constrained non-linear programming problems. The suggested algorithm is investi-
gated in Section 3. Section 4 addresses the simulation experiments. The limitation of the
proposed study is presented in Section 5, Finally, our observations and future work are
discussed in Section 6.

2. Constrained Non-linear Programming Problem (CNPP)

In mathematics, a constrained non-linear programming problem (CNPP) is the process
of handling an optimization problem where any of the constraints or objective function are
nonlinear. Linear programming problem is a special case of NPP.

The general CNPP is written generally as [58]:

min f (x)
subject to

cm(x) = 0, m ∈ E,
cm(x) ≥ 0, m ∈ I ,
li ≤ xi ≤ ui, i ∈ 1, . . . , n

(1)

where x ∈ Rn are the decision variables, l ∈ Rn, u ∈ Rn represent lower bounds and upper
bounds of the decision variables, |ε| is the set of equality constraints and |I| is the set of
inequality constraints, the function f is the objective function, and cm∀m ∈ E ∪ I are the
set of constraint functions, the functions f , cm∀m are mapping from Rn to R.

3. The Suggested Algorithm (CS-CEOA)

In this section, the suggested algorithm, a chaotic search based on a constrained
equilibrium optimizer algorithm (CS-CEOA) is presented.

3.1. Brief Discribtion of Equilibrium Optimizer Algorithm

The equilibrium optimizer algorithm (EOA) is a simulated optimizer that was orig-
inally presented by Faramarzi [31] in 2020. The simulated optimizer simulates the equi-
librium and dynamic m states related to the mass balance models where each particle
concentration (particle position) is updated in a random way with a target of reaching the
equilibrium state (particle fitness). The equilibrium optimizer has a very simple procedure,
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also it has an adaptive dynamic control parameter. It is initialized with initial positions of
the particles (initial positions Ci, i = 1, 2, . . . , No. of Particles 1

2 ) with a special number
(No. of particles) and problem’s dimensions (dim) as in the following equation:

Cinitial = rand(No. of particles, dim)× (ub− lb) + lb, (2)

where Cinitial locates the initial positions of the particles; the decision variables bounds lb
and ub are the specified lower and upper bounds respectively of the decision optimiza-
tion variables.

• Equilibrium pool and candidates (Ceq)

The terminology of the equilibrium state is called the final convergence state of EOA.
At the initialization of the algorithm, equilibrium candidates are assigned to support a
search pattern for the particles. There are four best-so-far particles identified during the
algorithm optimization process with another particle, whose position is the arithmetic
mean of the other four particles. EOA has an exploration scheme using four candidates and
an exploitation scheme using the average mean. These five particles are called equilibrium
candidates which are used to construct the equilibrium pool:

Ceq,pool =
(
Ceq,1, Ceq,2, Ceq,3, Ceq,4, Ceq,av

)
, (3)

The position of every particle in each iteration of the whole algorithm is updated
using an equilibrium pool by random selection among candidates chosen with the same
probability. Then, the particle positions are repeatedly updated with respect to the equilib-
rium pool, which is extracted as the best-so-far candidates. The procedure of updating the
mechanism of the EO as in the following equation:

Cnew = Ceq +
G
λ
(1− F) + (Cold − Ceq)× F, (4)

F = a1sign(r− 0.5)(e−λt − 1), (5)

G =

{
0.5r1 if r2 ≥ GP

0 if r2 < GP
, (6)

t =
(

1− T
Tmax

)a2
T

Tmax
; (7)

where Cold is the current position (concentration) vector, and Cnew is the new updated
position vectors of the particle? From the equilibrium pool, we randomly pick one con-
centration vector which denoted by Ceq. λ is a random vector between 0 and 1; a1 and
a2 are constants (a1 = 2 and a1 = 1), r, r1, r2 are random numbers generated between
0 and 1, GP is the generation probability, T is the current iteration counter and Tmax is
the predetermined maximum number of the iterations. In each generation repetition, the
problem objective function is calculated for each particle’s position to determine their states.
In addition, the equilibrium pool Ceq,pool =

(
Ceq,1, Ceq,2, Ceq,3, Ceq,4, Ceq,av

)
is updated each

iteration to contain the four best so far particles.

