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Abstract: Recently, identifying speech emotions in a spontaneous database has been a complex and
demanding study area. This research presents an entirely new approach for recognizing semi-natural
and spontaneous speech emotions with multiple feature fusion and deep neural networks (DNN).
A proposed framework extracts the most discriminative features from hybrid acoustic feature sets.
However, these feature sets may contain duplicate and irrelevant information, leading to inadequate
emotional identification. Therefore, an support vector machine (SVM) algorithm is utilized to identify
the most discriminative audio feature map after obtaining the relevant features learned by the fusion
approach. We investigated our approach utilizing the eNTERFACE05 and BAUM-1s benchmark
databases and observed a significant identification accuracy of 76% for a speaker-independent
experiment with SVM and 59% accuracy with , respectively. Furthermore, experiments on the
eNTERFACE05 and BAUM-1s dataset indicate that the suggested framework outperformed current
state-of-the-art techniques on the semi-natural and spontaneous datasets.

Keywords: spontaneous database; semi-natural database; speech emotion recognition; multiple
feature fusion; support vector machine

1. Introduction

As a means of expressing emotion, the speech signal is significant in human commu-
nication. Therefore, sound has attracted the interest of several organizations working in
the domains of human-computer interaction (HCI) [1,2]. Suppose in the framework of HCI,
if the machine can identify human emotional states from dialogue, it can adapt adequate
actions to interact effectively with a particular individual.

The most frequently utilized approaches of emotional perception fall into two cate-
gories: categorical and dimensional [3–5]. The former refers to human emotional classes
such as happiness, sadness, disgust, fear, anger, surprise, and neutrality that individuals
experience regularly. The latter is also known as a dimensional emotional model since it de-
scribes the feeling using a continuous emotional space. The model of emotion that is most
often employed is a two-dimensional arousal-valence model [6–8]. These studies apply a
categorical emotion descriptions approach to classify people’s emotions for SER. In Speech
emotion recognition (SER), one of the main elements for identifying the classification per-
formance is to extract the most discriminative features from audio data. However, due to
the emotional difference between human emotions and a specific characteristic for emotion
classification, the single feature component is taken from one feature fails to increase the
efficacy. Therefore, several low-level handcrafted characteristics for SER are frequently
employed in enormous studies [9,10]. Furthermore, deep neural networks (DNNs) can
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extract more accurate feature representations. Various investigations have retrieved global
features from voice data and used them for identification tasks [11–13]. After acquiring a
range of audio extracted features, such relevant data must be utilized entirely to increase
emotional identification efficiency. For example, past studies [11,14] proved the efficacy
of the unification technique in SER. Nevertheless, since these many features extracted
are inherently diverse, a fundamental difficulty is figuring out how to properly combine
these disparate data for improved classification results. Another difficulty in SER is the
integration of numerous characteristics. Numerous earlier studies [15–19] have been pub-
lished that examined main fusion techniques. Whereas most of the fusion methodologies
described earlier achieved appropriate efficiency, they mainly fused numerous features
into a single high-level feature set. Then lastly inputted into a classifier that has difficulty
learning intrinsic correlations between distinct audio extracted features. An appropriate
fusion technique is used with a deep learning framework to learn the most discriminative
features and identify high-level connections between numerous audio characteristics for
emotional classification. The most significant steps for efficacy enhancement in an SER
system are feature extraction, feature unification, and fusion system. So, in the following
sections, we will look at a few significant studies that have been done to help us better
understand some of the key ideas and strategies in these processes.

1.1. Acoustic Features Extraction

Numerous works on the SER system have concentrated on the features extraction
process as distinct emotional representations [10–12,20–22]. Acoustic features that have
been frequently employed for emotion identification in past years may be classified into
two types: low and high-level acoustic features. Prosodic, voice quality [23], spectral, and
cepstral features are low-level acoustic features. In [10], voice quality characteristics are
obtained within a forty-millisecond frame with a ten-millisecond shifting of the window. In
contrast, cepstral-based features are extracted within a twenty-five-millisecond frame with a
ten-millisecond window shift. Voice-based Conversational Agent can help adolescents with
autism spectrum disorder (ASD) manage their everyday needs and difficulties, including
anything from self-care to efficient communication [24]. By codifying PILs and making
them queryable in plain language, this research offers a conversational agent to increase
health literacy and simplify health information retrieval in Italian [25].

