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Abstract: Vehicle emissions are a significant source of air pollution in cities. Particulate matter (PM) is a
pollutant with adverse health effects. Regulations worldwide determine the PM exhaust emissions of
vehicles by gravimetric quantification of the mass deposited on a filter over a test cycle. The introduction
of particulate filters as vehicle exhaust gas aftertreatment devices led to low PM emissions. A particle
number methodology (counting solid particles > 23 nm), complementary to the PM mass measurement,
was developed by the PMP (Particle Measurement Programme) group of the GRPE (Working Party on
Pollution and Energy) of the UNECE (United Nations Economic Commission for Europe) during the
first decade of the 21st century. The methodology was then introduced in the EU (European Union)
regulations for light-duty (2011), heavy-duty (2013), and non-road mobile machinery (2019). In parallel,
during the last 15 years, UN (United Nations) regulations and GTRs (Global Technical Regulations)
including this methodology were also developed. To address the on-road emissions, the EU introduced
RDE (real-driving emissions) testing with PEMS (portable emissions measurement systems) in 2017.
Other countries (e.g., China, India) have also started adopting the number methodology. The PMP group
recently improved the current laboratory and on-board methodologies and also extended them to a lower
particle size (counting solid particles > 10 nm). Due to the rapid evolution of the vehicle exhaust particle
number regulations and the lack of a summary in the literature, this paper gives an overview of current
and near future regulations. Emphasis is given on the technical specifications and the changes that have
taken place over the years.

Keywords: air pollution; vehicle exhaust emissions; particulate matter; particle number; catalytic
stripper; Particle Measurement Programme (PMP); portable emissions measurement system (PEMS);
emission regulations; real-driving emissions (RDE)

1. Introduction

Air pollution affects the health of millions of people worldwide [1]. The importance of
air pollution is even higher for cities, where, according to statistics, >70% of the population
lives (>50% for Asia) [2,3]. Many countries have introduced policies to mitigate the increas-
ing anthropogenic contribution to air pollution. Airborne particulate matter (PM) is one of
the most relevant pollutants to human health, with both short- and long-term exposure
linked to increased mortality [4,5]. PM can be emitted directly by the sources (primary) or
formed in the atmosphere by gaseous precursors (secondary) [6,7]. Globally, between 2010
and 2016, 55.3% of the world’s population was exposed to increased levels of PM2.5 [8].
It was estimated that in 2019, exposure to PM2.5 caused 7% of total global mortality and
accounted for about 4.1 million deaths [4], largely in developing countries such as China
and India. A review that summarised European data from 2000 to 2012 showed that
transport was a major contributor to urban air pollution, with 27% of PM originating from
road transport in the cities [9] (the percentage was 20% for overall Europe). The stricter
emission standards (the so-called Euro standards), along with fuel improvements and
traffic management, decreased both primary and secondary aerosol contributions from
vehicles [10]. In Europe, for example, the (total) particulate emissions from road transport
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decreased significantly over the years even though the transport activity increased [11]. In
2018 the road transport contribution to primary PM (overall Europe) was 11% [11]. During
the COVID-19 lockdowns, the decreases in PM in cities were modest [12–15], confirming
that in terms of mass, other sources are more important than transport (e.g., residential
heating, manufacturing industry). Still, the reductions in urban sites were much higher
compared to rural sites, indicating that traffic still contributes in cities. However, a study
concluded that further controls on traffic emissions will have limited benefit in reducing
the concentration of fine particles, except in countries where the use of diesel particle filters
is not mandatory (e.g., outside the EU) [8,16]. Indeed, where policies and strategies are not
implemented, air quality continues to worsen due to the increasing number of vehicles and
power plants [17,18].

Controlling the PM mass does not necessarily address the problem of ultrafine particles
concentration in the air. A study confirmed that the sources dominating the particle number
emissions are different to those dominating the mass emissions [19,20]. The particle number
concentration is highly affected by road transport and the mass by aged and transported
aerosol [19]. In 2010, the major global particle number source was road transport (40%) [21].
In Europe, the percentage was 60%, ranging from 32% to 97% [22]. Another study with
data from 2013 to 2016 showed that road transport was the main contributor in all cities
examined, with a contribution up to 94% (annual average) [23]. The recent WHO (World
Health Organization) Guidelines recommended the measurement of ambient ultrafine
particles at monitoring stations and suggested that low particle number counts should be
considered less than 1000 #/cm3 (as a 24-h mean), while typical levels observed in urban
background areas typically exceed 10,000 #/cm3 [24]. The non-volatile part is typically less
than one-third [25].

The methodology to assess the emissions of a vehicle is traditionally based on the
weight increase in a filter sampling diluted exhaust over a test [26]. The vehicle is fixed on
a chassis dynamometer, and the driver follows a pre-defined speed profile (test cycle). The
exhaust is diluted in a dilution tunnel, where various analysers determine the pollutants.
A part of the diluted exhaust gas is extracted and passes through a filter. The quantity
collected during the test determines the PM mass emissions. With the introduction of
particulate filters at the exhaust aftertreatment of diesel vehicles, the collected mass on
the filter reached values close to the background levels. For this reason, the PMP (Particle
Measurement Programme) group was tasked by the UNECE (Unite Nations Economic
Commission for Europe) with developing a complementary method (to PM mass) with
better sensitivity at low emission levels. The JRC (Joint Research Centre) of the European
Commission actively participated in the PMP, providing data and drafting the relevant
regulations since almost the beginning. The candidate method that was finally selected was
based on counting solid particles with diameter > 23 nm [27]. The choice of not measuring
smaller particles, which are very sensitive to the sampling conditions, was based on techni-
cal reasons (better accuracy, repeatability, acceptable cost) rather than on health reasons.
Additionally, the limits were selected on the basis of what was achievable with the best
available technology (wall flow particulate filters) and not on health-related considerations.
The reason for this choice was based on the fact that, while a clear relationship between
adverse effects and exposure to PM had been already demonstrated, there was a lack of
robust epidemiological studies on the health effects of ultrafine particles levels [28]. The
solid particle number (SPN) methodology was initially introduced in the EU (European
Union) regulation in 2011 for light-duty diesel vehicles (Euro 5b). Since then, it has been
extended to other sectors and regulations (EU and Global). Other than the EU, many
other countries have introduced SPN in their regulations. For example, China (China 5 for
light-duty diesel vehicles, China 6/VI all), India (BS VI all since 2020), and Korea have SPN
limits. At the time of writing, in addition to the EU, only China has on-road SPN limits,
and India will introduce them in 2023. Interestingly, even though only solid particles are
limited, a review (years 1994–2019) showed that for gasoline direct injection vehicles where
the SPN emissions decreased over the years, the total particles (i.e., solids and volatile
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primary particles) also decreased. On the other hand, for port fuel injection vehicles, where
no SPN limit applies, the solid particle emissions remained at the same levels or even
increased, as well as the total particles [29]. Similarly, DPFs were found to be very effective
in reducing secondary aerosol formation [30]. It should be emphasised, though, that total
particles are more sensitive than solid particles, and they do not necessarily correlate for all
cases (vehicles, fuels, test cycles etc.). Consequently, large differences between the two can
sometimes be found [31].

