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Abstract: A nonlinear adaptive backstepping control method was proposed to address the sys-
tem parameter uncertainty problem in the position control process of an electro-hydraulic servo
closed-pump control system. This control strategy fully considers the parameter uncertainty of the
nonlinear system and establishes the adaptive rate of the uncertain parameter to adjust the parameter
disturbance online in real time, thereby improving the accuracy and robustness of the control system.
A pump control system experiment platform was used to verify the feasibility of the controller. The
experimental results showed that the proposed control strategy provided a good control effect. The
pump control system can be controlled with high precision, with a steady-state control accuracy of
±0.02 mm, which serves as a good foundation for the engineering application and promotion of the
pump control system.

Keywords: pump-control system; position control; backstepping; adaptive backstepping control

1. Introduction

The electro-hydraulic servo control system is vital to hydraulic technology and is
one of the basic technical components of modern control engineering [1]. Because of its
high load-bearing capacity, dynamics, and precision, it is widely used in manufacturing,
national defense, military industry, airspace, and other fields [2–4]. On the basis of its
operating principle, electro-hydraulic servo technology can be classified into two categories:
pump control and valve control. Traditional electro-hydraulic servo technology is primarily
based on valve control systems. However, owing to the development of electro-hydraulic
servo technology in the manufacturing field, electro-hydraulic servo technology with
high response, high precision, high power–weight ratio, high power, and low energy
consumption has become the goal pursued in the development of hydraulic integrated
equipment [5]. In recent years, variable frequency drive and servo drive technology
have been gradually perfected; therefore, electro-hydraulic servo closed-pump control
(hereinafter referred to as pump control) technology has been developed considerably.
Compared with the traditional electro-hydraulic servo valve control technology, pump
control technology can not only effectively solve the inherent defects of the former, but also
offers the advantages of energy efficiency, high power–weight ratio, and environmental
friendliness [6]. Therefore, it is preferred by engineers and has become a topic of focus in
the field of electro-hydraulic servo research and development.

An electro-hydraulic position servo system is a typical uncertain nonlinear system [7]
that exhibits many nonlinear characteristics and model uncertainties [8]. At present, to ad-
dress the problems due to of transient parameter time variation and nonlinear factors [9–12]

Processes 2021, 9, 2209. https://doi.org/10.3390/pr9122209 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr9122209
https://doi.org/10.3390/pr9122209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9122209
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9122209?type=check_update&version=1


Processes 2021, 9, 2209 2 of 18

in electro-hydraulic position servo system [13–15], researchers worldwide primarily adopt
feedback linearization [16], sliding mode control [17–23], adaptive control [24–27], fuzzy
control [28,29], and other technologies. As a systematic and structured design method is
adopted in backstepping, uncertainties and unknown parameters can be addressed easily
in the system [30]. Backstepping can ensure that the final controller exhibit Lyapunov
asymptotic stability; therefore, it has been investigated and applied by many scholars.

Kaddissi et al. [31] used the regression least-squares method to estimate the uncertain
parameters of a system online and designed an indirect adaptive backstepping controller
based on the estimated output value. The experimental results obtained by using this
controller and a non-adaptive backstepping controller were compared. The experimental
results showed that the indirect adaptive controller can monitor the expected reference
signal with a slight transient behavior after parameter changes. However, non-adaptive
controllers cannot keep the system on track, thereby resulting in significant oscillations
and instability.

Do et al. [32] proposed an anti-winding design method to improve the performance
of a strictly feedback single-input adaptive control system with input saturation to solve
excessive parameter adaptation under the condition of system input saturation. The
over-adaptation problem under a saturated system input was solved by appropriately
modifying the adaptive law of unsaturated system inputs. Finally, the simulation results
showed that this method improves the control performance in the presence of input
saturation constraints.

Guan et al. [33] proposed a nonlinear adaptive robust controller with an adaptive law
for a single-rod electro-hydraulic actuator with unknown nonlinear parameters. They used
a specific Lyapunov function and combined the inversion method to design the controller
of the entire system and the update law of all unknown parameters. Finally, a comparison
of position tracking control experiments proved that the proposed nonlinear adaptive
robust control method performed better than the control method without adaptive law.