Deep learning approaches have been more popular because of their better ability
to train discriminative high-level representations from audio inputs [26–28]. In [29] pre-
sented numerous approaches that used neural representations learned from extensive
audio datasets to recognize emotions. The presented studies on the Interactive Emotional
Motion Capture (MOCAP) dataset [30] outperformed the benchmark recurrent neural net-
work(RNN) and obtained 58% accuracy. Similarly, the researchers presented a hierarchical
multimodal framework for the IEMOCAP database with word-level fusion and attention.
The presented approach outperforms state-of-the-art techniques with 62% accuracy. A
variety of acoustic characteristics were used in the studies listed above to analyze and
identify emotional responses. Open-source frameworks such as OpenSmile [31] and deep
neural networks like SoundNet [26] are used to extract high- and low-level information,
respectively. However, most of the above approaches retrieved low- or high-level charac-
teristics to perform current tasks. It was found that the authors failed to utilize the different
types of features for enhanced performance fully. They did not consider the fundamental
correlation between the high and low-level features.

1.2. Processing of a Variety of Acoustic Features

In order to improve the performance of the classifier, it is essential to include some
auditory features. Extensive research has demonstrated that various DNN can obtain a
distinct feature of the input speech signal from raw audio datasets for recognition. In [32],
the authors introduced a set of approaches for learning features across multiple modalities
using a combination of deep learning techniques. In [32], authors introduced several
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approaches for combining the various deep learning techniques to extract characteristics
across multiple modalities. Numerous research on the CUAVE dataset [33] and the AVLet-
ters dataset [34] showed the most successful audio and visual identification and sharing
representation learning. Deep Belief Network (DBN), introduced by Srivastava et al., speci-
fied a probability distribution across the multimodal feature space to train the predictive
framework of different modalities [35]. Experiments showed that the SVM and Linear
Discriminant Analysis (LDA) strategies performed well on information identification and
retrieval tasks.

Additionally, specific kernel approaches, such as multiple kernel learning (MKL),
have been commonly used in recent years to exploit several properties. The main goal
of MKL’s is to train a collection of kernels and parameters to get higher identification
outcomes [36,37]. Following an extensive investigation into the differences and similarities
of MKL algorithms, Nen et al. [36] has categorized and evaluated MKL approaches.
Research on actual datasets indicated that employing the MKL method rather than a
single kernel was beneficial and might lead to better results. Nilufar et al. devised a
unique MKL technique for the Gaussian scale [37]. They used it for large datasets with
a high degree of dimension. After rigorous testing on various datasets, it became clear
that using MKL in conjunction with a unique technique produced promising outcomes
compared to other approaches. However, by employing deep neural networks or MKL,
all algorithms discussed above simply used various acoustic characteristics to get better
results. They neglected that these characteristics were heterogeneous since they were
extracted in response to various parts of the original job, and most were used low-level
features. As a result, an effective strategy for overcoming the challenge of unifying diverse
feature representation to improve performance is required.

1.3. Fusion of Multiple Acoustic Features

A fusion approach for merging features information is required to attain high efficacy.
In past research works, various fusion methods have been used to perform speech emotion
identification. The fusion approaches may be separated into three parts: (1) feature-level,
(2) model-level, and (3) decision-level fusion. First, the feature-level fusion approach
concatenates different features into a high-level feature space. After that, the feature map
is inputted into a classifier for training to enhance efficiency [38,39]. In [38], developed an
asynchronous feature-level-fusion strategy that established a unified hybrid features space
model for clustering or identification of multimedia data. The experimental results on two
audio and visual emotional datasets confirmed that the suggested strategy achieved much
better outcomes. Deep multimodal paradigm introduced to recognize emotional states
from the speech in [39]. They used a 3-layer DNN to extract high-level features from audio
and text data. They then concatenated two extracted features into one feature vector to
fuse them utilizing a DNN approach. The suggested technique obtained good results with
the IEMOCAP dataset. However, concatenating numerous feature maps will result in poor
accuracy in identification since the noise from each modality is included in the final feature
map. Unlike the feature-level fusion technique, the decision-level fusion approach employs
a unique method to fuse these characteristics’ outcomes. Each feature is autonomous and
modeled using a distinct SVM or logistic regression(LR) classifier in the decision-level
fusion technique.