3.2. Basic Algorithm

The combined algorithm CS-CEOA is constructed of two phases, the first one (phase I)
aims to locate the approximate solution, avoiding being stuck in local minima. In phase II,
the chaos-based search algorithm increases CS-CEOA’s performance and obtain the best
optimal solution. CEOA’s main steps are defined as follows:

• Phase I: Constrained equilibrium optimizer algorithm

Step 1. Initialization stage: Initial population in the first generation are randomly
initialized according to Equation (1).
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Step 2. Initial feasible particle: The algorithm requires to get at least one initial feasible
reference point (satisfying the set of constraints) to evolve the algorithm process. If the
algorithm has difficulties in finding such an initial reference point (RP), the algorithm shall
implement one of the following two ways: (1) doubling the number of tests to obtain the
initial reference point, or (2) increasing temporally feasible space [59].

Step 3. Repairing infeasible particles: This step co-evolves any infeasible solution until
it becomes feasible. A feasible solution is created on the segment defined by the feasible
reference point and the infeasible solution [60].

Step 4. Elitist strategy for selection: To make the algorithm converge faster to the
optimal solution, using the elitist strategy. The elitist particle represents the best solution for
the population. By using an elitist solution, the best fitness particle can never be increased
from one generation to the next until the optimization process is over.

Step 5. Evolution process stage: The algorithm applies EOA procedures to create a
new population using Equations (4)–(7).

Step 6. Stopping criteria: The proposed algorithm is stopped for any of the following
two conditions:

- Reaching the maximum predetermined number of generations Tmax.
- When the population’s particles converge. Particle convergence happens when all

solutions in the population are similar.

Optimization by using phase-I yields an approximate solution x∗ =
(
x∗1 , x∗2 , . . . , x∗n

)
close to its true global solution. Chaotic local search (CLS) has the capability to perturb the
position x∗; where local zone around x∗ will be exhaustively explored. There are various
chaotic maps that have been used in optimization algorithms to enhance their efficiency. In
the suggested algorithm, the chaotic circle map was used in the CLS Phase. The detailed
procedure of the CLS scheme are presented as follows:

• Phase II: Chaotic local search (CLS):

Step 1. Determine the range of CLS [ai, bi], i = 1, 2, .., n by x∗i − ε > ai, x∗i + ε < bi;
where ε is the predetermined radius of chaotic local search.

Step 2. Chaotic random numbers zL are generated using the chaotic circle map; where
α = 0.5, β = 0.2 as follows:

zL+1 = zL + β− (α− 2π) sin
(

2πzL
)

Mod(1), (8)

where L is the CLS iterations and Mod is a mathematical function, that returns the remainder
or signed remainder of a division after one number is divided by another.

Step 3. Map the chaos variable zL into the decision variables range of optimization
valuable [ai, bi] by

xL
i = ai + (bi − ai)zL, (9)

By substituting the value of ai = x∗i − ε and bi = x∗i + ε, then Equation (9) can be
rewritten as:

xL
i = x∗i − ε + 2εzL ∀i = 1, . . . , n, (10)

Step 4. If f
(

xL) < f (x∗) then set x∗ = xL, otherwise break the iteration.
Step 5. If f (x∗) has not been improved for all L iterations, terminate chaos search

algorithm and put out x∗ as the best optimal global solution.
The proposed algorithm is said to have convergence if

‖XT+1 − X∗‖
‖XT − X∗‖ ≤ τ, τ ≥ 0, (11)

where XT and XT+1 denote the solutions obtained at the end of iterations T and T + 1,
respectively, X∗ represents the optimum solution, and ‖X‖ denotes the length or norm of
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the vector X. The proposed optimization method is said to have super-linear convergence
(corresponds to fast convergence) if:

lim
T→∞

‖XT+1 − X∗‖
‖XT − X∗‖ → 0 (12)

The pseudo-code of chaotic is illustrating local search is declared in Figure 1, while
the flow chart of the proposed algorithm is shown in Figure 2.

Figure 1. The pseudo-code of the chaotic local search (CLS).
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Figure 2. Flowchart of the proposed algorithm.
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4. Experimental Findings

This section is developed to validate the proposed algorithm to handle the non-linear
programming problems and to petrochemical engineering application; where it is tested by
a set of well-known benchmark test problems “CEC’05”, set of eight constrained benchmark
test problems [56,57], and petrochemical engineering application. The efficiency of our
algorithm is achieved compared with other recent algorithms in the literature. All the
experiments are coded in Matlab 14.0, and the numerical simulations are done on an Intel
Core machine (Intel i7, 2.9 GHz, 16 GB DDR4 RAM). The controlled parameters of the
proposed algorithm are shown in Table 1.