Ba et al. [12] proposed a pump-controlled electro-hydraulic system integrated model
inversion controller based on an integrated model inversion method to address the uncer-
tainty and nonlinearity of a hydraulic actuator system. They used an advanced backstep-
ping technique to compensate for nonlinearities and unknowns. Under various operating
conditions, a test bench based on a pump-controlled electro-hydraulic system was used
to compare the position tracking of a direct backstepping controller (DBS) and a set pro-
portional integral derivative (PID) controller. The experimental results showed that the
designed DBS exhibits high controllability.

Yao et al. [34] proposed an ideal compensation adaptive controller for noise interfer-
ence caused by actual state feedback in an electro-hydraulic servo system. By considering
the uncertainty of the modeling of a mismatched system and the nonlinear load pressure
state, they adopted a continuous function to approximate the discontinuous symbolic
function and designed a strategy on the basis of the backstepping method to construct the
expected value of the intermediate state variable. Finally, their comparative experimental
results validated the effectiveness of the proposed control strategy.

To address the parameter uncertainty of a nonlinear system in the position control
of a pump control system (such as the oil modulus of elasticity, system leakage efficiency,
and load equivalent spring stiffness), we propose in this study an adaptive backstepping
control strategy for a pump control hydraulic system based on the backstepping method,
and its control performance was verified experimentally.

2. Operating Principle of Pump Control System

The structure of the pump control system investigated in this study is shown in
Figure 1. The system adopts the integrated volume control scheme of the servo motor
and comprises a fixed displacement pump and a hydraulic cylinder. The system has a
small equipment volume, simple pipeline layout, no throttle overflow loss, high reliability,
high safety, and high precision. In this system, a servo motor is used to drive a fixed



Processes 2021, 9, 2209 3 of 18

displacement pump axially. The inlet port and oil drain of the fixed displacement pump
are directly connected to the two load ports of the hydraulic cylinder. The accumulator
is combined with a check valve to fill the oil for the system. The relief valve is used as a
safety valve to protect the system pressure from exceeding the safety limit value [25]. The
controller outputs torque and speed instructions to the servo motor to adjust the output
pressure and flow of the fixed displacement pump, thereby enabling the output force and
displacement of the hydraulic cylinder piston to be controlled.
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Figure 1. Schematic diagram of electro-hydraulic servo closed-pump control system. 1: servo motor;
2: hydraulic pump; 3: oil plug; 4.1/4.2: safety valve; 5: accumulator; 6.1/6.2. the relief valve; 7.1/7.2:
solenoid directional valve; 8: hydraulic cylinder. A and B represent the two chambers of the oil
cylinder respectively.

The control mode of a pump control system can be typically classified into two
categories: variable displacement and variable speed control. The variable speed control
mode was adopted in this study to realize the position control of the pump control system
by controlling the input voltage of the servo motor to adjust the output speed in real time.

3. Mathematical Model

The mathematical models of the key hydraulic components based on the pump control
system are described.

3.1. Servo Motor

The AC servo motor transforms the control input voltage into the motor output speed.
As the servo motor has a high response speed and a fast dynamic speed, the relationship
between the motor output speed and input control signal is assumed to be a proportional
loop, which is expressed as follows:

ωp = Kmuc (1)

where ωp is the output speed of the motor, Km is the control gain, and uc is the input
voltage signal.
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3.2. Fixed Displacement Pump

The flow distribution characteristics of the fixed displacement pump were analyzed
considering the oil compression as well as the internal and external leakage. The two-cavity
load volume flow from the pump to the controlled hydraulic cylinder can be expressed
as follows: {

qB = Dpωp − Cip(pA − pB) + Cep pB
qA = Dpωp − Cip(pA − pB)− Cep pA

(2)

where qB is the flow in cavity B of the system, qA the flow in cavity A of the system, pB
the pressure in cavity B of the system, pA the pressure in cavity A of the system, Dp the
displacement of the fixed displacement pump, ωp the input speed of the fixed displacement
pump, Cip the internal leakage coefficient of the fixed displacement pump, and Cep the
external leakage coefficient of the fixed displacement pump.