In [18], the developed deep hybrid model for audiovisual emotion identification.
The DNN approaches were used to obtain characteristics from heterogeneous data in
various scenarios. The suggested method’s promising performance was achieved using
the decision-level fusion technique. With a semi-supervised approach and various neu-
ral networks, Kim et al. [15] presented a method for multimodal emotion identification.
Multiple deep learning models were used to extract multimodal data from video clips,
then combined. Lastly, a decision-level fusion technique known as adaptive fusion pro-
duced a competitive identification result. Model-level fusion is another approach that
combines various characteristics gathered from several models. A common model-level
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fusion strategy concatenates the outputs from hidden units of various neural networks
(NN). Model-level fusion strategy develop for the continuous Hidden Markov Model
(HMM) classifier in [40]. Large-scale experiments on an extensive collection of ground
penetrating radar (GPR) alarms indicated that each feature was employed individually.
Furthermore, both features were integrated with equal weights; the model-level fusion
attained a promising performance compared to the baseline HMM. Those studies used
various fusion procedures to improve performance. However, they failed to notice that the
many traits were heterogeneous. Therefore, regardless of whether the fusion technique
was utilized, those systems that used heterogeneous characteristics as input data would
not provide the best results. Nevertheless, as mentioned above, some of the thoughts and
ideas from the studies have influenced our work.

To deal with the issues raised earlier, we investigate the techniques to maximize the
utilization of high and low audio features. In addition, we also investigate the methods
to maximize the capability of deep learning approaches to fuse numerous sets of informa-
tion for improved recognition accuracy. In comparison to previous studies on SER, our
significant contributions are noted below and explained in the following sections.

• The use of handcrafted and high-level features for SER is not recommended since they
are redundant and unconnected. Instead, we introduced a hybrid framework that can
successfully generate meaningful feature vectors from the different audio feature sets,
eliminating redundant and unrelated information.

• Following an investigation of several fusion strategies, a fusion model based on a
DNN is presented to fuse relevant feature descriptions for improved emotion recogni-
tion outcomes.

• We evaluate the suggested approach to well-established methods for detecting au-
ditory emotional states. Extensive experimental finding on publically available
datasets indicates that our approach gives excellent outcomes, confirming the utility
of our technique.

The rest of this article is arranged in the following way. Section 1 reviews some
significant and related studies on SER. Section 2 introduces and details the suggested
architecture for speech emotion classification. Section 3 summarizes and analyzes the
experimental outcomes. Finally, Section 4 contains the findings and recommendations for
further study.

2. Proposed Model

Figure 1 depicts the suggested framework for stimulated and spontaneous speech
emotional classification. Our suggested approach is divided into two steps: (1) Features
Extraction and (2) Hybrid Fusing Model. In the following sections, we will go through the
processes listed above. The extraction of numerous feature sets from raw audio data in the
proposed study used low and high-level acoustic characteristics.

The four different low-level audio characteristics are emphasized in red boxes. In
contrast, the two main types of high level audio characteristics are shown in green boxes.
One of the main components of the suggested approach is the hybrid unit. The hybrid
unit consists of six networks. First, the hybrid unit is designed to address the problem of
diversity that exists among the many features extracted from the features unit. Following
that, every heterogeneous feature is input into neural networks.

2.1. Features Extraction Module

Semi-Natural and spontaneous speech recognition using deep neural networks with
feature unification as shown in Figure 1, the first step of the proposed technique is to extract
the features from the raw dataset. OpenSmile [31] is a free and open-source toolkit for
extracting low-level acoustic characteristics commonly employed in SER. In this study,
different low-level acoustic, such as IS10 [41], MFCCs [42],Computational Paralinguistics
Challenge (ComParE) [41] and Extended Geneva Minimalistic Acoustic Parameter Set
(eGemaps) [43], are extracted from a raw audio databases. The audio feature subset
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IS10 contains low acoustic characteristics such as energy, pitch, and jitter, which can be
obtained by OpenSmile [31]. The most well-known spectral characteristic is MFCC. It is a
widely used technique based on the known variance in the human ear’s essential frequency
bandwidth. An MFC [44] is composed of MFCCs, coefficients derived from speech data that
work together. They were obtained by decorrelating the filter banks energies, composed of
triangle filters separated sequentially on the Mel frequency scale [45]. In the same way as
OpenSmile extracts IS10, ComParE, MFCCs and eGemaps are obtained by OpenSmile and
their accompanying configuration files.

Furthermore, we obtain high-level audio characteristics from DNN due to their im-
proved capability to generate the most relevant feature representations from the audio
input. However, because of the limitation of emotional datasets, it is challenging to extract
discriminative features from the complicated deep learning networks, which must be well
trained. Moreover, many studies commonly report bottleneck characteristics derived from
fine-tuned deep learning models for identification problems. In the proposed study, Sound-
Net [46] and VGGish [47] features are used for emotional classification. SoundNet feature
can learn complex natural sound representations from enormous volumes of unlabeled
sound data gathered in the environment. Our study uses the SoundNet and VGGish
networks as high-level feature extraction that is very effective for speech classification.

Figure 1. The suggested architecture for SER Framework.