Table 1. The parameters setting.

Constrained Equilibrium
Optimizer Algorithm Chaotic Local Search (CLS)

Parameter Value Parameter Value/Description

Number of Particles 50 Chaotic Mapping Chaotic Circle
The maximum number of

iterations (Tmax)
100 Specified neighborhood

radius (ε) 1 × 10−6

Probability of generation (GP) 0.5 α, β 0.5, 0.2
a1, a2 2, 1 Chaos search iteration (L) 100

4.1. Benchmark Unconstrained Problem Suite

This subsection focuses on the reliability and robustness of the proposed algorithm
(CS-CEOA) evaluated by 17 unconstrained benchmark functions. The results are compared
against, integrated particle swarm with genetic algorithms (Integrated PSO-GAs) [15], a
hybrid optimization algorithm from PSO, and GA (H_PSO_GA) [61], a continuous genetic
algorithm (CGA) [62], continuous hybrid algorithm CHA [63], PSO based hybrid GA
(GA-PSO) [64] and the original constrained equilibrium optimizer algorithm (CEOA). To
avoid biasing the optimization results to the random of the initial population and to make
unbiased comparisons, we run each problem 30 times, starting with various randomly
selected positions in the hyperrectangular search space. The numerical comparison between
the results calculated by the proposed algorithm versus the global optimal solutions is
shown in Table 2. While Table 3 illustrates the obtained experimental results using the
proposed algorithm versus five recent evolutionary algorithms according to average error.
The numerical simulations have demonstrated the superiority of the proposed approach to
locating the global optimal solution.

Table 2. Calculated solution versus Global optimal solution.

Test
Problem F Optimal Integrated

PSO-GAs H_PSO_GA CEOA CS-CEOA

RC 0.397887 0.397887 0.397887 0.398019 0.397887
B2 0 0 0 0.001785 0
ES −1 −1 −1 −0.999993 −1
GP 3 3 3 3.0000478 3
SH −186.7309 −186.7309 −186.7309 −186.6298 −186.731
DJ 0 2.6022 × 10−64 0 9.3799 × 10−53 0

H3,4 −3.86278 −3.86343347 −3.86343347787 −3.861023 −3.86278
H6,4 −3.32237 −3.322368 −3.322368 −3.32226 −3.32237
S4,5 −10.1532 −10.1532 −10.1532 −10.0487 −10.1532
S4,7 −10.40294 −10.402916 −10.40291634 −10.179683 −10.403
S4,10 −10.53641 −10.5363855 −10.53638559 −9.998507 −10.5365
R2 0 1.38584 × 10−21 1.5061 × 10−24 3.50704 × 10−13 −1 × 10−30

R5 0 1.7476 × 10−11 1.7634 × 10−13 8.4143 × 10−4 0
R10 0 1.1367 × 10−9 2.3369 × 10−13 6.4923 × 10−5 0
Z2 0 1.8461 × 10−18 0 4.2805 × 10−14 0
Z5 0 3.8176 × 10−9 0 6.1409 × 10−6 0
Z10 0 2.0996 × 10−9 0 5.2118 × 10−7 0
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Table 3. Results provided by CS-CEOA, CEOA, H_PSO_GA, Integrated PSO-GAs, CGA, CHA and GA-PSO.

Test
Function

Average Error

CS-CEOA CEOA H_PSO_GA [61] Integrated PSO-GAs [15] CGA [62] CHA [63] GA-PSO [64]

RC 0.0 0.0 0.0 4.59 × 10−7 0.0001 0.0001 0.00009
B2 0.0 0.0 0.0 1 × 10−25 0.0003 0.0000002 0.00001
ES 0.0 0.0 0.0 1 × 10−30 0.0010 0.0010 0.00003
GP 0.0 0.0 0.0 −6.3060 × 10−14 0.0010 0.0010 0.00012
SH 0.0 0.0 0.0 8.83064 × 10−6 0.0050 0.0050 0.00007
DJ 0.0 0.0 0.0 8.443663 × 10−15 0.0002 0.0002 0.00004