Since the latest reviews in 2015 and 2018 [32,33], corrections and improvements to
the methodologies used to measure particle numbers from motor vehicles took place,
sometimes with important differences. The aim of this paper is to update on the status
of current particle number regulations and, most importantly, to summarise the technical
specifications, differences, improvements, and lower detections sizes (from 23 nm to 10 nm),
which are not so easy to identify. To our knowledge, this is the first study that summarises
all particle number regulations.

2. Regulatory Background

This section will give the background and regulatory context of the group and com-
mittees that were responsible for preparing the particle number technical specifications
and adopting the relative regulations.

2.1. World Forum for Harmonization of Vehicle Regulations (WP.29)

The circulation of vehicles in a country requires the approval of the vehicle type and/or
its components. Different national regulations and approval procedures mean additional
time and costs for the manufacturers due to additional designs, tests, and approvals. Thus,
it is highly desirable to harmonise the technical requirements and regulations for the vehicle
type approval at an international or even a global level. The main organisation where
such effort is taking place is the World Forum for Harmonization of Vehicle Regulations
(WP.29) [34] under the United Nations Economic Commission for Europe (UNECE) [35].
There are six subsidiary bodies, also known as GRs (Groups of Rapporteurs) (Figure 1). The
one relevant to vehicle emissions is the Working Party on Pollution and Energy (GRPE) [36].
Any United Nations (UN) member country and any of their regional economic integration
organisations may participate in the activities of the World Forum and may become a
contracting party to the Agreements (which will be discussed below). Governmental and
non-governmental organisations (NGOs) may also participate in a consultative capacity in
WP.29 or in its subsidiary working groups. The WP.29 convenes three times a year (March,
June, and November). The sessions of each subsidiary body are usually held twice a year.
The work of the World Forum is transparent: all agendas, working documents and reports
are openly accessible on the Internet website of the World Forum.

Three UN Agreements, adopted in 1958, 1997, and 1998, provide the legal framework
allowing contracting parties to establish internationally harmonised regulatory instruments
concerning the certification of motor vehicles and their equipment and parts, as well as
rules for technical inspections of vehicles in use [37].

1. UN 1958 Agreement [38];
2. UN 1998 Agreement [39];
3. UN 1997 Agreement [40].
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Figure 1. Organisation of the World Forum. 1 Former Working Party on Brakes (GRB); 2 Former Working Party on Brakes and
Running Gear (GRRF). UNR = United Nations Regulation; GTR = Global Technical Regulation; PTI = Periodic Technical Inspection.

2.1.1. UN 1958 Agreement

The UN 1958 Agreement provides the legal and administrative framework for devel-
oping harmonised technical UN Regulations on uniform performance requirements, for
granting type-approvals and documentation, for the conformity of production, and for the
assessment of technical services. The basic main principles of the 1958 Agreement are: (i)
the mutual recognition of the type-approvals granted by contracting parties, and; (ii) a con-
tracting party can choose which, if any, of the UN Regulations annexed to the Agreement it
would like to apply. Furthermore, even when a contracting party applies a UN Regulation,
it may keep its own alternative national/regional legislation. The regulations were for-
merly called “UNECE Regulations” or, less formally, “ECE Regulations” in reference to the
Economic Commission for Europe (ECE). However, since many non-European countries
are now contracting parties to the 1958 Agreement, the regulations are officially entitled
“UN Regulations” or sometimes abbreviated as “UNRs”. Some important regulations for
vehicle exhaust emissions are:

• UN Regulation 40 for motorcycles. There is no particle number measurement requirement.
• UN Regulation 47 for mopeds. There is no particle number measurement requirement.
• UN Regulation 49 for heavy-duty engines.
• UN Regulation 83 for light-duty vehicles.
• UN Regulation 96 for non-road mobile machinery.
• UN Regulation 132 for retrofitting.
• UN Regulation 154 for light-duty vehicles following the worldwide harmonised light

vehicles test procedure (WLTP) [41].
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The oldest of the above are UNR 40 (entry into force 1979) and UNR 47 (entry into
force 1981), and the latest is UNR 154 (entry into force 2020). At the time of writing, 159
UN Regulations exist, which can be found at the relative website [42].

2.1.2. UN 1998 Agreement

The UN 1998 Agreement (or Global Agreement) stipulates that contracting parties
establish, by consensus vote, UN Global Technical Regulations (UN GTRs) in a Global
Registry on globally harmonised performance requirements and test procedures. Each UN
GTR contains extensive notes on its purpose and development. The technical rationale,
the research sources used, the cost and benefit considerations, and the references to data
that were consulted are recorded. GTRs are not binding to contracting parties, and they
should apply their national rulemaking procedures if and when transposing UN GTRs into
national legislation. At the time of writing, 21 UN GTRs exist, which can be found at the
relative websites [43]. The most important for vehicle exhaust regulations are:

• GTR 2 for L-category vehicles (test cycle: worldwide harmonised motorcycle test
cycle—WMTC). There is no particle number measurement description.

• GTR 4 for heavy-duty engines (worldwide harmonised heavy-duty certification
procedure—WHDC) (test cycles: worldwide harmonised transient cycle—WHTC;
worldwide harmonised stationary cycle—WHSC). There is no particle number mea-
surement description.

• GTR 11 for non-road mobile machinery (NRMM) (test cycles: non-road transient cycle—NRTC;
non-road stationary cycle—NRSC). There is no particle number measurement description.

• GTR 15 for light-duty vehicles (worldwide harmonised light vehicles test procedure—
WLTP) (test cycle: worldwide harmonised light vehicles test cycle—WLTC).

2.1.3. UN 1997 Agreement

The UN 1997 Agreement allows contracting parties to establish UN Rules for the
periodic technical inspections (PTI) of vehicles in use. The contracting parties reciprocally
recognise the international inspection certificates that were granted according to the UN
Rules annexed to the Agreement. The topic will not be discussed in more detail here.

2.1.4. Differences between UN 1958 and 1998 Agreements

While both the 1958 and 1998 Agreements prepare regulations on similar technical
topics, the UN Regulations (1958 Agreement) prescribe the conditions for reciprocal recog-
nition of approvals granted on the basis of the regulations (i.e., approved once and accepted
everywhere). UN Regulations are annexed to the 1958 Agreement and therefore are part of
it; they are considered international law. Contracting parties are free to be bound by all,
some, or no UN Regulations. UN GTRs instead do not contain administrative provisions
(for certification and conformity of production). Adoption of UN GTRs needs consensus
vote, while UN Regulations need a four-fifths majority of the relevant Committees.

2.1.5. The Agreements Worldwide

The countries that have signed the 1958 and 1998 Agreements can be found in the
Blue Book [44]. They are referred to as contracting parties. For example, Japan and Korea
have signed the 1958 Agreement, but not the USA (United States of America), Canada,
China, or India. The 1998 Agreement has been signed by many countries, including the
USA, Canada, Japan, Russia, China, Korea, India, and Australia.

The EU is a contracting party of the 1958 and 1998 Agreements, but not of the 1997
Agreement. In recent years, the EU decided to replace as many EU Directives as possible
with the 1958 Agreement UN Regulations and to make direct reference to these UN
Regulations in EU legislation [45,46]. The UN Regulations, which are applicable under EU
law, must be translated into all official EU languages and published in the Official Journal
of the EU.
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It should be added that an EU Regulation is a binding legislative act. It must be
applied in its entirety across the EU. An EU Directive is a legislative act that sets out a goal
that all EU countries must achieve. However, it is up to the individual countries to devise
their own laws on how to reach these goals.