As a consequence, by using OpenSmile, we may get a variety of low-level acoustic
features. When pre-trained neural networks are used, they provide the SoundNet bottle-
neck feature and VGGish bottleneck feature, respectively. The features extraction module
obtains different acoustic features for emotional classification by using various feature ex-
traction methods. Although, the numerous features are high-dimensional and distinct, with
unique patterns in various feature spaces. In order to get better recognition performance,
it is not easy to utilize their underlying relationship at the low-level depictions spaces
and fuse it. A heterogeneous unification approach is employed to transform different
features’ heterogeneous space into unified representation space using an unsupervised
feature learning approach based on DNN [48,49]. For this reason, the autoencoder structure
is constantly being used to learn the new non-linear transformation at a high level from
the previously acquired feature representation space. Below is a detailed discussion of
the proposed architecture that employs the autoencoder structure and its modifications to
produce abstract high-level representations.
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2.2. Heterogeneous Fusing Model

The features extraction module obtains different auditory characteristics for emotion
categorization by using various feature extraction methods. Nonetheless, the numerous
characteristics are often high-dimensional and diverse, with unique patterns in various
feature spaces. It is difficult to combine their low-level depictions to increase identification
accuracy because of the underlying correlation between elements. Combining their low-
level depictions to increase identification accuracy is difficult because of the underlying
correlation between elements. Therefore, a heterogeneous framework is introduced in
previous studies [48,49] to transform the hybrid space of different features into a unified
features extraction space using an unsupervised approach based on DNN. Because of its
ability to learn the features, the autoencoder architecture is used to learn a new non-linear
modification at the high-level spaces from the previously acquired feature extraction spaces.
Auto-encoder architecture and its variations used to generate low abstract representations
in the presented approach are presented and explored in depth in the subsections.

2.2.1. AutoEncoder

Figure 2 shows an autoencoder, a feed-forward neural network with multiple layers.
We define the following with a training sample of p instances (ai, bi) : {(ai, bi)| ai ∈ RN , bi ∈
{−1, 1}}, S. i = 1, 2, 3,......, n. Where ai is a feature from the N-dimensional feature space a
and bi is the class to which ai belongs. The hidden representation (hl(ai)) ∈ RM in response
to an input (ai) ∈ RN is:

hl(ai) = f (Wtiai + bi). (1)

Wti ∈ RM∗N represents a value of weight, and bi indicates the bias value in the non-linear
transformation function f. The rectified linear unit(ReLu) is often employed as the non-
linearity after the encoder’s final output units. Finally, the system’s output decrypts the
hidden representation hl(ai) into a reconstruction aiRN .

yi = k(Wtihl(ai + bi) (2)

In Equation (2) k is used as a non-linear activation function.

Figure 2. An autoencoder’s layout.

Thus, the variables Wti, bi denote the relationships between the input and hidden
layers, whereas Wti, bi denote the relationships between the hidden and final output layer.
Then, a loss function must be specified to reduce the recovery loss (Y, Y′, θ) as alternatively
the typical error function:

loss(Y, Y′, θ) = ||Y−Y′(θ)||3 (3)

Learning the auto-encoder entails maximizing the parameter to decrease the reconstructive
loss l(x, x) on the training instances. As in the training of NN, stochastic gradient descent is
used in small batches.
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2.2.2. AutoEncoder Denoising

The denoising autoencoder (DAE) [50] is a simple autoencoder extension. Essentially,
the goal of DAE is to develop a fundamental auto-encoder that can recreate the original
data input after it has been tampered with by adding noisy data. Autoencoders tuned for
current recognition tasks may automatically denoise the input and provide more robust
feature learning.

2.2.3. An Efficient Shared-Hidden-Layer Autoencoder

Identical to the concept of transfer learning, a successful form of the simple autoen-
coder, called Shared-hidden-layer Autoencoders [49] , was developed solely to share
information. Shared-hidden-layer Autoencoders is a technique in which the encoder uses
the identical variables for mapping the input and hidden layer as for the mapping but uses
separate variables for transformation. Figure 3 shows how Shared-hidden-layer Autoen-
coders was suggested to reduce the overfitting on both the training and test data. Given
the training and test datasets xtr and xte, the two loss functions are as follows:

Training loss (Ytr, Y′, θtr) ∼=‖ Ytr −Y′(θtr) ‖2

Testing loss (Yts, Y′, θts) ∼=‖ Yts −Y′(θts) ‖2

In the Equation (3) θtr= Wti, bi, Wttr, btr and θt3 = Wti, bi, Wtts, bts are the train and
test span values, respectively. The two functions have identical arguments, Wti and bi
that indicate the relationships from the input to the hidden layer, as shown in the above
equation. Furthermore, in [49], the corresponding loss function was created to maximize
the combined distances for the two sets:

lossall(θall) = losstr(Ytr, Y, θtr) + lambdalossts(Yts, Y′, θts) (4)