3.3. Double-Acting Symmetrical Hydraulic Cylinder

Considering the load condition, oil compression, internal and external leakage, and
other factors, we analyzed the flow distribution characteristics of the hydraulic cylinder,
and the flow rate continuation equation of the two cavities of the hydraulic cylinder was
established as follows:{

qA = Ac
.
xc + Cic(pA − pB) + Cec pA + VcA

βe

.
pA

qB = Ac
.
xc + Cic(pA − pB)− Cec pB − VcB

βe

.
pB

(3)

where Ac is the efficient working area of the hydraulic cylinder, xc the displacement of
the hydraulic cylinder, βe the effective bulk modulus, VcA the compression volume of the
hydraulic cylinder’s cavity A, VcB the compression volume of the hydraulic cylinder’s
cavity B, Cic the internal leakage coefficient of the hydraulic cylinder, and Cec the external
leakage coefficient of the hydraulic cylinder.

The force balance equation of the hydraulic cylinder is as follows:

Ac(pA − pB) = mc
..
xc + Bc

.
xc + Kxc + d̃ (4)

where mc is the total mass converted from the load to the piston, Bc the viscous damping
coefficient of oil, K the equivalent spring stiffness of the load, and d̃ the external interference
and unmodeled friction force.

The block diagram of the closed-pump control system can be established using the
Laplace transformation expressed in Equations (1)–(4), as shown in Figure 2. On the basis
of the analysis presented in [35], Equation (3) can be simplified as follows:

.
pA −

.
pB =

4βe

Vt

[
Dpωp − Ac

.
xc − Ct(pA − pB)

]
(5)

where Vt is the total compression volume.
Substituting the Laplace transformation expressed in Equations (1), (2) and (4) into

Equation (5) yields.

Xc =
AcDpKmuc −

(
Ct +

Vt
4βe

s
)

d̃

Vt
4βe

mcs3 +
(

Vt
4βe

Bc + Ctmc

)
s2 +

(
Vt

4βe
K + Ac2 + CtBc

)
s + CtK

(6)

where Ct = Ctc + Ctp = Cic +
1
2 Cec + Cip +

1
2 Cep.

Next, the system state variable x and system output y are defined as follows:{ →
x = [x1, x2, x3]

T =
[
xc,

.
xc, (pA − pB)

]T

y = x1
(7)
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Figure 2. Block diagram of pump control system.

On the basis of Equations (1)–(4), the state equation of the pump control system is
written as follows: 

.
x1 = x2

.
x2 = − K

mc
x1 − Bc

mc
x2 +

Ac
mc

x3 + d̃
.
x3 = −4 βe Ac

Vt
x2 − 4 βeCt

Vt
x3 + 4 βeDpKm

Vt
uc

(8)

Subsequently, the following parameters are defined: θ1 = K/mc, θ2 = Bc/mc,
θ3 = Ac/mc, θ4 = 4βe Ac/Vt, θ5 = 4βeCt/Vt, and θ6 =4βeDpKm/Vt. Therefore, Equa-
tion (8) can be expressed as follows:

.
x1 = x2
.
x2 = −θ1x1 − θ2x2 + θ3x3 + d̃
.
x3 = −θ4x2 − θ5x3 + θ6uc

(9)

4. Controller Design

On the basis of the effects of the nonlinear and uncertain parameters of the pump-
controlled system on the position control, we used the system dynamics model presented
in the previous section to design the bounded controller input of the servo motor. Figure 3
shows the control framework of the pump-control system. On the basis of the backstepping
criterion, the controller selects the appropriate Lyapunov function and generates the
intermediate virtual control variables step by step to obtain the adaptive backstepping
controller. The backstepping method ensures that the designed adaptive controller is
always Lyapunov asymptotic stable [36].
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The controller is designed to achieve lim
t→∞

(xm − xc) = lim
t→∞

e1 = 0. We assume that the

expected trajectory, output speed, acceleration, and acceleration derivative exist and are
bounded. The design process of the controller based on backstepping is as follows:
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Step 1: Define the position tracking error e1 as

e1 = x1 − x1d (10)

where x1d is the expected value of state variable x1. Subsequently, the derivative of e1 with
respect to time is as follows:

.
e1 =

.
x1 −

.
x1d = x2 −

.
x1d (11)

Next, e2 is defined as the deviation between state variable x2 and its virtual control
variable x2d.

e2 = x2 − x2d (12)

An alternate Lyapunov function is defined as follows:

V1 =
1
2

e1
2 (13)

Subsequently, the derivative of V1 with respect to time is as follows:

.
V1 = e1

.
e1 = e1

(
e2 + x2d −

.
x1d
)

(14)

On the basis of Equation (11), when x2d =
.
x1d − k1e1 − e2, the time derivative of V1

is
.