2.2. Working Party on Pollution and Energy (GRPE)

The Working Party on Pollution and Energy (GRPE) is the subsidiary body of the
World Forum for Harmonization of Vehicle Regulations (WP.29) that prepares regulatory
proposals on pollution and energy efficiency which are submitted for approval to WP.29.
Final decisions are taken by representatives of the contracting parties by vote at the World
Forum WP.29 level. Some of the informal working groups (IWGs), active or inactive at the
time of writing, can be found in Figure 1. Each informal working group operates on the
basis of Terms of Reference (ToR) and a mandate that have to be approved by the GRPE
during its plenary sessions.

The Particle Measurement Programme (PMP) group is the one responsible for the
development of the technical specifications for particulate instruments and relevant regula-
tions, and they provide feedback to other IWGs whenever requested on particulates topics.
All the documents can be found on the relative website [47].

2.3. Particle Measurement Programme (PMP)

The Particle Measurement Program (PMP) group was launched in 2001 on the initiative
of several UNECE contracting parties, and since then, it has evolved into an international
group comprising governments, the European Commission, industry (associations of car
and engine manufacturers, instrument manufacturers), and national vehicle emission
laboratories and research institutions [48]. The original aim was to develop a sensitive
and accurate methodology that would replace or complement the regulated gravimetric
procedure, requiring low investment costs, with special consideration to particle emissions
at very low levels. The PMP group was initially chaired by the UK (United Kingdom) and
since 2013 by the JRC.

In the first two phases (2001–2003), a wide range of measurement techniques and
sampling systems were assessed. Phase three consisted of inter-laboratory exercises (2004–
2006 light-duty, 2007–2009 heavy-duty) evaluating the repeatability and reproducibility of
the two final recommended systems (improved PM mass method, new particle number
method). The measurement method proposed by PMP in 2007, based on the counting
of solid particles with a diameter larger than 23 nm, was integrated into the European
Emissions Regulation in 2011 for diesel light-duty vehicles (Euro 5b) and in 2013 for heavy-
duty engines (Euro VI). The methodology was also added in UN Regulation 83 and UN
Regulation 49.

PMP group activities stopped at the end of 2011 with the introduction of the method
in light-duty European regulation and the proposal for heavy-duty engines. The number
methodology was included in the light-duty GTR 15 (WLTP) since this was developed after
the introduction of the particle number for light-duty vehicles in EU. However, heavy-duty
GTR 4 (WHDC) was developed before the introduction of the particle number in the EU
heavy-duty regulation, so it does not include the particle number methodology.

In 2013, the EU and Switzerland requested further investigation of particle number
emissions from spark ignition engines, in particular below 23 nm, the lower size in the
regulated method. The new Terms of References (ToR) included topics such as:

• Emissions from gasoline direct injection (GDI) vehicles.
• Development of equipment to measure particles below 23 nm.
• Calibration procedures update (and if necessary for lower size).
• Engine dynamometer raw exhaust particle measurements for type-approval of heavy-

duty engines.
• Emissions during regeneration events.
• Non-exhaust particle emissions.



Processes 2021, 9, 2216 7 of 24

The work of the PMP group was the basis of the extension of the particle regulation to
light-duty gasoline direct injection vehicles in 2014. A limit was introduced for non-road
mobile machinery in 2019.

A major part of the work was the preparation of a sub-23 nm protocol. The final
10 nm proposal was introduced as an option to GTR 15 and is also ready for heavy-
duty regulations. The principles that have guided the development of the sub-23 nm
methodology are summarised below:

• Aim at the best compromise between accuracy, repeatability, reproducibility, and test
complexity/cost.

• Try to avoid, as much as possible, requiring heavy changes and investments to update
the existing facilities/measuring equipment.

• Take into account the possible different approaches in different regions (in some
regions there is the intention to regulate sub-23 nm, while others could decide to do
this at a later stage).

Regarding on-road particle measurements, the measurement methodology was devel-
oped in Europe by the RDE expert group and the JRC. RDE testing was introduced into
EU regulation in 2017 for light-duty vehicles and in 2021 for heavy-duty vehicles. After
the introduction in the EU regulation, the PMP refined and extended the methodology to
10 nm. The proposal was submitted to the UN RDE group in 2021.

An important amount of work has also been done and still continues within the PMP
on defining the brake emissions protocol (cycle, sampling, instrumentation). This topic will
not be addressed in this paper. The details of the particle number technical specifications
for exhaust emissions will be described in the next chapter.

3. Technical Specifications
3.1. Terminology

The definition of a solid particle is not simple. The intention of the regulation is to
measure “solid” particles, with the main focus being on soot particles in the past. The PMP
protocol, as drafted in 2003, requires sampling from the full dilution tunnel with constant
volume sampling (CVS). Thus, the exhaust gas sample is already diluted at approximately
ambient temperature, around 25 ◦C. The decision to sample from the dilution tunnel
was made because the dilution tunnels was already used for the measurement of other
pollutants. For heavy-duty and non-road mobile machinery, in addition to the dilution
tunnel, sampling from the proportional partial flow dilution system (PFDS) is allowed
(see Figure 2). The diluted sample temperature is also expected to be low, around 25 ◦C.
The sample preconditioning in the laboratory particle number system (LABS) includes hot
dilution at >150 ◦C followed by an evaporation tube at 300–400 ◦C. Any surviving particles
large enough to be detected with a particle counter having approximately 50% counting
efficiency at 23 nm are defined as “solids” in the PMP protocol. These operationally defined
solid particles may also include semivolatile material not evaporating at 300–400 ◦C (e.g.,
heavy molecular hydrocarbons) or at least not shrinking to a sufficiently small size that
would not activate and grow to a size to be detected by the particle counter. Thus, the term
“nonvolatiles” may be more appropriate; nevertheless, the commonly used term “solids”
will be used in this paper.



Processes 2021, 9, 2216 8 of 24

Figure 2. Sampling possibilities of laboratory particle number systems (LABS) and portable emission
measurement systems (PEMS). Dashed lines show cases under discussion for inclusion in the regu-
lation. Validation is the check of the PEMS with LABS. CVS = constant volume sampling; PFDS =
proportional partial flow dilution system.

The latest terminology in the regulations (in GTR 15) uses the term “particle” for the
matter being characterised (measured) in the airborne phase (suspended matter) and the
term “particulate” for the deposited matter. Particle number (PN) emissions mean the total
number of solid particles emitted from the vehicle exhaust quantified according to the
dilution, sampling, and measurement methods as specified in the regulation. Particulate
matter (PM) emissions mean the mass of any particulate material from the vehicle exhaust
quantified according to the dilution, sampling, and measurement methods as specified in
the regulation. UNR 49 defines as PM any material collected on a specified filter medium
after diluting exhaust with a clean filtered diluent to a temperature between 42 ◦C and
52 ◦C; this is primarily carbon, condensed hydrocarbons, and sulphates with associated
water. In the same regulation, instead of PN, mistakenly, the term “PM number” is used.
Recently, the abbreviation SPN (solid particle number) instead of PN was suggested to
emphasise that solid particles are measured and not total particles (i.e., solids and volatiles).