Lastly, the corresponding objective function is identified as the ultimate objective function:

ι(θall) = min
θall

lossall(θall) + γ1(||Wttr||1 + ||Wt||1) + γ2||Wtts||2 (5)

This study offers an enhanced Shared-hidden-layer Autoencoders approach for gener-
ating high-level feature representation from the hidden units. There are two contracts
between the standard Shared-hidden-layer Autoencoders paradigm and the enhanced
Shared-hidden-layer Autoencoders paradigm.As a result of these changes, the final objec-
tive function in Equation (5) and an auxiliary level that exploits advantageous inherent
correlations from numerous basic characteristics are enhanced. As shown in Figure 1,
the heterogeneous unification module is constructed of numerous branch networks rep-
resenting various characteristics. Furthermore, in Figure 4, each branch system of the
heterogeneous unification module is divided into two sections: the pre-training section and
the fine-tuning section. During the processing of pre-training of unsupervised learning,
the branch model several hidden units are pre-trained level by level using the different
low-level multiple features. The outcome of the previous layer from the encoder functions
as the input to the succeeding hidden units, which minimizes the rebuilding error by re-
moving the recreated datasets. For each characteristic, the branch networks that correspond
to that feature are distinct from the others. Moreover, the layout of each branch group,
including the layout of hidden layers and the size of hidden units, varies from the other
branches of the same system. The decoder is replaced by an auxiliary layer shared by all
branch networks throughout the supervised fine-tuning process, as seen in Figure 4. The
auxiliary layer is used to fine-tune the whole branch network by including supervised data
such as classification results or labels. Additionally, the primary objective of the fine-tuning
section is to utilize the inherent correlations between those many heterogeneous variables.
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Figure 3. The model of an autoencoder.

Figure 4. The Shared-Hidden-Layer Autoencoder Network framework.

The decoder is replaced by an auxiliary layer shared by all branch networks through-
out the supervised fine-tuning process, as seen in Figure 4. The auxiliary layer is used to
fine-tune the whole branch network by including supervised data such as classification
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results or labels. Additionally, the primary objective of the fine-tuning section is to utilize
the inherent correlations between those many heterogeneous variables. Moreover, the
suggested system generates the original heterogeneous characteristics into unified forms
throughout the fine-tunning, pre-training, and fine-tuning phases. Similarly, stochastic
gradient descent is used to learn the hybrid unification unit. Finally, by examining the
identification accuracy of the three types of models used in the following experiments, the
effectiveness of the suggested architecture is evaluated.

2.3. Fusion Network Unit (FNU)

A basic fusion technique is used due to the strength of unifying feature extraction
derived from a hybrid unification unit to improve the SER system’s efficiency. This research
has four levels in the fusion network unit, including one input and three hidden layers.
Six modified and unifying high-level characteristics obtained from the branch networks
in the hybrid unification unit are fused to generate a combined feature representation, as
shown in Figure 1. Next, the FNU identifies the relationships between those unified joint
characteristics for the emotional detection challenge, which uses deep neural networks.
Finally, the last hidden layer is used to get a feature map used as the overall audio feature
extraction in the last hidden layer. Furthermore, an SVM is used as the final classifier to
predict our architecture and analyze multiple classifiers’ efficacy.

3. Experiment
3.1. Datasets
3.1.1. eNTERFACE05

The eNTERFACE05 [51] audiovisual acting database has 43 participants from 14
different nations. It contains the six emotions of anger, disgust, fear, joy, sadness, and
surprise. It includes 1290 video clips. Each audio sample has a sampling rate of 48,000 Hz,
a resolution of 16 bits, and a mono channel. Each participant was instructed to listen to six
consecutive short tales and designed to elicit a certain feeling. Multiple professionals are
hired to determine if the response accurately conveys the desired feeling. Speech utterances
are extracted from video recordings of persons speaking in English. The video files are
about 3–4 s in length. The dimensions of the original video frames are 720 × 576 × 3.

3.1.2. BAUM-1s

The BAUM-1s [16] includes 1222 video clips from 31 Turkish individuals. BAUM-
1s database includes the six fundamental classes (joy, anger, sorrow, disgust, fear, and
surprise), in addition to boredom and disdain. Additionally, it includes four mental states:
uncertain, pondering, focusing, and annoyed. By using a film-induced emotion elicitation,
it is possible to attain spontaneous audiovisual emotions. The dimensions of the original
video frames are 720 × 576 × 3. As with [16,52], and [53], this study focuses on identifying
six fundamental emotions via the use of 521 video snippets. The cropped face pictures in
the BAUM-1s dataset.