V1 = −k1e1
2 ≤ 0. However, because e2 is the deviation between x2 and x2d, x2d cannot

contain e2. Hence, x2d is defined as

x2d ,
.
x1d − k1e1 (15)

where k1 is a positive constant. Substituting Equation (15) into Equation (14) yields:

.
V1 = e1e2 − k1e1

2 (16)

The aforementioned formula indicates that when e2 is 0,
.

V1 is negative semidefinite,
and the tracking error e1 converges to zero. Therefore, the next task is to design a control
law such that the value of e2 approaches zero or is minimized.

Step 2: Take the derivative of x2d with respect to time.

.
x2d =

..
x1d − k1

(
x2 −

.
x1d
)
=

..
x1d + k1

.
x1d − k1x2 (17)

Subsequently, take the derivative of e2 with respect to time.

.
e2 =

.
x2 −

.
x2d = −θ1x1 − θ2x2 + θ3x3 + d̃− ..

x1d − k1
.
x1d + k1x2 (18)

Define the parameter error θ̃i = θ̂i − θi, where θ̂i is an estimate of parameter θi.

.
e2 = −

(
θ̂1 − θ̃1

)
x1 −

(
θ̂2 − θ̃2

)
x2 + θ3x3 + d̃− ..

x1d − k1
.
x1d + k1x2 (19)

Define a new alternate Lyapunov function as follows:

V2 = V1 +
1
2

e2
2 +

1
2α1

θ̃1
2 +

1
2α2

θ̃2
2 (20)

where αi is the adaptive gain of parameter θi. Hence, the derivative of V2 with respect to
time is expressed as follows:

.
V2 =

.
V1 + e2

.
e2 +

1
α1

θ̃1

.
θ̂1 +

1
α2

θ̃2

.
θ̂2

= −k1e1
2 + e2

[
e1 − θ̂1x1 − θ̂2x2 + θ3x3 −

..
x1d − k1

.
x1d + k1x2

]
+e2d̃ + e2θ̃1x1 + e2θ̃2x2 +

1
α1

θ̃1

.
θ̂1 +

1
α2

θ̃2

.
θ̂2

(21)
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Define e3 as the deviation between state variable x3 and its virtual control variable x3d.

e3 = x3 − x3d (22)

Similarly, use Equation (21) to design virtual control variable x3d.

x3d =
1
θ3

[
−k2e2 +

..
x1d + k1

.
x1d −k1x2 + θ̂x1 + θ̂2x2 − e1

]
(23)

Here, if k2 > 0, then Equation (21) can be simplified as Equation (23).

.
V2 = −k1e1

2 − k2e2
2 + θ3e2e3 + e2d̃ + θ̃1

(
e2x1 +

1
α1

.
θ̂1

)
+ θ̃2

(
e2x2 +

1
α2

.
θ̂2

)
(24)

On the basis of the aforementioned formula, when e3 and d̃ are equal to 0,
.

V2 is
negative semidefinite. Therefore, the next step is to ensure that e3 and d̃ are equal to zero
or as small as possible.

Step 3: Because the final control variable x3 is visualized and the control variable uc
exists on its own, virtual control variables are not necessitated in this step.