The on-board portable emission measurement systems (PEMS) measure directly from
the tailpipe (undiluted exhaust), as the measurements are done on the road. Permitting
direct sampling from the tailpipe also in the laboratory is an attractive approach. However,
for light-duty vehicles, there is no exhaust gas flow rate information, which is necessary
for the calculation of the emissions. On the other hand, for heavy-duty engines, direct
sampling of gaseous pollutants is already permitted, and the exhaust flow rate can be
measured by various methods. Thus, allowing direct particle sampling from the tailpipe
for type-approval of engines is easier to introduce in the regulation. One approach is
directly connecting the particle number system to the tailpipe using a heated sampling
line (see Figure 2). Another is using a (cold) pre-diluter at ambient temperature, with
something similar happening with CVS or the PFDS. PEMS with both concepts exist
already for light-duty vehicles (i.e., cold dilution or heated line and hot dilution). Figure 2
summarises the possibilities of particle number measurements with laboratory or portable
systems. Such possibilities may result in differences regarding the final SPN concentration
due to incomplete removal of volatiles, particle losses (e.g., due to thermophoresis in
sampling lines), and particle transformations (e.g., due to agglomeration in sampling
lines). Furthermore, the optical detectors of PEMS are not necessarily the same as those
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of laboratory systems, further enhancing the differences between PEMS and LABS (see
Appendix A for details).

In the following sections, the term LABS will be used for the laboratory systems and
PEMS for the on-board systems, followed by a number (10 or 23) indicating the approximate
lower detection size (e.g., LABS23 or PEMS10). The term solid particle number (SPN) will be
used for all the above protocols regardless of the application (laboratory or on-board). Any
differences to the final SPN result due to the different design characteristics of the systems
are taken into account with the limit values and the conformity factors in Regulation (EU)
2017/1151 for light-duty vehicles and Regulation (EU) 2019/1939 for heavy-duty vehicles.

3.2. Laboratory Systems (LABS) Specifications
3.2.1. Description of the System

Figure 3 plots a LABS according to the current (23 nm) technical specifications. It
also gives the improvements of the 23 nm systems and the future 10 nm requirements.
The laboratory systems (LABS) consist of a volatile particle remover (VPR) and a particle
number counter (PNC). The VPR extracts a small flow, having a probe in a dilution tunnel
(full flow or proportional partial flow). Optionally, a sampling line connects the VPR to
the sampling probe. The VPR has to dilute the sample at least ten times, and the mixture
temperature has to be at least 150 ◦C. Theoretically, a system heated at, for example,
160 ◦C fulfils the design requirements of the regulation (but would still have to fulfil the
performance requirements for volatile removal efficiency, see below). Nevertheless, the
recommended system described in the regulation, which was based on the PMP suggested
system, includes an evaporation tube at 350 ◦C. The PNC has to be full flow and count
particles in the single counting mode. Other calibration requirements regarding the particle
concentration reduction factor (PCRF) and the volatile removal efficiency (VRE) of the VPR,
as well as the counting efficiency (CE) of the PNC, are summarised in Figure 3. The PCRF,
VRE, and CE are determined during the calibration of the device, with an appropriate
aerosol measuring monodisperse in parallel with a reference instrument. For a given
dilution setting of the VPR, PCRF is the ratio of the upstream to downstream concentration
of solid particles of a specific size, and it is an indication of the dilution and the particle
losses at the specific size for the VPR. Volatile removal efficiency is one minus the ratio of
downstream to upstream concentration of volatile (tetracontane) particles with size >30 nm.
Counting efficiency is the ratio of inlet to outlet concentration of particles for the PNC.
Details can be found elsewhere [49].

3.2.2. Comparison of the Specifications

Table 1 summarises the technical and calibration requirements for the original labora-
tory system counting >23 nm (LABS23) as introduced in the regulations. The next columns
summarise the improved LABS23 and the LABS10 based on the recent PMP recommenda-
tions. Note that the terms SPN23 and SPN10 are used in GTR 15. The main improvements
of the LABS23 systems are:

• A catalytic stripper (CS) may be included in the VPR (while in the past it was not allowed).
• The PNC calibration material should be soot or PAO (polyalphaolefin) (commonly

known as emery oil), while in the past there was no material definition.
• The k-factor from the linearity test has to be included in the counting efficiencies

(while in the past it was not necessary).
• The differences from the reference instrument have to be within 5% (k-factor included)

and not 10% as in the past.
• There are no more restrictions on internal PNC corrections (in the past, up to 10% of

coincidence correction was allowed).
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Figure 3. Schematic of a laboratory particle number system (LABS). Dashed lines show optional
parts. In red are heated parts. At the top of the figure the calibration requirements are given. In green
are the improvements compared to the original regulation (both counting >23 nm). The differences
between 10-nm and 23-nm systems are given in blue italics and in dotted square. CE = counting
efficiency; CS = catalytic stripper; DF = dilution factor; ET = evaporation tube; OT = outlet tube;
P = penetration; PCRF = particle number concentration reduction factor; PNC = particle number
counter; PND = particle number diluter; RT = residence time; t = time; T = temperature; VRE =
volatile removal efficiency; VPR = volatile particle remover.

Table 1. Comparison of original LABS23, improved LABS23, and new (improved) LABS10 technical specifications and
calibration requirements. Dashed lines separate the calibration requirements.

Part LABS23 Original LABS23 Improved LABS10 (Improved)

Sampling line
optional optional optional
RT ≤ 3 s RT ≤ 3 s RT ≤ 3 s

Re ≤ 1700 Re ≤ 1700 Re ≤ 1700

Volatile Particle
Remover (VPR)

PND1 (DF ≥ 10:1) PND1 (DF ≥ 10:1) PND1 (DF ≥ 10:1)
150 ≤ T ≤ 400 (±10) ◦C 150 ≤ T ≤ 400 (±10) ◦C 150 ≤ T ≤ 400 (±10) ◦C

300–400 ◦C (Rec. system) 350 ◦C (Rec. system) 350 ◦C (Rec. system)
No CS May be CS With CS (Rec. system)

Tin,PNC < 35 ◦C Tin,PNC < PNC specs Tin,PNC < PNC specs
P100 ≥ 70% P100 ≥ 70% P100 ≥ 70%

(each instrument) (once for family) (once for family)
PCRF50/PCRF100 ≤ 1.2 PCRF50/PCRF100 ≤ 1.2 PCRF50/PCRF100 ≤ 1.2
PCRF30/PCRF100 ≤ 1.3 PCRF30/PCRF100 ≤ 1.3 PCRF30/PCRF100 ≤ 1.3

- - PCRF15/PCRF100 ≤ 2.0
VREC40,30nm,≥10

4
#/cm

3 > 99.0% VREC40,30nm,10
4

#/cm
3 > 99.0% VREC40,≥50nm,1 mg/m

3 > 99.9%
VRE yearly VRE according to manuf. VRE according to manuf.

Thermally stable material Thermally stable material Thermally stable material
Calibration 12 months Calibration 13 months Calibration 13 months

PCRF validation 30, 50, 100 nm or
polydisperse (50 nm): ±10%

PCRF validation 30, 50, 100 nm or
polydisperse (50 nm): ±10%

PCRF validation 30, 50, 100 nm:
±10%
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Table 1. Cont.