H3,4 3 × 10−6 3 × 10−6 0.00002 0.00003 0.0050 0.0050 0.00020
H6,4 4 × 10−8 4 × 10−8 5 × 10-7 2 × 10−6 0.0400 0.0080 0.00024
S4,5 0.0 0.0 0.0 0.0 0.1400 0.0090 0.00014
S4,7 0.000017 0.000017 0.000013 0.00002 0.1200 0.0100 0.00015
S4,10 0.000091 0.000091 0.000011 0.00002 0.1500 0.0150 0.00012
R2 1 × 10−30 1 × 10−30 1 × 10-32 1 × 10−30 0.0040 0.0040 0.00064
R5 0.0 0.0 1 × 10-25 1 × 10−20 0.1500 0.0180 0.00013
R10 0.0 0.0 1 × 10-20 1 × 10−18 0.0200 0.0080 0.00005
Z2 0.0 0.0 0.0 1 × 10−15 0.000003 0.000003 0.00005
Z5 0.0 0.0 0.0 1 × 10−17 0.0004 0.00006 0.00000
Z10 0.0 0.0 0.0 1 × 10−25 0.000001 0.000001 0.00000

4.2. Benchmark Constrained Problem Suite

This subsection focuses on the reliability, robustness, and ability of the CS-CEOA to
solve constraining problems as it is evaluated through 8 constrained standard functions [57].
For comparison, we have chosen the constrained PSO algorithm according to [57]. Table 4
shows a comparison between the constrained PSO algorithm [57], the original constrained
equilibrium optimizer algorithm (CEOA), and our approach CS-CEOA according to the
absolute error. It is observed that CS-CEOA optimized the constrained problems effectively;
where the average error of our solutions is less than that obtained by the constrained PSO
algorithm in most problems.

Table 4. Error provided by constrained PSO, CEOA, and CS-CEOA.

Benchmark Problem
Error = |Optimal Value–Best Found Value|

CS-CEOA CEOA Constrained PSO [57]

P_1 10 × 10−30 10 × 10−17 5 × 10−4

P_2 1 × 10−12 1 × 10−4 2 × 10−5

P_3 0.00 0.00 0.00
P_4 10 × 10−3 0.01 1.76
P_5 0.00 10 × 10−9 0.00
P_6 0.00 10 × 10−8 0.00
P_7 0.00 10 × 10−5 0.00
P_8 0.00 10 × 10−11 0.00

Additionally, by comparing the proposed algorithm (CS-CEOA) with the original
CEOA, it can be shown that chaotic search (CS) improves outcomes for both unconstrained
benchmark problem suite (Tables 2 and 3) and constrained benchmark problem suite
(Table 4). On the other hand, implementing chaotic local search influences most signifi-
cantly the algorithm convergence time, saving up to 12% of the time without affecting the
result accuracy.

4.3. CEC 2005 Benchmark Unconstrained Problems

The proposed approach is tested by 25 problems the set of CEC’05 “special session
2005 on real-parameter optimization problems” [56]. Table 5 shows the comparison results
between the average error obtained by CS-CEOA and the other nine reported optimization
algorithms in the literature [65–74]; where all reported algorithms have been run fifty times
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for each test problem. The algorithm stops either when the maximal number of evaluations
(1 × 105) is achieved, or when the obtained error is less than 1 × 10-8, or. Further, for each
problem, we ranked the various methods according to the average error values obtained,
as in Tables 6 and 7. Figure 3 shows the relative weight of each algorithm, which computed
according to its rank. On the other hand, Figure 4 shows the comparison of different
problems between the different algorithms according to their ranks. Overall, the proposed
algorithm CS-CEOA performs well on almost all the test problems used for this suite.

Table 5. Average error of CEC’05 obtained by CS-CEOA versus other optimization algorithms.

