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Abstract: In this study, three single-chamber microbial fuel cells (MFCs), each having Pt-coated
carbon cloth as a cathode and four bamboo charcoal (BC) plates as an anode, were run in a fed-batch
mode, individually and in series. Simulated potato-processing wastewater was used as a substrate
for supporting the growth of a mixed bacterial culture. The maximum power output increased
from 0.386 mW with one MFC to 1.047 mW with three MFCs connected in series. The maximum
power density, however, decreased from 576 mW/m2 (normalized to the cathode area) with one
MFC to 520 mW/m2 with three MFCs in series. The experimental results showed that power can
be increased by connecting the MFCs in series; however, choosing low resistance BC is crucial for
increasing power density.

Keywords: microbial fuel cell; bamboo charcoal; potato wastewater; in-series connection

1. Introduction

Microbial fuel cells (MFCs) are bio-electrochemical devices capable of directly con-
verting chemical energy to electrical energy using microorganisms as a catalyst [1–5]. This
ability has been explored to generate electricity using wastewater as an energy source,
while simultaneously treating wastewater [6–11].

MFCs are fundamentally classified into dual-chamber (or two-chamber) and single-
chamber MFCs. The dual-chamber MFC consists of an anode chamber and cathode
chamber. The anode chamber contains an anode electrode, microorganisms (biocatalysts),
and anolyte (substrate, fuel source), while the cathode chamber houses a cathode electrode
and catholyte. The two chambers are interfaced by a cation-specific or proton exchange
membrane (PEM), and connected with an external circuit (conductive wire). In the single-
chamber MFC design, the cathode chamber, catholyte, and PEM are removed, and one
side of the cathode is directly exposed to oxidants, usually to the atmosphere (air cathode),
and the other side to the anolyte. The air cathode allows oxygen (O2) in the air to contact
with protons (H+) to form water (H2O) at the cathode surface. The present study used
the single-chamber air-cathode MFC, as it has several advantages over the dual-chamber
MFC, including (i) reduced total MFC volume, (ii) reduced internal resistance, (iii) simpler
operation and maintenance, (iv) lower construction costs, and (v) an enhanced O2 reduction
rate on the cathode owing to freely available O2 in the air [12–15]. Although considerable
progress and advancement has been made in recent years, the MFC performance is still
insufficient for large-scale industrial applications.

Electrodes are key MFC components that have been heavily investigated to improve
the performance and reduce manufacturing cost with the aim of scaling up of MFC sys-
tems [16]. Typically, conventional carbon-based materials, including graphite, carbon
cloth, carbon felt, and carbon brush, are widely used for an anode as they can pro-
vide good biocompatibility [17]. Graphite has been used in various forms, including
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plates [18], paper [19], rods [6,20,21], foil [21], granules [22–24], particles [25], woven
form [26], felt [27–29], foam [20], fiber [30], and fiber brush [31]. Other carbon-based ma-
terials that have been used in MFCs are carbon cloth [8,32–38], carbon felt [39,40], carbon
paper ([7,21,41–49], carbonized cardboard [50–54], carbon rod [21], carbon mesh [55,56],
carbon fiber veil [21], granular-activated carbon [57,58], biochar [57,59], reticulated vitreous
carbon [60,61], graphene [19,62,63], carbon nanotubes [64,65], and bamboo charcoal [66,67].

Among many factors, the oxidation of substrate and transferring electrons to the
anode by electroactive bacteria (EAB) have been conceived as the main rate-limiting
steps [15,68]. To improve interactions between the EAB and anode surface, the electrodes
were frequently prepared by various physical and/or chemical treatments that require
laborious procedures. Examples of modified carbon materials that have been explored
include graphite incorporated with manganese ion [26], carbon paper with coatings of
vapor-deposited iron oxide [69], graphite with electrodeposition of platinum black, coated
with polymer [70,71], heat-treated carbon cloth [10], ammonia-treated carbon cloth [34],
polypyrrole-coated carbon [72], carbon felts doped with quinone derivatives [73], carbon
nanofiber nonwovens [74], gold-sputtered carbon paper [75], and bamboo charcoal doped
with ammonium phosphate [76]. The present study employed bamboo charcoal as an
anode without treatment. It is desirable to use carbonized materials without chemical
treatment because the effectiveness of chemically treated electrodes is likely short-lived,
the treatment procedures are laborious and costly, and disposal of waste chemicals is
burdensome. Although a multitude of carbon-based anode materials has been investigated,
only a few studies have used bamboo charcoal as electrodes.