Part LABS23 Original LABS23 Improved LABS10 (Improved)

Particle Number
Counter (PNC)

Full flow Full flow Full flow
t90 < 5 s t90 < 5 s t90 < 5 s

Single counting mode Single counting mode Single counting mode
Any material Soot or PAO Soot or PAO

0.9 < kslope < 1.1, R2 > 0.97 0.9 < kslope < 1.1, R2 > 0.97 0.9 < kslope < 1.1, R2 > 0.97
Linearity ± 10% Linearity ±5% from slope Linearity ±5% from slope

CE23 = 50% (±12%) CE23 = 50% (±12%) CE10 = 65% (±15%)
CE41 > 90% CE41 > 90% CE15 > 90%

kslope may be included in CE kslope included in CE kslope included in CE
Coincidence correction <10% Any internal correction Any internal correction

Certificate 12 months Certificate 13 months Certificate 13 months

Combined
PCRFave of 30, 50, 100 nm PCRFave of 30, 50, 100 nm PCRFave of 30, 50, 100 nm

Total RT ≤ 20 s Total RT ≤ 20 s Total RT ≤ 20 s

Checks

Daily zero VPR < 0.5 #/cm3 Daily zero VPR <0.5 #/cm3 Daily zero VPR <0.5 #/cm3

Daily zero PNC ≤ 0.2 #/cm3 Daily zero PNC ≤0.2 #/cm3 Daily zero PNC ≤0.2 #/cm3

Daily amb. PNC: > 100 #/cm3 No error No error
Monthly flow PNC ± 5% nominal Flow ±5% last certificate Flow ±5% last certificate
6 mos. monitor or wick exchange
or ±10% of PNCRef or ≥ 2 PNCs

6 mos. monitor or wick exchange
or ±10% of PNCRef or ≥ 2 PNCs

6 mos. monitor or wick exchange
or ±10% of PNCRef or ≥ 2 PNCs

amb. = ambient air; CE = counting efficiency; CS = catalytic stripper; DF = dilution factor; ET = evaporation tube; mo = months; P =
penetration; PCRF = particle number concentration reduction factor; PNC = particle number counter; Rec. = recommended; RT = residence
time; T = temperature; VRE = volatile removal efficiency; VPR = volatile particle remover.

The main differences between the LABS10 and improved LABS23 are:

• The counting efficiencies of the PNC are different and shifted to smaller particles.
• The CS is obligatory in the VPR (but only for the recommended system).
• The volatile removal efficiency has to be >99.9% with a challenging aerosol of 1 mg/m3

tetracontane.

Details can be found in Table 1.

3.2.3. Pre-Diluter

For heavy-duty particle number sampling from the tailpipe, two approaches are
allowed in the proposed Resolution:

1. Using the LABS, but the sampling line must be heated at a temperature ≥150 ◦C, and
the residence time must be ≤ 1 s.

2. Using a pre-diluter and then the LABS.

Pre-diluter is defined as a diluter located after the sampling probe and in front of the
sampling line of the VPR (thus, it is not part of the VPR) (Table 2). A fixed dilution ratio of
>5.1 is required, and the diluter temperature has to be ≥20 ◦C. If there is a sampling line
between pre-diluter and sampling probe, it must be heated at a temperature ≥150 ◦C and
have a residence time ≤1 s. The current proposal for the calibration requirements is that
the pre-diluter and the sampling line after the VPR shall fulfil the penetration and PCRF
requirements of the LABS with an approximately 10% “worsening” of the performance.
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Table 2. Technical specifications of the pre-diluter.

Specification Description

Location A cold or hot pre-diluter may be located at the end of the particle sampling probe and in front of the
particle transfer tube (PTT). 1

Dilution A fixed dilution ratio >5:1 shall be applied to the cold or hot dilution stage. Cold dilution is defined
as a dilution with (unheated) dilution air and/or diluter temperature ≥20 ◦C

Penetration The complete system (pre-diluter, PTT, and VPR) penetration shall not decrease more than 10% the
penetration requirements specified for the VPR.

PCRF The complete system (pre-diluter, PTT, and VPR) PCRFs shall not exceed 0% of the PCRF
requirements specified for the VPR for 50 nm, 10% for 30 nm, and 25% for 15 nm (if applicable).

1 The residence time until the pre-diluter shall be ≤1 s. The tubing shall be heated at ≥150 ◦C if ≥10 cm

3.3. Portable Emission Measurement Systems (PEMS) Specifications

The requirements for the on-board SPN23 portable emissions measurement systems
(PEMS23) were developed in the EU Real-Driving Emissions (RDE) group (the term “PN
analyzer” is used in the regulation). The specifications had to be strict enough to be comparable
with the laboratory systems but “relaxed” enough to allow small and light systems or novel
concepts (e.g., hot condensation particle counters) [50] (Figure 4). In order to allow possible
future innovative concepts, the main requirements for the PEMS23 were to:

• Include a heated section of at least 300 ◦C.
• Have a volatile removal efficiency of at least 99% for 1 mg/m3 tetracontane particles

with count median diameter (CMD) ≥50 nm.
• Be linear, within ±15% of a reference instrument.
• Have the efficiencies of Table 3. Efficiency is the ratio of the downstream to upstream

concentration of solid particles with a specific size, as determined during the calibra-
tion of the system. The instruments have to take into account the internal dilution and
any other correction factors for losses or the particle detector. These efficiencies were
based on simulations of laboratory systems LABS23 (combination of VPR and PNC)
and an additional flexibility for on-board systems.

Figure 4. Schematic of a particle number portable emissions measurement system (PEMS). Dashed
lines show optional parts. In red are heated parts. PND = particle number diluter; RT = residence
time; t = time; T = temperature.

Table 3. Efficiencies of particle number portable emissions measurement systems (PEMS).

System 10 nm 15 nm 23 nm 30 nm 50 nm 70 nm 100 nm 200 nm

PEMS23 0.20–0.60 0.30–1.20 0.60–1.30 0.70–1.30 0.70–1.30 0.50–2.00
PEMS10 0.10–0.50 0.30–0.70 0.75–1.05 0.85–1.15 0.85–1.15 0.80–1.20 0.80–2.00

The terminology of the on-board systems is also slightly different in order to not
be confused with the laboratory systems. For example, the particles are counted with a
“particle detector” that could be a CPC (condensation particle counter)- or a DC (diffusion
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charger)-based instrument. In contrast, in a laboratory system, the particles are counted
with the PNC, which is CPC-based. A VPR, which is called “pre-conditioning system” (e.g.,
it could be part of the particle detector), is not obligatory in the PEMS. The sampling line,
as with the laboratory systems, is not obligatory. If used, though, it has to be heated at
≥100 ◦C (while there is no temperature requirement for the laboratory systems because
they measure diluted exhaust).

The SPN PEMS calibration has to be done annually with soot-like particles. For
the efficiencies (Table 3), monodisperse particles have to be used, and the correction for
multiply charged particles must be <10% (and reported). For the linearity, monodisperse
(≥ 45 nm) or polydisperse aerosol (CMD ≥ 45 nm) can be used, and at least five concen-
trations covering the whole measurement range have to be checked. The slope has to be
within 0.85 and 1.15 with R2 > 0.95. The offset has to be ≤ 10% of xmax and standard error
of the estimate (SEE) ≤ 10% of xmax. The zero level has to be <5000 #/cm3 (averaging of
30 s) and remain <5000 #/cm3 (averaging of 30 s) after 4 h of testing. Note that the 30 s
averaging will change to 60 s in order to be more in line with the ISO 27891 for CPCs.