Problem PSO [65]
IPOP-

CMA-E
[66]

CHC
[67,68]

SSGA
[69,70]

SS-BLX
[71]

SS-Arit
[72]

DE-Bin
[73]

DE-Exp
[73] SaDE [74] CS-

CEOA

F_1 1.23 ×
10−4 0 2.46 8.42 ×

10−9 3.40 × 101 1.06 7.72 ×
10−9

8.26 ×
10−9

8.42 ×
10−9 0.000

F_2 2.60 ×
10-2 0 1.18 × 102 8.72 ×

10−5 1.73 5.28 8.34 ×
10−9

8.18 ×
10−9

8.21 ×
10−9 0.000

F_3 5.17 × 104 0 2.70 × 105 7.95 × 104 1.84 × 105 2.54 × 105 4.23 × 101 9.94 × 101 6.56 × 103 0.000

F_4 2.488 2.93 × 103 9.19 × 101 2.59 ×
10−3 6.23 5.76 7.69 ×

10−9
8.35 ×
10−9

8.09 ×
10−9 0.000

F_5 4.10 × 102 8.10 ×
10−10 2.64 × 102 1.34 × 102 2.19 1.44 × 101 8.61 ×

10−9
8.51 ×
10−9

8.64 ×
10−9 0.000

F_6 7.31 × 102 0 1.42 × 106 6.17 1.15 × 102 4.95 × 102 7.96 ×
10−9

8.39 ×
10−9

1.61 ×
10−2 0.000

F_7 2.68 × 101 1.27 × 103 1.27 × 103 1.27 × 103 1.97 × 103 1.91 × 103 1.27 × 103 1.27 × 103 1.26 × 103 1.6231

F_8 2.043 ×
101 2.00 × 101 2.03 × 101 2.04 × 101 2.04 × 101 2.04 × 101 2.03 2.04 ×

1031 2.03 × 101 2.025

F_9 1.44 × 101 2.84 × 101 5.89 7.29 ×
10−9 4.20 5.96 4.55 8.15 ×

10−9
8.33 ×
10−9

5.523 ×
10−9

F_10 1.40 × 101 2.33 × 101 7.12 1.71 × 101 1.24 × 101 2.18 × 101 1.23 ×
1031 1.12+31 1.55 × 101 1.7632

F_11 5.590 1.34 1.60 3.26 2.93 2.86 2.43 2.07 6.80 1.9390
F_12 6.36 × 102 2.13 × 102 7.06 × 102 2.79 × 102 1.51 × 102 2.41 × 102 1.06 × 102 6.31 × 101 5.63 × 101 5.98530
F_13 1.503 1.13 8.30 × 101 6.71 × 101 3.25 × 101 5.48 × 101 1.57 6.40 × 101 7.07 × 101 1.4434
F_14 3.304 3.78 2.07 × 101 2.26 2.80 2.97 3.07 3.16 3.42 2.7518

F_15 3.398 ×
102 1.93 × 102 2.75 × 102 2.92 × 102 1.14 × 102 1.29 × 102 3.72 × 102 2.94 × 102 8.42 × 101 7.124 ×

103

F_16 1.33 × 102 1.17 × 102 9.73 × 101 1.05 × 102 1.04 × 102 1.13 × 102 1.12 × 102 1.13 × 102 1.23 × 102 1179 ×
102

F_17 1.50 × 102 3.39 × 102 1.05 × 102 1.19 × 102 1.18 × 102 1.28 × 102 1.42 × 102 1.31 × 102 1.39 × 102 1.269 ×
102

F_18 8.51 × 102 5.57 × 102 8.80 × 102 8.06 × 102 7.67 × 102 6.58 × 102 5.10 × 102 4.48 × 102 5.32 × 102 4.043 ×
102

F_19 8.50 × 102 5.29 × 102 8.80 × 102 8.90 × 102 7.56 × 102 7.01 × 102 5.01 × 102 4.34 × 102 5.20 × 102 7.650 ×
102

F_20 8.51 × 102 5.26 × 102 8.96 × 102 8.89 × 102 7.46 × 102 6.41 × 102 4.93 × 102 4.19 × 102 4.77 × 102 8.100 ×
102

F_21 9.14 × 102 4.42 × 102 8.16 × 102 8.52 × 102 4.85 × 102 5.01 × 102 5.24 × 102 5.42 × 102 5.14 × 102 4.0111 ×
102

F_22 8.07 × 102 7.65 × 102 7.74 × 102 7.52 × 102 6.83 × 102 6.94 × 102 7.72 × 102 7.72 × 102 7.66 × 102 7.505 ×
102

F_23 1.03 × 102 8.54 × 102 1.08 × 103 1.0 × 103 5.74 × 102 5.83 × 102 6.34 × 102 5.82 × 102 6.51 × 102 1.201 ×
102

F_24 4.12 × 103 6.10 × 102 2.96 × 102 2.36 × 102 2.51 × 102 2.01 × 102 2.06 × 102 2.02 × 102 2.00 × 102 3.040 ×
102

F_25 5.10 × 102 1.82 × 103 1.76 × 103 1.75 × 103 1.79 × 102 1.80 × 102 1.74 × 103 1.74 × 103 1.74 × 103 4.120 ×
102



Processes 2021, 9, 200 11 of 20

Table 6. Average error ranking of the 25 CEC’05 problems for all algorithms.