2. Materials and Methods
2.1. MFC Design and Construction

Three air-cathode single-chamber MFCs, namely MFC 1, MFC 2, and MFC 3, were
constructed and operated in a fed-batch cyclic mode. Specifically, the body of each MFC
was constructed using acrylic sheets (0.6 cm thickness), which were cut and fastened
together (Figure 1a). The outside dimension of each fuel cell is 13 cm long, 9 cm wide, and
11 cm in height. The top and cathode side covers can be detached from the main body so
that the MFC can be cleaned and the cathode can be replaced when needed. Two holes
were tapped on the top of the MFC to allow for the removal of a spent substrate solution
and the feeding of a fresh solution. These holes were obturated during the operation to
maintain an anaerobic condition.
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Ω, respectively. A stainless-steel wire lead was attached to each electrode using conduc-
tive epoxy adhesive (MG Chemicals, Ontario, Canada), and its surface was covered by 
nonconductive epoxy putty (J-B Weld, Coopersburg, PA, USA) for reinforcement. For 
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to pass through the bottom sheet to connect the electrodes externally. The anode and the 
cathode were connected through an external resistor to close the circuit. After the instal-
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1000 mg/L) of chemical oxygen demand (COD) using a pH-7 phosphate buffer solution. 
The potato extract was analyzed by ICP-MS (X-Series II, Thermo Scientific, Germany), and 
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Figure 1. Single-chamber air-cathode MFC with a Pt-coated carbon cloth cathode and bam-boo charcoal (BC) anode:
(a) photo; (b) positioning of bamboo charcoal plates.

In order to expose the cathode to the atmosphere, a circular opening (3 cm diameter)
was drilled into the acrylic sheet that holds the cathode. The cathode electrode was made
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of carbon cloth with platinum loadings of 0.3 mg/cm2 (Fuel Cell Earth, Woburn, MA, USA).
The apparent surface area (one side) of the cathode was 6.7 cm2.

The anode electrode was made of bamboo charcoal (Mt Meru Pte, Singapore). Four
plates of bamboo charcoal, namely BC1, BC2, BC3, and BC4, were placed as the anode
inside the MFC body (Figure 1b). The BC plates were spaced 2 cm from each other, and the
distance between the cathode and the nearest BC plate was 3 cm. Specifications of the BC
anode plates are presented in Table S1, as supporting information. These BC plates were
selected among the BC plates of different resistances on the basis of low resistance. The
BC surface was visualized using a scanning electron microscope (SEM) (Quanta 200 FEG,
FEI Co., Czech Republic). The apparent (geometric) surface area of each BC anode plate was
typically 75 cm2 ranging from 64 to 81 cm2, and the lengthwise and widthwise resistance of
the BC anode plates was 30 Ω on average in a range from 16 to 54 Ω. The average resistance
of the BC electrodes of MFC 1, MFC 2, and MFC 3 were 26, 24, and 40 Ω, respectively. A
stainless-steel wire lead was attached to each electrode using conductive epoxy adhesive
(MG Chemicals, Ontario, Canada), and its surface was covered by nonconductive epoxy
putty (J-B Weld, Coopersburg, PA, USA) for reinforcement. For each BC anode plate, a hole
was drilled in the bottom of the MFC to allow the wire leads to pass through the bottom
sheet to connect the electrodes externally. The anode and the cathode were connected
through an external resistor to close the circuit. After the installation of the BC anode plates,
the working volumes (or anolyte volumes) of MFC-1, MFC-2, and MFC-3 were 530, 530,
and 500 mL, respectively.

2.2. Experimental Conditions and Analyses

Simulated potato-processing wastewater was used as a substrate (anolyte). To prepare
the wastewater, concentrated potato extract obtained from a local food processing plant
in Idaho Falls, Idaho, USA, was diluted to the desired concentration (approximately
1000 mg/L) of chemical oxygen demand (COD) using a pH-7 phosphate buffer solution.
The potato extract was analyzed by ICP-MS (X-Series II, Thermo Scientific, Germany),
and results are presented in Table S2, as supporting information. The wastewater was
autoclaved at 121 ◦C for 20 min to assure that the substrate was free from active microbes,
and stored in a refrigerator at 4 ◦C until used.

The bacterial culture used in this study originated from an anaerobic digester at the
Wastewater Treatment Plant in the City of Pocatello, Idaho. The anaerobic mixed bacterial
community was acclimated in sterilized synthetic potato-processing wastewater for more
than 10 years by the feeding aforementioned sterilized substrate every two weeks to a
month, and thus the inoculum was considered to be fully acclimated. The previous study
revealed that microbial species present in the anode chamber were predominantly within
the phyla of Proteobacteria, Firmicutes, and Bacteroidetes [77].