The differences between the 10 nm to the 23 nm system are:

• The efficiencies are different (see Table 3), and the tolerances are tighter for the 10 nm systems.
• The heated part must include a catalytic stripper.
• The volatile removal efficiency has to be at least 99.9% (instead of 99.0%).

At the time of writing, the 10 nm proposal is for the light-duty UN RDE, but they will
be the same for heavy-duty applications (see Discussion).

3.4. Summary of SPN Regulations

The following sections summarise the SPN regulations in the EU. Note that up until
November 2009, all EU legislation references the European Community (EC), as only this
body had legal personality. Since 1 December 2009, the EU is referenced, because due to
the Lisbon Treaty, the European Union (EU) has been given a single legal personality.

3.4.1. Light-Duty Vehicles

In the EU, a SPN23 limit of 6 × 1011 #/km applied for the first time in 2011 (Euro
5b) for diesel vehicles (Regulation (EC) 692/2008) (Table 4). Regulation (EU) 459/2012
introduced the same limit for GDIs in 2014 (Euro 6), with the possibility of a 10-times-
higher limit for the first 3 years, upon request of the vehicle manufacturer. Regulation (EU)
2017/1151 (Euro 6c) repealed Regulation (EC) 692/2008 and introduced the worldwide
harmonised light vehicles test procedure, or WLTP. Real-driving emissions (RDE) testing
with portable emissions measurement systems (PEMS) was introduced in 2017 (Euro
6d-Temp) initially only for type-approval (Regulations (EU) 2016/427, 2016/646), with a
conformity factor (CF) of 1.5 for particle number (Regulation (EU) 2017/1154), and later
for in-service conformity (ISC) (Regulation (EU) 2018/1832). The CF for on-road SPN23
with PEMS23 remained the same for Euro 6d, which entered into force in 2020. All RDE
regulations were consolidated in Regulation (EU) 2017/1151. Regulation (EU) 2018/858
replaced Directive 2007/46/EC and introduced a new EU type-approval framework (from
September 2020) with an effective market surveillance system to control the conformity of
vehicles already in circulation (from September 2019).

Table 4. Regulations for light-duty vehicles regarding type-approval, conformity of production, and
in-service conformity. The limits are applicable to the relevant EU and UNR regulations. GTRs do
not include any emission limits.

Location GTR UNR EU SPN23 (#/km) PM (mg/km)

LABS23 15 83 or 154 2017/1151 6 × 1011 4.5
PEMS23 - 1 - 2 2017/1154 CF = 1.5 3 -

1 informal document [51]; 2 working document [52]; 3 to be reduced to 1.34 [53].
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3.4.2. Heavy-Duty Vehicles

In EU SPN23, limits were initially applied to compression ignition (CI) (diesel) engines
in 2013 (Euro VI) (Regulation (EU) 582/2011) and in 2014 to positive ignition (PI) engines
(Regulation (EU) 133/2014) (Table 5). The limit is 6 × 1011 #/kWh for the combined (14%
cold, 86% hot) WHTC and 8 × 1011 #/kWh for the WHSC (only diesel). The methodology
(Regulation (EU) 64/2012) refers to UNR 49.

Regulation (EU) 582/2011 introduced on-road PEMS testing for ISC (instead of re-
moving the engine from a vehicle and testing it on the engine dynamometer) for gaseous
pollutants. Regulation (EU) 2019/1939 (Euro VI step E) added the cold start in the evalua-
tion of the emissions and SPN23 with a CF = 1.63 with PEMS23 from 2021 for CI engines
and 2023 for PI engines.

Table 5. Regulations for heavy-duty engines and vehicles regarding type-approval and in-service
conformity. The limits are applicable to the relevant EU and UNR regulations. GTRs do not include
any emission limits.

Location GTR UNR EU SPN23 (#/kWh) PM (mg/kWh)

LABS23 4 (no PN) 49 582/2011 6 × 1011 1 10
PEMS23 - - 582/2011 CF = 1.63 -

1 8 × 1011 #/kWh for the steady cycle (only diesel).

3.4.3. Non-Road Mobile Machinery

In the EU, Regulation (EU) 2016/1628 repealed Directive 97/68/EC in 2016 and intro-
duced SPN23 limits to non-road engines (19–560 kW), inland waterway vessels (>300 kW),
and rail traction engines in 2019 (Stage V) (Table 6). The procedures and test cycles (non-
road transient cycle—NRTC; non-road stationary cycle—NRSC) are described in Regulation
(EU) 2017/654 and 2017/655 for on-road monitoring. At the moment, there is no particle
number limit for on-road testing with PEMS.

Table 6. Regulations for non-road mobile machinery engines and vehicles regarding type-approval
and in-service conformity. The limits are applicable to the relevant EU and UNR regulations. GTRs
do not include any emission limits.

Location GTR UNR EU SPN23 (#/kWh) PM (mg/kWh)

LABS23 11 (no PN) 96 2017/654 1 × 1012 15
PEMS23 - - 2017/655 1 - -

1 no SPN for on-road testing.

3.4.4. Worldwide

Worldwide, many countries in Asia have introduced SPN23 limits in the laboratory
(6 × 1011 #/km for light-duty vehicles, 6 × 1011 #/kWh for heavy-duty engines) in the last
few years (Table 7). On-road testing will be required from 2023 in India (CF to be defined)
and China (CF = 2.0–2.1). Korea has limits only for diesel vehicles [54] whereas India also
includes gasoline vehicles with direct injection engines, and China limits all technologies
(with CN 6).
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Table 7. Summary of regulations including particle number limits. The table gives the first emission
stage including a particle number limit. In brackets, the relative technology and the introduction year.

Country System Light-Duty Heavy-Duty NRMM

Korea LABS23 Euro 6 (D, 2014) Euro VI (D, 2015) no
Singapore LABS23 Euro 6 (D, GDI 2018) Euro VI (all, 2018) no
India LABS23 BS VI (D, GDI, 2020) BS VI (all, 2020) 1 BS V (2024)

PEMS23 CF = tbd (2023) CF = tbd (2023)
China LABS23 CN5 (D, 2016) 2

LABS23 CN 6a (all, 2020) CN VIa (all, 2019) Stage IV (2023) 1

PEMS23
CN 6b (CF = 2.1,
2023)

CN VIb (CF = 2.0,
2021)

CF = 2.5 (no
SPN)

1 2025 for positive ignition; 2 earlier in Beijing (2013) and Shanghai (2014); limit 5 × 1012 p/kWh. BS = Bharat
stage; CN = China; D = diesel; GDI = gasoline direct injection; NRMM = non-road mobile machinery.

4. Discussion
4.1. Open Points

The open topics of the PMP group regarding exhaust emissions part are described below.
One is the investigation of whether the volatile removal efficiency test is adequate.