3.2. Experimental Setup

We train our approach using a batch size of 30 and a stochastic gradient descent
algorithm with a stochastic mean of 0.9. For fine-tuning, the learning rate is 0.001. Epochs
are set to 400 to train the network. The dropout value is set at 0.3 for the fusion technique.
The MatConvNet toolkit is used to develop DNNs, and deep models are trained on a
single NVIDIA GTX TITAN X GPU with 12GB RAM. We used the LIB-SVM package to
run the SVM approach with the linear kernel function and the one-versus-one approach
for emotional identification. Following [41], utilized cross-validation methods such as the
subject-independent leave one speakers group out (LOSGO) frequently used in the real
world. We used the LOSGO approach with five-speaker groups on the eNTERFACE05 and
BAUM-1s, both datasets with more than ten individuals. Finally, the average accuracy of
test runs is given to compare the performance of all evaluated techniques.



Processes 2021, 9, 2286 10 of 16

3.3. Experimental Results and Analysis

We report experimental findings for local level features and global level features on
the semi-natural and natural databases. We ran several experiments using the semi-natural
and natural databases to evaluate the suggested emotion classification approach. The
accuracy of per-class emotions and overall emotions is compared and analyzed using
various approaches in this paper. It is commonly noted that choosing a suitable learn-
ing algorithm is vital for an identification framework. Therefore, we initially assess the
suggested framework utilizing several classifiers such as K-Nearest Neighbor (KNN), LR,
Random Forest (RF), and SVM to determine the most effective classifier. One of the most
important aspects of a classification model’s performance is selecting hyperparameters.
These hyperparameters are calculated in this study based on the accuracy attained on the
validation set. In the proposed approach, the overall results of the validation data are used
to evaluate the hyperparameters. In addition, we also examined multiple kernel functions
to identify the most suitable kernel.

In contrast to the five classifiers shown in Table 1, the SVM algorithm attained the
highest outcome for the eNTERFACE05 database. The SVM classifier obtained 76% accu-
racy for the eNTERFACE05, while the obtained accuracy was 73% for the eNTERFACE05,
through MLP. Thus, the classification accuracy of SVM is 21% greater than that of the KNN
classifier, which is the most significant difference amongst the five classifiers. In addition,
Table 1 shows that MLP and SVM models obtained the same classification accuracy on the
seven emotion classes of the eNTERFACE05 database. Therefore, the SVM was considered
the best classifier in this research because of its higher classification outcome on the eN-
TERFACE05 dataset. For example, Table 1 represents that the SVM classifier obtained the
highest accuracy for a joy class with 89% accuracy and the lowest for the surprise class
with 62% accuracy. Furthermore, compared to the joy class, the classification accuracy for
fear and sadness is poor due to the tiny sample sizes of the categories. As seen in Table 1,
the same phenomenon occurs when different classifiers are used.

Table 1. Comparison of different classifiers’ results on the eNTERFACE05 dataset.

SVM RF LR KNN MLP

Joy 0.89 0.85 0.81 0.74 0.87
surprise 0.62 0.25 0.45 0.59 0.75
Anger 0.85 0.61 0.48 0.47 0.81
disgust 0.79 0.75 0.69 0.63 0.43
sadness 0.73 0.66 0.52 0.55 0.87

