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Section S1 – Yields and Selectivities definitions 

 
 The yield of the compound i (Yi) was calculated in carbon base, using Eq. (A1), where 

ni is the number of mols of the component i at the equilibrium, ci is the number of carbon atoms 

of the compound i, and n0,CH4 denotes the initial number of mols of methane. 
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The C2 thermodynamic yield represents the combined yield from ethene and ethane, as defined 

in Eq. (A2). 
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Selectivities were calculated in carbon base, according to Eq. (A3), where NCc is the number 

of reaction products containing carbon. 
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Selectivities in molar base were defined as Eq. (A4), where NC is the number of reaction 

products. 
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Carbon based ethene yield in the presence of ethane co-feeding was calculated as Eq. (A5), 

where n0,C2H6 denotes the initial number of mols of ethane. 
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Table S1 - Standard Gibbs energies in increasing order at 900 ˚C and standard reaction 

enthalpies for global OCM reactions [1,2]. 

Entry Reaction ΔG˚ at 900 ˚C (kJ∙mol-1) ΔH298˚ (kJ∙mol-1) 

1 2 4 2 22 2 2C H O CO H O+ → +  -928 -757 

2 4 2 2 22 2CH O CO H O+ → +  -798 -802 

3 3
4 2 22 2CH O CO H O+ → +  -618 -519 

4 4 2 2 2CH O CO H O H+ → + +  -436 -278 

5 1
2 22CO O CO+ →  -180 -283 

6 2 4 2 22 2 4C H H O CO H+ → +  -198 210 

7 1
2 6 2 2 4 22C H O C H H O+ → +  -197 -105 

8 1
4 2 2 6 222CH O C H H O+ → +  -112 -177 

9 2 6 2 4 2C H C H H→ +  -14.73 137 

10 2 2 2CO H CO H O+ → +  -1.78 41 

11 2 2 2CO H O CO H+ → +  1.78 -41 
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Figure S1 - Effect of the CH4/O2 feed ratio and temperature at 1 bar on the combined ethene 

and ethane (C2) yield. Feed composition was constituted by CH4 and O2 only and was varied 

while keeping the total number of mols fed fixed.  
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Figure S2 - Comparison between experimental and equilibrium CH4 conversions for bimetallic 

oxides: (a) promoted or supported alkaline earth metals oxides, (b) involving lanthanoids 

metals oxides, and (c) transition or post-transition metals oxides. Equilibrium calculations were 

performed using the Gibbs minimisation method, as described in Section 4. 
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Figure S3 – Relationship between C2 yield and basicity distribution per unit of surface area, 

as calculated from the ratio between the volume of desorbed CO2, in μL, and the surface area, 

in m2∙g-1, over M-TbOx/n-MgO systems. The alkali or alkaline earth metal M is indicated in 

the figure. Catalytic activity was assessed at 700 ºC, with CH4/O2 feed molar ratio of 4, after 

15 min of reaction time [3]. 
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