The tetracontane is representative of heavy molecular hydrocarbons, and 1 mg/m3 is a
mass at the high end of what is typically seen at the exhaust of modern engines [55]. Higher
values have been measured for two-stroke mopeds or vehicles without oxidation catalyst.
Hydrocarbons are rarely the nucleating species, e.g., with engines without oxidation
catalysts [56] where the concentrations are high. For engines with oxidation catalysts,
sulfuric acid is the key compound in forming the first nuclei [57]. The nucleation can be
enhanced when a small amount of ammonia is present [58]. Hydrocarbons are necessary,
though, to grow the particles to the >10 nm range. Thus, the current volatile removal
requirement ensures that the measurement systems are capable of reducing the nucleation
mode to sizes not detectable by the particle detectors. Another difficulty is the requirement
of a generated mean size of ≥50 nm, which has been found to result in residual particles.
Discussions are ongoing to reduce this requirement to 30 nm.

Another important topic is the improvement of the calibration procedures. More
detailed uncertainty analysis and traceability have to be re-examined. Even though a lot of
work has been done in the last few years [33,59–63], the different specifications between
laboratory and on-board systems make the comparison of the results of the two systems
difficult. Any estimation of the additional uncertainty of PEMS vs. LABS needs to estimate
the efficiencies of the LABS based on the VPR particle concentration reduction factors and
PNC counting efficiencies [53]. For example, defining common calibration sizes would
improve the comparability.

Another point that needs more research is the pre-diluter. Most studies have been
done with direct sampling and a heated line and showed acceptable agreement with the
current PFDS or CVS systems [64,65]. The results with the pre-diluter tend to slightly
overestimate the emissions. This needs to be better understood. Furthermore, the tests so
far have had exhaust gas temperatures <500 ◦C, and it is not known how the systems will
behave at higher temperatures.

4.2. Future SPN Regulations

The improved LABS23 and LABS10 methodologies have been included in the latest
amendments to the GTR 15 (light-duty). There is also a Consolidate Resolution ready for
heavy-duty regulations which, in addition to the improved LABS23 and LABS10 method-
ologies, expands the LABS for sampling directly from the tailpipe. The different approach
in terms of legislative acts at the UNECE level (GTR vs. Consolidated Resolution) for HD
engines is linked to the fact that the particle number method for HD is described only in
UNR 49 and not in GTR 4. Therefore, any change to UNR 49 would have an immediate
regulatory effect. Nevertheless, the plan is to include both LABS23 and LABS10 options
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and direct tailpipe sampling in a future amendment of GTR 4. Inclusion of improved
LABS23 and LABS10 in UNR 49 (and UNR 83 and 154 for light-duty vehicles) still needs
to be discussed. Furthermore, direct sampling from the tailpipe with fixed dilution was
prepared for the type-approval of heavy-duty engines. The plan is to include this option in
both GTR 4 and UNR 49.

The PEMS10 methodology will be included in the future in the GTR RDE light-duty
regulation. It is expected to have the same requirements for heavy-duty testing, but at the
moment, there is no GTR or UNR foreseen for on-road heavy-duty vehicles testing. There
is no official announcement regarding whether other countries will introduce the 10 nm
methodologies (laboratory or on-road) in their regulations.

Other future particle number regulations are discussed in the next paragraphs.

4.2.1. Euro 7/VII

Since 2018, the Commission has started the development of a future-proof emissions
regulation, i.e., the Euro 7. During the process of consultation, various organisations have
commented on some aspects of the current EU regulation and/or had suggestions for the
future regulations [66–68]. The main ones are discussed below.

The 23 nm lower size does not always cover the whole or the largest part of the size
distribution of the emitted particles. High amounts of sub-23 nm particles are measured
very often, both for diesel [64] and gasoline direct injection vehicles [31], but in particular
for the technologies not subject currently to a SPN limit (port fuel injection gasoline and gas
engines) [69–71]. On the other hand, for heavy-duty vehicles, all technologies are subject to
the same limit. For this reason, it has been suggested to both (i) lower the 23 nm to 10 nm
and (ii) include all technologies in the limits without exceptions.

The current testing procedures for light-duty vehicles only partly include emissions
during the regeneration of periodically regenerating systems. For gaseous pollutants, the
emissions during regeneration are taken into account based on the regeneration frequency.
However, SPN emissions during regeneration events and immediately after are very high
and can bring the weighted emissions close to the current limit. Thus, filtration efficiencies
and regeneration strategies need to be carefully assessed for future regulation [72–77].

For heavy-duty vehicles, there are a few more challenges. For example, the emissions
from the crankcase ventilation (when it’s an open system) currently have to be included at
the tailpipe emissions. However, the emission levels only from the crankcase ventilation
are one-third of the current limit, and addressing them is very important in case of limit
reduction [64,65]. One should also consider that urea injection can more than double
the concentration of particles >23 nm and increase the sub-23 nm fraction if not properly
controlled [78,79].

Finally, combining challenging situations in one trip (still within the boundaries of the
regulation), e.g., cold start, low ambient temperatures [80], use of auxiliaries [81], dynamic
driving [80,82], and regeneration [83], could result in very high emissions (per distance),
and future vehicles will have to be appropriately calibrated.

4.2.2. L-Category

Regarding SPN limits for L-category vehicles, there has been no discussion of SPN
limits since the studies for the introduction of Euro 4 and Euro 5 emission limits [84].
Studies for L-category vehicles showed that measuring only >23 nm misses a large part
of the emitted particles [85]. On the other hand, due to high exhaust gas temperatures,
measurements of particles >10 nm were subject to artefacts [86]. Recent studies showed
that this can be avoided with the appropriate system and sampling configuration [87,88].
It is important to assess the emission levels of the recently introduced Euro 5 vehicles
compared to the future Euro 7 light-duty vehicles [89]. On one hand, it is expected that the
SPN levels will drop due to the stringent Euro 5 levels for gaseous pollutants. On the other
hand, experience showed that not imposing any limit in the regulation does not necessarily
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improve the emission levels. For example, the SPN levels of gasoline vehicles with port
fuel injection engines have remained the same over the last 3–4 decades [29].

4.2.3. Periodic Technical Inspection

The previous discussion focused on methodology and instrumentation for type-
approval, in-service conformity (in-use compliance), and market surveillance purposes,
which fall under the responsibility of the OEMs (original equipment manufacturers) and
the respective authorities. This paragraph discusses the periodic inspection of vehicles
under the responsibility of each car owner. Traditionally, this test measured the exhaust
opacity during unloaded acceleration from idle to a high engine speed [26]. Opacity is not
sensitive enough for DPF (diesel particulate filter)-equipped vehicles, and other methods
have been investigated over the years. The better sensitivity of DCs and CPCs led to the
introduction of simplified SPN methodologies for the vehicles’ inspection [90].

The first to introduce the particle number in inspection was Switzerland for construc-
tion machinery. For light-duty and heavy-duty vehicles, the Netherlands and Belgium
will also introduce a simplified SPN methodology in July 2022, and Germany in January
2023. The methodology prescribes a measurement at idle with a sensor that detects solid
particles >23 nm. The technical specifications of the instruments were based on the tech-
nical specifications of the instruments for construction machinery in Switzerland and the
on-board systems of the European real-driving emissions (RDE) regulation (i.e., PEMS). The
work was conducted by the informal new periodic technical inspection (NPTI) technical
working group consisting of Swiss, German, and Dutch governmental organisations, the
VERT (Verification of Emission Reduction Technologies) association, metrological institutes,
scientists, and equipment manufacturers. The JRC of the European Commission is also
working on the topic to prepare common recommendations for particle number instrumen-
tation and procedures for PTI purposes. Details about the simplified methodology and the
specifications can be found elsewhere [91].