The organic strength of the wastewater (substrate solution) was measured as COD at
the beginning and end of the run cycle. The loss of anolyte (wastewater) in the chamber was
compensated by filling deionized water before taking samples. The COD measurement was
carried out using the USEPA Reactor Digestion Method (HACH, USA). Wastewater samples
were filtered using a 0.2 µm Millex-VV filter (Millipore, France) before the COD analysis.
The removal efficiency of individual MFC was approximately 80% in one cycle run.

2.3. MFC Operation and Monitoring

The MFCs were run with five different settings: (1) MFC 1 only; (2) MFC 2 only; (3)
MFC 3 only; (4) MFC 1 and MFC 2 in-series (noted as MFC 1-2), and (5) MFC 1, MFC 2,
and MFC 3 in-series (noted as MFC 1-2-3). The MFCs were operated in a fed-batch mode at
30 ± 2 ◦C. The MFCs were considered to have reached a quasi-steady state when a stable
voltage cycle was achieved, i.e., the MFCs produced similar voltage profiles and repeated
at least three cycles. When the system reached a stable condition and voltage reached a
high plateau region, the external resistance in the circuit was varied in a range from 20 to
800 Ω to obtain the maximum power output.
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The voltage produced by the MFCs was measured using a data acquisition system
(DAS) and continuously recorded every 15 min. The DAS consisted of a computer equipped
with a data acquisition board (PCl-6024E, National Instrument, Austin, TX, USA) and an
external connection block (SCB-6024E, National Instrument). The DAS was controlled by
LabView-2014 (National Instruments, Austin, TX, USA). The potential difference between
the cathode (+) and anode (−) is voltage (V) across a resistor (R). Current (I) was calculated
from Ohm’s law: I = V/R. Power (P) was calculated by P = I·V or P = V2/R. To analyze the
performance of MFC, power density and polarization curves were developed. Current and
power densities were normalized to the cathode area, anode area, and effective chamber
(anolyte) volume. The vales of internal resistance were determined according to the
maximum power transfer theorem [78].

3. Results and Discussion
3.1. Bamboo Charcoal Anode

As was described previously, a large variety of carbon materials have been studied for
anode electrodes to improve MFC performance. The present study used bamboo charcoal
(BC) for the anode. In the MFC design, electrodes are desired to have the following
characteristics: (i) high electrical conductivity and low resistance; (ii) high mechanical
strength; (iii) strong biocompatibility, (iv) high chemical stability and corrosion resistance,
(v) large surface area, (vi) low cost, and vii) environmental friendliness [1]. Bamboo charcoal
meets most of the aforementioned characteristics [66,67,76,79–88]. Figure 2 shows SEM
images of the external surface and cross-section of the BC anode. The electron micrographs
show that the BC used in this study has a rough fiber-like external surface (Figure 2a) and
is comprised of dense round to hexagonal tubes from 20 to 500 µm in diameter, arranged in
a honeycomb-like pattern (Figure 2b). The interconnected porous architecture can provide
a large surface area for microbial cell attachment and biofilm growth, and facilitates the
diffusion of nutrients and protons. These characteristics are essential to the anode for high
performance. The major drawback is that being a natural plant, the specifications of the BC
such as the thickness and resistance can vary (Table S1). It should be noted that BC plates
used in MFC 3 had noticeably larger resistances compared to those of MFC 1 and MFC 2.
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Figure 2. SEM images of bamboo charcoal anode: (a) external surface; (b) cross section.

In a study with BC and carbon fiber anodes, Moqsud et al. [67] found that bamboo
charcoal was an effective anode material. A comparison of tubular BC with tubular graphite
showed that BC was a better anode material in terms of surface roughness, biocompatibility,
electron transfer, and total internal resistance [89]. Additional advantages of using bamboo
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charcoal are that bamboo is a fast-growing plant [90] and thus it sequesters CO2 rapidly
from the atmosphere, stabilizing carbon in a solid form [91]. Bamboo charcoal can be easily
manufactured at low cost and with minimal carbon footprint, reused, and disposed of
safely (e.g., as biochar) as it is a natural material.

3.2. MFC Performance

The performance of MFCs is generally expressed in either power output or power
density normalized to the cathode area, anode area, or effective anode chamber (or anolyte)
volume. Preliminary examinations of the MFC 1, MFC 2, and MFC 3 runs in the present
study showed that these four expressions are comparable (see Figure S1, supporting
information). Hence, in this paper, the power density and current density were normalized
to the projected cathode area. Note that all the MFCs used in this study had the same
cathode area (6.7 × 10−4 m2).