fear 0.71 0.69 0.81 0.34 0.68

Total 0.76 0.63 0.62 0.55 0.73

As shown in Table 2, the SVM recognized ”surprise” and ”joy” with the highest accu-
racies of 48% and 43% with the BAUM-1s dataset. As shown in Table 1, the eNTERFACE05
dataset contains six emotions, joy, surprise, fear,disgust, sadness, and anger, which are
listed with accuracies of 87%, 75%, 68%, 43%, 87%, and 81% respectively with the MLP
classifier. The eNTERFACE05 database identified joy with the highest accuracy of 89% with
SVM classifier. At the same time anger, and sadness were recognized with the highest accu-
racies of 85%, and 73% with the SVM classifier, respectively. As shown in Table 2, the MLP
recognized sadness and joy with the highest accuracies of 57% and 55% with the BAUM-1s
dataset. The BAUM-1s database identified surprise with the highest accuracy of 48%. At
the same time, sadness, joy, and disgust were recognized with the highest accuracies of
41%, 43%, and 38% with the SVM classifier, respectively. Compared to the Joy and disgust
class, the identification scores for other classes are poor due to the class’s sample sizes. As
seen in Tables 1 and 2, the same effect occurs when additional classifications approaches
are used.
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To examine the efficacy of various features, such as ComParE, IS10, MFCCs, SoundNet,
and VGGish using the SVM classifier. Table 3 summarizes the classifications outcomes
of various characteristics when SVM is used as the classifiers. From the experimental
findings in Table 3, we can conclude that various auditory characteristics have varying
recognition abilities for the current task. While many other audio features, deep learning
features outperform the low-level features that have been frequently utilized and shown
to be useful in past studies. For example, as shown in Table 3, the most significant
difference is a 32 percent difference in recognizing when comparing outcomes obtained by
employing VGGish and ComParE feature sets on eNTERFACE05 dataset. The outcomes
demonstrate that deep neural networks have a remarkable capacity to acquire new features
through feature learning. According to Table 3, the most outstanding identification accuracy
is obtained by utilizing the VGGish and SoundNet features. VGGish and SoundNet
features obtained the highest accuracy. SoundNet obtained the 61% average accuracy, while
VGGish attained the 67% average accuracy, delicately selected system among multiple
CNN frameworks, and better VGGish features’ efficiency derived from a well-fine tuned
model [47]. Table 4 illustrated that the VGGish and SoundNet feature obtained an average
accuracy of 0.36% and 0.35% with the BAUM-1s dataset.

Table 2. Comparison of different classifiers’ results on the BAUM-1s dataset.

SVM RF LR KNN MLP

Joy 0.43 0.19 0.27 0.35 0.55
surprise 0.48 0.21 0.32 0.28 0.44
Anger 0.33 0.34 0.28 0.15 0.39
disgust 0.36 0.25 0.30 0.30 0.43
sadness 0.41 0.26 0.34 0.26 0.57

fear 0.32 0.29 0.38 0.13 0.48

Total 0.38 0.26 0.31 0.24 0.59

Furthermore, to provide a baseline for the proposed strategy, we performed experi-
ments using the BUAM-1s and eNTERFACE05 database. We compared the results to those
obtained from earlier studies. We conducted comparison trials between two widely used
approaches [18,28,29,54].

Table 3. Per-Class Emotions accuracy of multiple features on eNTERFACE05 dataset.

IS10 eGemaps MFCC VGGish SoundNet ComParE

Joy 0.38 0.39 0.45 0.71 0.64 0.39
surprise 0.37 0.55 0.39 0.73 0.59 0.32
Anger 0.39 0.58 0.32 0.58 0.79 0.29
disgust 0.25 0.47 0.40 0.79 0.68 0.52
sadness 0.35 0.49 0.35 0.65 0.53 0.29

fear 0.40 0.54 0.43 0.58 0.43 0.33

Total 0.36 0.50 0.39 0.67 0.61 0.35

Additionally, we performed tests on the eNTERFACE05 dataset to compare the sug-
gested technique to previously published methods. We compare two typical current
methods [28,29]. According to Table 5, Ref. [29] obtained a performance of 58 percent accu-
racy on the IEMOCAP dataset. In contrast, in [28] acquired a performance of 62 percent
accuracy. In comparison to state-of-the-art approaches, our experimental results show that
the proposed technique, in which the improved efficient shared-hidden-layer Autoencoder
model serves as the hybrid module’s branch model, obtains a higher identification perfor-
mance than conventional techniques for speech emotion recognition. For example, Ref. [29]
presented two models for speech emotion detection that use pre-trained automated speech
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recognition (ASR) networks. In addition, scientists explored employing a variety of neural
architectures to produce speech characteristics. At the same time, we classify using both
low-level and high-level features.

Table 4. Per-Class Emotions accuracy of multiple features on BAUM-1s dataset.

IS10 eGemaps MFCC VGGish SoundNet ComParE

Joy 0.41 0.39 0.32 0.75 0.52 0.45
surprise 0.14 0.21 0.09 0.15 0.26 0.14
Anger 0.12 0.27 0.07 0.25 0.19 0.31
disgust 0.39 0.34 0.39 0.44 0.66 0.45
sadness 0.32 0.26 0.27 0.48 0.33 0.05

fear 0.22 0.03 0.04 0.12 0.14 0.09

Total 0.26 0.25 0.20 0.36 0.35 0.28

Furthermore, we performed experiments using the eNterFACE05 and BUAM-1s
database to provide a baseline for the proposed strategy. Besides, we compared the results
to those obtained from earlier studies. Finally, we conducted comparison trials between
two widely used approaches [28,29] On the eNterFACE05 database we can see that [29]
obtained efficiency with 58 percent accuracy while [28] obtained efficacy with 62 percent
accuracy, as seen in Table 5. Thus, compared to the above-mentioned state-of-the-art
approaches, our experimental findings show that the suggested technique obtains superior
identification accuracy than previous studies methods for SER. For example, in [29], two
models for speech emotion identification were developed to use a pre-trained automated
speech recognition (ASR) network. In contrast, we extensively use both low-level and high-
level characteristics to classify speech. Table 6 illustrated the performance comparisons of
state-of-the-art methods with spontaneous database.