4.2.4. Brake Emissions

Due to the low exhaust emissions from modern vehicles, the contribution of traffic-
related non-exhaust emissions to air pollution has become relatively more important and is
likely to increase [92,93]. In June 2021, GRPE mandated the PMP group to develop a GTR
on brake emissions from light-duty vehicles. The draft is expected to be ready in June 2022,
with most probable adoption in January 2023 at GRPE. The sampling methodology and the
instruments’ technical specifications are already under development. In addition to mass,
a particle number limit of total particles (i.e., including volatiles) >10 nm is expected. The
topic is out of the scope of this paper.

5. Conclusions

The PMP (Particle Measurement Programme) working group of the UNECE (United
Nations Economic Commission for Europe) GRPE (Working Party on Pollution and En-
ergy) developed the solid particle number (SPN) methodology that was introduced in
various regulations. The methodology includes a heated section and counting of particles
with diameter >23 nm (SPN23). A SPN23 limit was initially introduced in the European
laboratory type-approval regulation for light-duty diesel vehicles in 2011 (6 × 1011 #/km).
The methodology was expanded to light-duty gasoline direct injection vehicles (2014),
heavy-duty engines (6 × 1011 #/kWh) (2013), and non-road mobile machinery (1 × 1012

#/kWh) (2019). A test for on-road light-duty SPN23 emissions was introduced in 2017 and
for heavy-duty vehicles in 2021.

UN regulations that include the particle number methodology with emission limits
are UN Regulation 83 and UN Regulation 154 for light-duty vehicles and UN Regulation
49 for heavy-duty engines. The only Global Technical Regulation that includes the particle
number methodology (without emission limits) is GTR 15 for light-duty vehicles. GTR 4 for
heavy-duty vehicles and GTR 11 for non-road mobile machinery will probably follow. UN
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regulations for on-road testing are under development and will also include the particle
number methodology.

The PMP group extended the methodology to cover particles larger than 10 nm
(SPN10). The SPN10 option (i.e., in addition to the SPN23 method) is at the moment included
only in GTR 15 for laboratory testing of light-duty vehicles. A heavy-duty resolution was
also prepared including the 10 nm methodology and the option to measure directly from
the tailpipe. The UN Regulation for on-road testing will also include it in the future. The
major differences between the 10 nm and 23 nm methodologies, other than the different
lower detection sizes, are the obligatory inclusion of a catalytic stripper and the stricter
volatile removal efficiency requirements. Improvements to both methodologies focused on
the particle number counter, namely the definition of the calibration material, inclusion
of the calibration factor in the counting efficiencies, and differences from the calibration
reference instrument within ±5% (instead of ±10%). The PMP work is moving forward
with final refinements of the calibration procedures and possibly bringing them closer for
laboratory and on-board systems.
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BS Bharat stage
CE counting efficiency
CF conformity factor
CI compression ignition
CMD count median diameter
CN China
COVID coronavirus disease
CPC condensation particle counter
CS catalytic stripper
CVS constant volume sampling
D Diesel
DC diffusion charger
DF dilution factor
DPF diesel particulate filter
EC European Community
ECE Economic Commission for Europe
EPPR environmental and propulsion performance of L-category vehicles
ET evaporation tube
EU European Union
EVE electric vehicles and environment
GDI gasoline direct injection
GR Group of Rapporteurs
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GRB Working Party on Brakes
GRBP Working Party on Noise and Tyres
GRE Working Party on Lighting and Light-Signalling
GRP Working Party on Passive Safety
GRPE Working Party on Pollution and Energy
GRRF Working Party on Brakes and Running Gear
GRS Working Party on General Safety Provisions
GRV Working Party on Automated/Autonomous and Connected Vehicles
GTR Global Technical Regulation
ISC in-service conformity
IWG informal working group
NGO non-governmental organisations
NPTI new periodic technical inspection
NRMM non-road mobile machinery
NRSC non-road stationary cycle
NRTC non-road transient cycle
OEM original equipment manufacturer
OT outlet tube
P penetration
PAO polyalphaolefin
PCRF particle number concentration reduction facto
PEMS portable emissions measurement system
PFDS proportional partial flow dilution system
PI positive ignition
PM particulate matter
PMP Particle Measurement Programme
PN particle number
PNC particle number counter
PND particle number diluter
PTI periodic technical inspection
RDE real-driving emissions
Re Reynolds number
REC retrofit emissions control devices
RT residence time
SEE standard error of the estimate
SPN solid particle number
T temperature
t time
ToR terms of reference
UN United Nations
UNECE United Nations Economic Commission for Europe
UNR United Nations regulation
USA United States of America
VERT verification of emission reduction technologies
VIAQ vehicle interior air quality
VPR volatile particle remover
VRE volatile removal efficiency
WHDC worldwide harmonised heavy-duty certification procedure
WHO World Health Organization
WHSC worldwide harmonised stationary cycle
WHTC worldwide harmonised transient cycle
WLTC worldwide harmonised light vehicles test cycle
WLTP worldwide harmonised light vehicles test procedure
WMTC worldwide harmonised motorcycle test cycle
WP.29 World Forum for Harmonization of Vehicle Regulations
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Appendix A

Figure A1 plots the principle of operation of the systems for the measurement of solid
particles. The upper part shows a volatile particle remover (VPR) with an evaporation
tube, followed by a particle number counter (PN) based on a condensation particle counter
(CPC) [59]. The lower part shows a VPR with a catalytic stripper [55], followed by a
diffusion charger (DC) based particle detector [94,95]. The schematic shows how particles
evolve in the different parts.

Figure A1. Schematic presentation of the principles of measurements of solid particles. The upper part shows a volatile
particle remover (VPR) with evaporation tube, followed by a particle number counter (PNC) based on condensation particle
counter (CPC). The lower part shows a VPR with catalytic stripper, followed by a diffusion charger with a Faraday cage and
pulsed current modulation or a final filter. Schematic based on [26,55,95].

Starting with the upper left part of the figure, the aerosol at the inlet of the VPR
consists of soot particles with some condensed material on them, volatile nucleation mode
particles (green circles), and volatile species in the gaseous phase (asterisks) [26]. In the hot
diluter of the VPR, the concentration of particles is reduced and some volatiles evaporate.
Complete evaporation takes place in the evaporation tube. During the secondary cold
dilution, some of the volatiles condense on the soot particles. The rest have low partial
pressures and cannot nucleate to form volatile particles. In the CPC, the soot particles pass
from the saturator, where butanol (or propanol) vapours exist. Then, in the condenser part,
due to the rapid cooling, the vapours condense on the particles and enlarge them from the
nanometre range to the micrometre range to be counted by the laser optics of the CPC.

The lower part of Figure A1 plots another case with a catalytic stripper. The catalytic
stripper oxidises the volatile species, so after the secondary diluter, only the soot particles
remain. After the VPR, a PNC, as previously described, could be connected. In this example,
there is a diffusion charger-based particle detector. The particles pass through a corona
charger and the produced ions attach on the particles. An ion trap removes the rest of the
ions. The charged particles deposit on a filter or are captured in a Faraday cage where an
electrometer measures the current of the particles. The current is proportional to the active
surface area of the particles, but it can also be used as an indication of the particle number
concentration. Details can be found elsewhere about other concepts [94].
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