Problem PSO [65] IPOP-CMA-E
[66]

CHC
[67,68]

SSGA
[69,70]

SS-BLX
[71]

SS-Arit
[72]

DE-Bin
[73]

DE-Exp
[73]

SaDE
[74]

CS-
CEOA

F_1 4 1 3 9 5 2 6 7 8 1
F_2 5 1 4 9 2 3 8 6 7 1
F_3 6 1 4 8 2 3 5 9 7 1
F_4 6 2 10 5 4 3 7 9 8 1
F_5 6 7 5 3 2 4 9 8 10 1
F_6 7 1 4 2 3 6 8 9 5 1
F_7 10 5 6 7 9 8 4 3 2 1
F_8 10 1 5 8 6 7 4 9 3 2
F_9 5 6 3 8 1 4 2 9 10 7

F_10 6 10 2 8 5 9 4 3 7 1
F_11 9 1 2 8 7 6 5 4 10 3
F_12 9 4 10 6 3 5 8 2 7 1
F_13 3 1 10 8 5 6 4 7 9 2
F_14 8 8 1 2 4 5 6 7 9 3
F_15 7 7 4 5 1 2 8 6 10 9
F_16 8 6 10 2 1 5 3 4 7 9
F_17 9 10 1 3 2 5 8 6 7 4
F_18 9 5 10 8 7 6 3 2 4 1
F_19 8 4 9 10 6 5 2 1 3 7
F_20 8 4 10 9 6 5 3 1 2 7
F_21 10 2 8 9 3 4 6 7 5 1
F_22 10 5 9 4 1 2 7 8 6 3
F_23 2 10 3 1 5 7 8 6 9 4
F_24 9 10 7 5 6 2 4 3 1 8
F_25 10 8 5 4 6 7 3 2 1 9

Table 7. Statistical frequency table of ranking values.

Method
Rank

R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_9 R_10

PSO [65] 0 1 1 1 2 4 2 4 5 5
IPOP-CMA-ES [66] 7 2 0 3 3 2 2 2 0 4

CHC [67,68] 2 2 3 4 3 1 1 1 2 6
SSGA [69,70] 1 3 2 2 3 1 1 7 4 1
SS-BLX [71] 4 4 3 2 4 5 2 0 1 0
DE-Exp [73] 2 3 3 2 0 4 4 2 5 0
DE-Bin [73] 0 2 4 5 2 3 2 6 1 0
SS-Arit [72] 0 4 3 3 6 4 3 1 1 0
SaDE [74] 2 2 2 1 2 1 6 2 3 4
CS-CEOA 11 2 3 2 0 0 3 1 3 0

Figure 3. The relative weight of each algorithm by rank.
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Figure 4. Comparison between the different algorithms according to its ranks with different problems.
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4.4. Petrochemical Engineering Application (Blending Four Ingredients, Three feed Streams,
One Pool, and Two Products)

Optimization has a lot of applications in various fields in chemical and petroleum
engineering such as design, development, scheduling, analysis, planning, and operating
chemical processes. It is helpful as it enables the formulation of unstable systems and
utilizing sparsity and development process models. The pooling network system con-
structed of any number of feeder streams, pools (tanks), and products, in which any feeder
stream may connect any tank and any product. These applications are familiar in chemical
engineering and petrochemical engineering. Figure 5 illustrates a graphical structure of
a simple pooling network system involving three feed streams, one bending tank, and
two products.

Figure 5. Structure representation of four ingredients polling system pooling problem.

The purpose of this application is to calculate the flow stream of these four ingredients
in various pools in order to obtain certain specific products with certain (required) chemical
properties and determining costs. The four ingredients can be blended in the pool or be
directly reach any of the finite products. These applications were investigated, among
others [75–79]. The vectors xij, yij, and zij represent the flow streams between different
feeder i-pool l, pool l-product j, and feeder i-product j, respectively. Ben-Tal et al. [75]
presented the substitution of flowrate xil which represents the flow stream from feeder i to
pool l; with a fractional flowrate qil; representing the fraction of flow stream from feed i to
pool l. With these notions, we can define the following sets.