The derivative of x3d with respect to time can be expressed as

.
x3d = Aθ1 + Bθ2 + C + Dd̃ (25)

where 

A = 1
θ3

[
k2x1 + k1x1 − θ̂2x1

]
B = 1

θ3

[
k2x2 + k1x2 − θ̂2x2

]
C = 1

θ3

[
−k2

(
k1x2 −

..
x1d − k1

.
x1d
)
+

.
θ̂1x1 + θ̂1x2 +

.
θ̂2x2

−x2 +
.
x1d + k1

..
x1d +

...
x 1d
]
+
(
θ̂2 − k1

)
x3 − k2x3

D = 1
θ3

[
θ̂2 − k2 − k1

]
Therefore,

.
e3 = θ6uc − C− Dd̃− A

(
θ̂1 − θ̃1

)
− B

(
θ̂2 − θ̃2

)
−
(

θ̂4 − θ̃4

)
x2 −

(
θ̂5 − θ̃5

)
x3 (26)

Next, the Lyapunov function is defined as

V3 = V2 +
1
2

e3
2 +

1
2α4

θ̃4
2 +

1
2α5

θ̃5
2 (27)

Therefore, the derivative of V3 with respect to time is expressed as follows:

.
V3 = −k1e1

2 − k2e2
2 + e3

[
θ3e2 − θ̂4x2 − θ̂5x3 + θ6uc − θ̂1 A− θ̂2B− C−Dd̃

]
+e2d̃ + θ̃1

(
e3 A + e2x1 +

1
α1

.
θ̂1

)
+ θ̃2

(
e3B + e2x2 +

1
α2

.
θ̂2

)
+θ̃4

(
e3x2 +

1
α4

.
θ̃4

)
+ θ̃5

(
e3x3 +

1
α5

.
θ̃5

) (28)

The actual control variable uc can be designed as follows:

uc =
1
θ6

[
−k3e3 − θ3e2 + θ̂4x2 + θ̂5x3 + θ̂1 A + θ̂2B + C + dn2sgn(e3)−

e2

e3
dn1sgn(e2)

]
(29)

where k3 > 0, dn1 ≥
∣∣∣d̃∣∣∣, and dn2 ≥

∣∣∣Dd̃
∣∣∣. Furthermore, the sgn(e) function is defined
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as follows:

sgn(e) =


1, e > 0
0, e = 0
−1, e < 0

(30)

On the basis of Equations (28)–(30), the derivative of V3 with respect to time can be
expressed as

.
V3 = −k1e1

2 − k2e2
2 − k3e3

2 − e3

[
Dd̃ −dn2sgn(e3)] + e2

[
d̃− dn1sgn(e2)

]
+θ̃1

(
e3 A + e2x1 +

1
α1

.
θ̂1

)
+ θ̃2

(
e3B + e2x2 +

1
α2

.
θ̂2

)
+θ̃4

(
e3x2 +

1
α4

.
θ̃4

)
+ θ̃5

(
e3x3 +

1
α5

.
θ̃5

) (31)

The adaptive law of system parameters is expressed as follows:

.
θ̂1 = −α1(e3 A + e2x1).
θ̂2 = −α2(e3B + e2x2).
θ̃4 = −α4e3x2.
θ̃5 = −α5e3x3

(32)

Therefore,
.

V3 can be simplified as

.
V3 = −k1e1

2 − k2e2
2 − k3e3

2 − e3

[
Dd̃− dn2sgn(e3)

]
+ e2

[
d̃− dn1sgn(e2)

]
≤ 0 (33)

As shown in Equation (27), the semi-positive Lyapunov function V3 is constructed
using Equations (13) and (20), separately. When we adopt Equations (29) and (32) as the
input and parameter adaptive law of the system, its derivative

.
V3 is semi-negative definite.

According to Lyapunov stability theory, control errors e2 and e3 are stable at the equilibrium
point. According to Barbalat’s lemma, when the state error e2 converges asymptotically to
zero, the system output error e1 converges asymptotically to 0 as well.

Therefore, when the pump control system adopts the voltage control rate and the
parameter adaptive law, as shown in Equations (29) and (32), the final output position error
of the electro-hydraulic servo closed-pump control system will gradually converge to 0.

5. Experimental Results and Analysis
5.1. Experimental Platform

The proposed adaptive backstepping control algorithm was verified experimentally
by using the electro-hydraulic servo closed-pump control system experimental platform
presented in [37]. Figure 4 shows that the experimental platform is primarily composed
of a power unit, a valve block, a hydraulic cylinder, and an electric control cabinet. The
working and loading cylinder adopts the structure of the built-in SSI displacement sensor
(the sensor model is KH10MB0060MC81S1B10, and the resolution is 1 µm). The power unit
adopts an electro-hydraulic servo pump control unit, which is composed of a radial piston
pump driven by a permanent magnet synchronous servo motor manufactured by MOOG,
referred to as an electro-hydraulic servo pump control unit (herein referred to as EPU). The
specific structures are shown in Figure 5.
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Figure 5. Electro hydraulic servo pump control unit.