Table 5. Comparison Per-class emotions accuracy of state-of-the-art methods with semi-
natural database.

Joy Surprise Anger Disgust Sadness Fear Neutral Total

[29] 0.72 – 0.59 – 0.59 0.37 0.58
[28] — – – – – – – 0.62
[8] 0.83 – 0.93 – 0.91 – 0.89 0.89

Our Approach 0.89 0.62 0.85 0.79 0.73 0.71 – 0.76

Table 6. Comparison Per-class emotions accuracy of state-of-the-art methods with sponta-
neous database.

Joy Surprise Anger Disgust Sadness Fear Total

[55] 0.55 0.04 0.16 0.29 0.70 0.05 0.29
[18] 0.65 0.64 0.28 0.26 0.53 0.25 0.39
[54] 0.55 0.07 0.16 0.29 0.70 0.06 0.30

proposed approach 0.75 0.15 0.25 0.44 0.48 0.12 0.36

The findings in Table 7 illustrate that proposed framework can learn discriminative
relevant data from numerous hybrid features maps and achieve competitive recognition
efficiency in SER.
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Table 7. The per-class emotional performance of elimination experiments with BAUM-1s dataset.

Approaches Joy Surprise Anger Disgust Sadness Fear Total

proposed-HM 0.15 0.11 0.06 0.21 0.28 0.05 0.14
Proposed-FN 0.18 0.15 0.14 0.26 0.29 0.09 18.5
proposed-dae 0.25 0.39 0.20 0.29 0.31 0.15 0.26

proposed-method 0.43 0.48 0.33 0.36 0.41 0.32 0.39

In Table 7, the technique proposed-HM specifies the removal of the hybrid unification
unit from the suggested framework. To be more exact, we combine several extracted
characteristics by the feature-based unit into a high-level feature vector that serves as the
input to the fusion system unit. The second suggestion, denoted by proposed-FN, indicates
that the introduced design lacks the fusion system unit. The third technique,proposed-
dae, signifies that the DAE paradigm serves as the various module’s branch model. The
final technique, proposed- Shared-Hidden-Layer Autoencoder, designates the Shared-
Hidden-Layer Autoencoder paradigm as the branch model. The proposed-HM strategy
achieves efficiency with a precision of 14%, which is the lowest outcome obtained in
the studies. There is a significant difference between proposed-HM outcome and the
best 39% obtained using the recommended approach proposed-Shared-Hidden-Layer
Autoencoder. It demonstrates the heterogeneous unification module’s supremacy across
the design. The proposed-FN technique achieves a recognition efficiency of 18.5 percent,
demonstrating that the fusion system unit can also improve identification performance
by 20.5% compared to the proposed-Shared-Hidden-Layer Autoencoder approach. This
testing outcome demonstrates the utility of the fusion system unit developed in this
study for producing high-quality identification performance. Additionally, we analyze
the various approaches employed in the hybrid module’s branch model. As shown in
Table 7, the proposed-dae technique achieves a 26 percent efficiency by utilizing DAE as
the branch modelin the hybrid unit. However, the findings indicate that improvement is
obtained when the Shared-Hidden-Layer Autoencoder framework is used instead of the
DAE approach. Two significant findings can be taken from the research mentioned above:
(1) the hybrid unification unit may combine different features to increase efficiency, while
(2) the fusion system unit effectively improves efficiency in this study.

4. Conclusions

In this research, we suggested an SER framework that addressed the issue of diverse
acoustic characteristics, which typically degrades the identification efficiency of emotion
classification systems. The suggested approach comprises three blocks: (1) features ex-
traction, (2) heterogeneous unification unit, and (3) fusion system unit. The unified and
improved features are supplied into the fusion network module instead of various hetero-
geneous characteristics for the present recognition challenge. The suggested architecture
performed well according to experimental findings on semi-natural and natural datasets.
Furthermore, it attained competitive identification results compared to many baseline
techniques. Besides, the suggested DNN and the methodologies presented in this study
may be used in various research fields to combine the best of numerous and heteroge-
neous features for improved classification performance. We will attempt to run additional
tests on other public benchmark datasets in the future to examine our work. The third
path of study is to apply this framework to the problem of emotion identification using
multimodal information.
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