I is the set of feed streams, J is the set of required products, L is the number of
mixed tanks, and K is the set of components, whose quality is being monitored. For
this petrochemical engineering application, we can define the parameters of the physical
problem as follows:

Ai is the maximum output flow of feed i;
Dj the maximum predicted demand for product j;
Sl the size of Tank l: Cik the percentage of ingredient k in feeder i,
Pjk the maximum percentage of ingredient k in product j, ci is the unit price of feeder i, and
dj is the unit price of finite product j.
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The mathematical formulation of a pooling system application is formulated as follows:

Max
J

∑
j=1

L
∑

l=1
(dj − ∑

i∈I
ciqil)yij +

I
∑

i=1

J
∑

j=1

(
dj − ci

)
zij

Subject to
L
∑

l=1

J
∑

j=1
qilyl j +

J
∑

j=1
zij ≤ Ai, ∀i ∈ I

J
∑

j=1
yl j ≤ Sl , ∀l ∈ I

J
∑

j=1
yl j +

I
∑

i=1
zij ≤ Dj, ∀j ∈ J

L
∑

l=1

(
I

∑
i=1

Cikqil − Pjk

)
yl j +

I
∑

i=1

(
Cik − Pjk

)
zij, ∀j ∈ J, ∀k ∈ K,

0 ≤ qil ≤ 1, ∀i ∈ I, ∀l ∈ L
0 ≤ yl j ≤ Dj, ∀l ∈ L, ∀j ∈ J
0 ≤ zij ≤ Dj, ∀i ∈ I, ∀j ∈ J

(13)

Figure 6 shows the application network system with four feeder streams, one pool,
and two products.

Figure 6. Structure representation of petrochemical pooling problem.

The data of this application [79] is as follows:

A = (∞, ∞, ∞, 50),
D = (100, 200),
C = (3 , 1 ,−1 ),
P = (5/2, 3/2),
c = (6, 16,−, 15),
d = (9, 15),
S1 = ∞.
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The mathematical formulation of this network system is as follows:

Max(9− 6q11 − 16q21 − 15q41)y11 + (15− 6q11 − 16q21 − 15q41)y12 − z31 + 5z32
Subject to

q41y11 + q41y12 ≤ 50,
y11 + z31 ≤ 100,
y12 + z23 ≤ 200,
(3q11 + q21 + q41 − 2.5)y11 − 0.5z31 ≤ 0,
(3q11 + q21 + q41 − 1.5)y12 − 0.5z32 ≤ 0,
q11 + q21 + q41 = 1,
0 ≤ y11 ≤ 100, 0 ≤ y12 ≤ 200
0 ≤ z31 ≤ 100, 0 ≤ z32 ≤ 200
0 ≤ q11 ≤ 1, 0 ≤ q21 ≤ 1, 0 ≤ q41 ≤ 1

(14)

The results of this problem are presented in Table 8, which demonstrate the validity of
the proposed algorithm to solve real-life applications.

Table 8. The results of this problem are presented in Figure 6.

Parameters
Algorithms

SNOPT [79] MINOS [79] KNITRO [79] CONOPT [79] CS-CEOA

q11 1 1 1 1 1
q21 0 0 1.8754 × 10−7 0 0
q41 0 0 6.6576 × 10−8 0 0
y11 50 50 50 50 50
y12 50 50 50 50 50
z31 50 50 50 50 50
z32 150 150 150 150 150

Objective function 1300 1300 1299.9995 1300 1300

In this subsection, a comparative study has been investigated to examine the proposed
algorithm concerning the solutions quality. First, evolutionary-based-approaches suffer
from the quality of the solution, where they get an approximated optimal solution, and
thus CS-CEOA has been used to evolve the quality of the obtained solution by applying a
chaotic local search that guarantees fast convergence towards the true optimal solution.
On the other hand, unlike conventional approaches, CS-CEOA searches using a population
of particles, not a single point, so CS-CEOA can provide a globally search algorithm, that
can locate the global zone from the search space. In addition, CS-CEOA implements only
the objective function values, not derivatives, or any other auxiliary knowledge; therefore,
it can handle non-continuous, non-smooth, and non-differentiable functions which are
presented in practical real-life optimization problems. Furthermore. In addition, the
equilibrium optimizer can be hybridized with other search processes, and its parameters
can be modified to improve the efficiency of CS-CEOA. The findings of the simulation also
show the superiority of CS-CEOA over those stated in the literature, as it is substantially
better than other methods. Finally, owing to the simplicity of the procedures, the reality of
using CS-CEOA to deal with complex problems of realistic dimensions has been approved.