Figure 6 shows the control structure of the experimental platform. The control software
adopts the MOOG axis control software, MACS 3.4. The control hardware is composed of
an Advantech IPC-610 computer; Beckhoff modules EK1100, EL3122, and EL2004; a host
computer MOOG controller MSD; an MOOG single-axis servo driver; and other auxiliary
components. The PC of the device uses MACS 3.4 to write the master control program,
imports the MSD of the upper computer through TCP/IP, sends control signals to the
servo driver via EtherCat communication, and receives feedback signals from the Beckhoff
acquisition module simultaneously.

5.2. Experimental Analysis

The main parameters of the experimental platform are listed in Table 1. The adap-
tive backstepping control algorithm (ABC) was developed using the MATLAB/Simulink
software and downloaded to the MOOG MACS axis control software. In this software,
the system logic control program was edited to control the position output of the electro-
hydraulic servo pump control system. Using the opposite vertex, the cylinder simulated the
elastic load of the system, and the expected target signals of the experimental platform were
the “S” slope trajectory and sine wave signals, separately. The traditional PID controller
and adaptive backstepping controller were used separately to perform the experiment.
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Table 1. Operating parameters of experimental platform.

Parameter Symbol Units Value

Total compression volume Vt m3 4.15 × 10−2

Efficient working area cylinder Ac m2 7.9 × 10−4

Total mass converted from the load to the piston mc kg 150

Viscous damping coefficient Bc N
(
ms−1)−1 0.0345

Equivalent spring stiffness of the load K Nm−1 5 × 107

Total leakage coefficient of hydraulic system Ct m3(s · Pa)−1 9 × 10−11

Effective volume modulus of oil βe Nm−2 7 × 108

Control gain Km (r/min)/V 300
Displacement of fixed displacement pump Dp m3/rad 8 × 10−6

External disturbance and unmodeled friction d N 1.5 × 104

5.2.1. 10 mm “S” Ramp Signal

Taking the working load of the pump oil control engine of the thermal power turbine
set as an example, we set the load to simulate the output of the hydraulic cylinder of
5 kN and the load fluctuation is ±0.5 kN. By providing an “S”-type ramp signal of 10 mm
displacement under the load condition of the system, we obtained the experimental curves
of position extension and retraction, as shown in Figures 7 and 8.
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Figure 7. The 40–50 mm displacement tracking curve. (a) Position trailing; (b) Tracking error;
(c) Motor speed; (d) Pressure difference.

Processes 2021, 9, x FOR PEER REVIEW 14 of 19 
 

 

 
(d) 

Figure 7. The 40–50 mm displacement tracking curve. (a) Position trailing; (b) Tracking error; (c) 
Motor speed; (d) Pressure difference. 

Figure 7 shows that the following error of using ABC was much smaller than that of 
using traditional PID. The steady-state control accuracy of ABC was able to reach ±0.02 
mm, while the PID steady-state control accuracy was only ±0.05 mm. Moreover, the time 
for the system using ABC to reach the steady state was shorter. 

 
(a) 

0 1 2 3 4 5
64

65

66

67

68

69

70

71

72

73

Time (s)

Pr
es

su
re

 d
iff

er
en

tia
l (

ba
r)

 PID     ABC

0 1 2 3 4 5
39.0

40.5

42.0

43.5

45.0

46.5

48.0

49.5

51.0

2.70 2.85 3.00 3.15 3.30 3.45 3.60 3.75 3.90
39.9

40.0

40.1

40.2

40.3

40.4

40.5

D
isp

la
ce

m
en

t (
m

m
)

Time (s)

 Reference     PID     ABC

Figure 8. Cont.