The experimental results are analyzed in two stages. Firstly, the performance
of MFC 1, MFC 2, and MFC 3 are analyzed individually. Figure 3a shows plots of
power (mW) against corresponding current density (mA/m2) for MFC1 (circles), MFC 2
(squares), and MFC 3 (triangles). Lines are third-order polynomial fits to guide the eyes.
As is seen, MFC 1 and MFC 2 produced similar power curves, while MFC 3 exhibited
a considerably smaller power curve. The maximum power achieved by MFC 1 and
MFC 2 is 0.386 and 0.383 mW at a current density of 3.27 × 103 and 2.67 × 103 mA/m2,
respectively. The maximum power yielded by MFC 3 is 0.284 mW at a current density
of 2.09 × 103 mA/m2. The trends of polarization for MFC 1, MFC 2, and MFC 3 are
shown in Figure 3b. The polarization curves produced by MFC 1 and MFC 2 are nearly
identical, whereas the voltage produced by MFC 3 is noticeably smaller, consistent with
the power curves. This smaller voltage produced by MFC 3 is most likely attributed to
the larger internal resistance of MFC 3.
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Figure 3. Performance of MFC 1, MFC 2, and MFC 3 individually: (a) power curves and (b) polarization curves.

Figure 4 shows the correlation between current (at the maximum power) and internal
resistance. As is seen, current and internal resistance are inversely related. In a comparison
of MFC 1 and MFC 3, a 51% increase in internal resistance resulted in a 28% decrease in
current.
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Secondly, the performance of the MFCs connected in series is examined. Figure 5a
shows the power curves for MFC 1 (circle), MFC 1-2 (square), and MFC 1-2-3 (triangle).
As the number of the MFCs was increased, the power output increased, and the max-
imum power shifted to the lower current density and larger voltage (Figure 5b). The
maximum power output increased from 0.386 mW (at 3.27 × 103 mA/m2), 0.875 mW (at
1.75 × 103 mA/m2) to 1.047 mW (at 1.14 × 103 mA/m2) with the MFC 1, MFC 1-2, and
MFC 1-2-3 settings, respectively. The increase of the power output from the MFC 1 to
MFC 1-2 setting was 120%, whereas the power increase from the MFC 1-2 setting to the
MFC 1-2-3 setting was only 20%. This smaller power increase in the MFC 1-2-3 setting
is most likely attributed to the larger internal resistance of MFC 3. Theoretically, if two
MFCs are connected in series, the system can increase the power output by increasing the
voltage without increasing the current (92). However, MFC 1-2 produced approximately
15% less voltage than the theoretically available voltage, whereas it produced about 35%
more current than the theoretical current. Overall, MFC 1-2 produced more than 20%
greater power than the theoretical additive power. The decrease in the voltage is likely due
to voltage reversal (VR), as this is a common phenomenon in stacked MFCs and MFCs
in series [92]. The potential causes of VR are (a) kinetic imbalances between the MFCs in
series [93], and (b) substrate limitation from microbial starving conditions [23,94]. Several
VR control methods have been discussed and proposed by Kim et al. [92]. The increase
in the current could be attributed to the properties of BC or the arrangement of the BC
plates. A slightly super-linear increase in power output by stacking individual MFC units
has been reported [95]. Nevertheless, the effects of the BC material and multiple BC plates
on the MFC performance require further investigation.
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Figure 5. Performance of the MFCs in series: (a) power curves and (b) polarization curves for the MFC 1, MFC 1-2, and
MFC 1-2-3 settings.
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Figure 6 shows the power density curves (mW/m2) for the MFC 1, MFC 1-2, and MFC
1-2-3 settings. As is seen, the power density increased from the MFC 1 to the MFC 1-2
setting but decreased in the MFC 1-2-3 setting. Although the power output was increased
by adding MFCs in series, the increase in power by MFC 3 was not large enough to
offset the increase in the cathode area. The cathode area increased from 6.7 × 10−4 m2 to
1.34 × 10−3 m2 to 2.01 × 10−3 m2 in the MFC 1, MFC 1-2, and MFC 1-2-3 runs, respectively.
Consequently, MFC 1-2-3 exhibited the lowest power density (520 mW/m2 cathode at
1.14 × 103 mA/m2) as compared to MFC 1 (576 mW/m2 at 3.27 × 103 mA/m2) and MFC 1-
2 (653 mW/m2 at 1.75 × 103 mA/m2). The results indicate that the power output increases
with an increasing number of MFCs in-series; however, the MFC that behaves poorly affects
negatively the overall performance of the MFC system.
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Figure 6. Power density for the MFC 1, MFC 1-2, and MFC 1-2-3 settings.