5. Limitations of the Proposed Algorithm

The core advantage of the traditional optimization techniques is that it guarantees to
find the truly global solution, unlike population-based approaches, but they have critical
limitations with large-scale real-life, nondifferentiable, nonconvex, ill-defined problems,
and non-formulated problems. Population-based methods are usually very efficient and
robust in finding near-global solutions, especially with complex problems. There are
some critical limitations of the proposed technique. The proposed technique randomly
generates the position for agents, which produce degeneracy. The degeneracy occurs when
multiple agents represent the same position, which may lead to an inefficient solution.



Processes 2021, 9, 200 16 of 20

To date, mathematical theoretical convergence analysis of population-based algorithms
is still at an early stage and has been experimentally studied in the literature, making
mathematical convergence analysis an important subject in a future study. The advantages
and disadvantages of the proposed algorithm can be stated in Table 9.

Table 9. Advantages and Disadvantages.

Advantages

Have greater success at locating global solution for small problems and
nearby global optimal solution in the very large complex problems.
Do not require nether, convexity, continuous, differentiability, formulated,
nor well-defined problem
Can be applied with both, discrete, continuous and mixed variables.

Disadvantages

Time consuming algorithm, especially for very large scale and
complex problems.
Mathematical theoretical analysis for convergence to the global solution is
still at an early stage, and need further investigation
Produce a nearby Global solution in the very large scale complex problems.

6. Conclusions

Recently developed nature-inspired optimization approaches are good techniques for
finding global solutions for real-life optimization applications. The equilibrium optimizer
algorithm (EOA) is a novel optimization approach, which inspired by control volume mass
balance models implemented to determine both dynamic and equilibrium states. In this
paper, the chaotic search-based constrained equilibrium optimizer algorithm (CS-CEOA)
has been proposed as a new algorithm for optimizing constrained optimization problems.
CS-CEOA integrates the algorithm of evolving individuals modeled by EOA with the
algorithm of Local-improvement of chaotic local search (CLS); thus, CS-CEOA synthesizes
the merits of both EOA and chaotic search, and it is a simple and yet robust model to
deal with different types of optimization problems. CS-CEOA is computed in two phases,
the first one (phase I) intends to locate the approximate optimal solution, avoiding being
trapped in local minima, while in phase II, the chaos-based search algorithm increases local
search performance and obtain the best optimal solution. In addition, a repair function was
implemented to co-evolves any infeasible solution until it becomes feasible, in a way such
that, a new feasible solution is created on the segment defined by the feasible reference
point and the infeasible solution itself. Due to the fast globally converging characteristics
of evolutionary algorithms, and the chaotic search’s exhaustive search, CS-CEOA was
able to locate the true optimal solution by implementing an exhaustive local search on
a small zone. The superior performance of CS-CEOA in comparison to the performance
of the recent competitive algorithms has been validated by multi-benchmark suites of
problems including constrained, unconstrained, CEC’05 problems, and an application of
blending four ingredients, three feed streams, one tank, and two products to obtain some
certain products with specific chemical properties and determining costs. The results were
compared with the standard evolutionary algorithm, which concludes the superiority of
CS-CEOA to handle non-linear programming problems. The following observations reveal
some major benefits of the proposed approach:

1. CS-CEOA has been used to increase the solution quality by combining the merits of
EOA and CLS.

2. Implementing chaotic local search influences the algorithm convergence time, saving
up to 12% of the time.

3. Unlike traditional techniques, CS-CEOA searches using a population of particles,
therefore it can be considered as a global search algorithm.

4. CS-CEOA uses only the objective function values, therefore it can handle all types of
functions that existed in practical real-life optimization problems.

5. The numerical simulation approves the superiority of CS-CEOA to the reported
algorithms in the literature.
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To date, theoretical convergence analysis of evolutionary algorithms is still at an
early stage and has been experimentally studied in the literature, making mathematical
convergence analysis an important subject in a future study.
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