Processes 2021, 9, 2209 14 of 18
Processes 2021, 9, x FOR PEER REVIEW 15 of 19 
 

 

 
(b) 

 
(c) 

0 1 2 3 4 5
-0.15

0.00

0.15

0.30

0.45

0.60

0.75

2.7 3.0 3.3 3.6 3.9 4.2
-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

0.20

Time (s)

Tr
ac

ki
ng

 e
rro

r (
m

m
)

 PID     ABC

0 1 2 3 4 5
-1200

-900

-600

-300

0

300

600

900

Time (s)

Sp
ee

d 
(r/

m
in

)

 PID     ABC

Figure 8. Cont.



Processes 2021, 9, 2209 15 of 18
Processes 2021, 9, x FOR PEER REVIEW 16 of 19 
 

 

 
(d) 

Figure 8. The 50–40 mm displacement tracking curve. (a) Position trailing; (b) Tracking error; (c) 
Motor speed; (d) Pressure difference. 

As shown in Figure 8, the ABC designed in this paper had better tracking perfor-
mance than the traditional PID, which is beneficial in terms of alleviating chattering and 
overshooting in the control process. In addition, the overshoot and the time to reach the 
steady state of the system using ABC were far less than the time to reach the steady state 
of the system using PID. 

5.2.2. Sine Signal 
To further compare and analyze the dynamic characteristics of the traditional PID 

and ABC, we imposed sine signals with an amplitude of 0.5 mm and a frequency of 0.6 
Hz at 50 mm; the experimental results are shown in Figure 9. 

 

(a) 

0 1 2 3 4 5
62

64

66

68

70

72

74

Time (s)

Pr
es

su
re

 d
iff

er
en

tia
l (

ba
r)

 PID     ABC

0 1 2 3 4 5 6
49.4

49.6

49.8

50.0

50.2

50.4

50.6

D
isp

la
ce

m
en

t (
m

m
)

Time (s)

 Reference     PID     ABC

Figure 8. The 50–40 mm displacement tracking curve. (a) Position trailing; (b) Tracking error;
(c) Motor speed; (d) Pressure difference.

Figure 7 shows that the following error of using ABC was much smaller than that
of using traditional PID. The steady-state control accuracy of ABC was able to reach
±0.02 mm, while the PID steady-state control accuracy was only ±0.05 mm. Moreover, the
time for the system using ABC to reach the steady state was shorter.

As shown in Figure 8, the ABC designed in this paper had better tracking performance
than the traditional PID, which is beneficial in terms of alleviating chattering and over-
shooting in the control process. In addition, the overshoot and the time to reach the steady
state of the system using ABC were far less than the time to reach the steady state of the
system using PID.

5.2.2. Sine Signal

To further compare and analyze the dynamic characteristics of the traditional PID and
ABC, we imposed sine signals with an amplitude of 0.5 mm and a frequency of 0.6 Hz at
50 mm; the experimental results are shown in Figure 9.

As shown in Figure 9, ABC presents better dynamic response characteristics than the
traditional PID.

The tracking error of the ABC control was less than ±0.04 mm, and the tracking error
of the traditional PID was approximately ±0.06 mm.

The aforementioned experiments indicated that the adaptive backstepping control strat-
egy proposed herein exhibits good control performance in practical engineering applications.
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6. Conclusions

Aiming at the position control problem of electro-hydraulic servo closed pump control
system, we proposed an adaptive backstepping control strategy. Conclusions are as follows:

(1) The mathematical model of the electro-hydraulic servo pump control system was
established, and the position output transfer function of the system was deduced.

(2) An adaptive backstepping control strategy was proposed on the basis of the back-
stepping method. The algorithm fully considers the nonlinearity and parameter
uncertainty of the pump control system. When the desired control input is obtained,
the adaptive adjustment rate of the uncertain parameter is derived and applied to
actual position control.

(3) Experimental analysis showed that the adaptive backstepping control strategy pro-
posed in this paper had good control performance in practical applications. Its
steady-state control accuracy was able to reach ±0.02 mm, which can lay a certain
foundation for high-precision position control of the pump control system. In ad-
dition, the system dead zone characteristics are also the main factors affecting the
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steady-state control. In order for the control accuracy of the system to be further
improved, the pump control system dead zone characteristics can be further studied.
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DBS direct backstepping controller
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