One of the factors that limit power output by MFCs is their internal resistance, which
is comprised of activation (or charge transfer) resistance, ohmic (or solution) resistance, and
concentration (or diffusion) resistance [96]. The ohmic resistance represents the resistance
of solution, electrode materials, and membrane. In a single-chamber air-cathode MFC,
the sources of ohmic resistance are mainly the electrodes and anolyte. Figure 7 shows the
relation between the internal resistance and BC plate resistance. Note that the BC anode
resistances were measured before they were placed inside the MFC chamber. As is seen,
the internal resistance was smaller than the BC anode resistance, indicating that the BC
plates became more conductive, likely due to the establishment of EAB biofilm.

Processes 2021, 9, x FOR PEER REVIEW 8 of 12 
 

 

that the BC plates became more conductive, likely due to the establishment of EAB bio-
film. 

 
Figure 7. Internal resistance vs. bamboo charcoal anode resistance. 

4. Conclusions 
This study focused on the single-chamber air-cathode MFCs with the bamboo char-

coal (BC) anode and Pt-coated carbon cloth cathode. Three MFCs were run in a fed-batch 
mode, individually and in series using synthetic potato-processing wastewater as an 
anolyte. The maximum power output increased from 0.386 mW (at 3.27 × 103 mA/m2) with 
one MFC to 1.047 mW (at 1.14 × 103 mA/m2) with three MFCs connected in series. The 
maximum power density, however, decreased from 576 mW/m2 (at 3.27 × 103 mA/m2) with 
one MFC to 520 mW/m2 cathode (at 1.14 × 103 mA/m2) with three MFCs in series. The 
experimental results showed that power can be increased by connecting MFCs in series; 
however, choosing high-quality (low resistance) BC charcoal is crucial for increasing 
power density. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Table S1: 
Dimensions and resistance of bamboo charcoal analysis; Table S2: Concentrations of inorganic con-
stituents in potato extracts (ICP analysis results); Figure S1: Power and power density curves for 
MFC 1: (a) power; (b) power density normalized to the cathode area; (c) anode area, and (d) anolyte 
volume.  

Author Contributions: Conceptualization, C.S.; methodology, C.S., N.E.P., M.Z.I.M.M. and J.D.; 
validation, C.S.; formal analysis, C.S.; investigation, C.S., N.E.P., S.C., M.Z.I.M.M. and J.D.; re-
sources, C.S. and S.C.; data curation, C.S. and M.Z.I.M.M.; writing—original draft preparation, C.S.; 
writing—review and editing, C.S. and N.E.P.; visualization, C.S.; supervision, C.S. and S.C.; project 
administration, C.S. and S.C.; funding acquisition, C.S. and S.C. All authors have read and agreed 
to the published version of the manuscript.  

Funding:  This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. The data are not publicly available due to potential proprietary information. 

Acknowledgments: The authors would like to express their sincere appreciation to the College of 
Science and Engineering at Idaho State University for their support. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 
1. Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial 

fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. 

Figure 7. Internal resistance vs. bamboo charcoal anode resistance.

4. Conclusions

This study focused on the single-chamber air-cathode MFCs with the bamboo charcoal
(BC) anode and Pt-coated carbon cloth cathode. Three MFCs were run in a fed-batch mode,



Processes 2021, 9, 2194 8 of 12

individually and in series using synthetic potato-processing wastewater as an anolyte.
The maximum power output increased from 0.386 mW (at 3.27 × 103 mA/m2) with one
MFC to 1.047 mW (at 1.14 × 103 mA/m2) with three MFCs connected in series. The
maximum power density, however, decreased from 576 mW/m2 (at 3.27 × 103 mA/m2)
with one MFC to 520 mW/m2 cathode (at 1.14 × 103 mA/m2) with three MFCs in series.
The experimental results showed that power can be increased by connecting MFCs in
series; however, choosing high-quality (low resistance) BC charcoal is crucial for increasing
power density.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr9122194/s1: Table S1: Dimensions and resistance of bamboo charcoal analysis; Table S2:
Concentrations of inorganic constituents in potato extracts (ICP analysis results); Figure S1: Power
and power density curves for MFC 1: (a) power; (b) power density normalized to the cathode area;
(c) anode area, and (d) anolyte volume.
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