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Abstract: Due to various environmental regulations, the demand for natural gas, i.e., a clean energy,
is expected to increase continuously. In terms of efficient storage and transportation of natural
gas, liquefied natural gas has an advantageous volume of 1/600 compared to natural gas, but the
materials that can be used at a cryogenic temperature of −163 ◦C are limited. A 9% nickel steel is
a material recommended by IMO through IGC. It has excellent mechanical properties compared
to other cryogenic materials, but its use has been limited due to its disadvantages in arc welding.
Therefore, the main topic of this study is the automatic welding of 9% nickel steel using fiber laser and
its purpose is to predict the welding deformation during fiber laser welding. First, an investigation
was conducted to find the fiber laser welding heat source. A model that can cover all the models in
prior studies such as curve, exponential, conical, conical-conical combination, and conical-cylinder
combination models was proposed and the heat source model was constructed in a multi-layer
format. Heat transfer analysis was performed using the ratio of a heat source radius and heat energy
of each layer as a variable and the pass or failure of a heat source was determined by comparing
the analysis results to the experimental results. By changing the variables in conjunction with the
optimization algorithm, the main parameters of a passed heat source model were verified in a short
period of time. In addition, the tendency of parameters according to the welding speed was checked.

Keywords: fiber laser welding; 9% nickel steel; welding heat source model; FEM; global optimization

1. Introduction

Due to global warming and environmental pollution, regulations on fossil fuels are
becoming stricter. For ships, SOx and NOx emitted from a diesel engine are the main targets
of regulation and regulations forced ships to be installed a scrubber on diesel engines for
desulfurizing purposes. However, in order to devise a more permanent and fundamental
solution, increased research and field application in the industrial field on how to use
liquefied natural gas (LNG) as a fuel are being pursued [1,2].

Liquefied natural gas is not subject to environmental regulations because it does not
emit SOx or NOx during combustion. However, its boiling point is −163 ◦C, so special
care is required during handling. Most materials containing a metal cannot perform
their role properly because low-temperature brittleness occurs when exposed to cryogenic
temperatures. The International Marine Organization (IMO) specifies the materials that can
be used at the LNG boiling point in the IGC Code, and these materials are STS304L, STS316L,
Invar (36% nickel steel), high manganese steel, and 9% nickel steel [3]. Among these
metals, 9% nickel steel is one of the more popular materials due to its excellent mechanical
properties such as yield strength and tensile strength at −163 ◦C. Also toughness is higher
than mild steel, especially in a cryogenic condition, it can be used for LNG carriers [3].
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A process required to make a product using the above material is welding, which is
the most common process in the industrial field due to its relatively low operating cost
and easy access. Arc welding has been typically used and there have been studies using
manual welding such as FCAW (flux core arc welding) for 9% nickel steel. Na compared
the welding quality when 9% nickel steel was welded by GTAW or FCAW [4] and Kim
studied the design of an LNG fueled ship using 9% nickel steel [5]. Yun studied the optimal
welding method for the fillet welding of 9% nickel steel [6].

However, 9% nickel steel had a limitation with regard to its wide application despite
its excellent material properties because of arc deflection due to magnetization during
manual welding of FCAW and its filler metal is 10~25 times more expensive than other
cryogenic materials [7–9]. Therefore, this study attempted to solve the above problem by
studying automatic welding that employs fiber laser welding that does not use a filler
metal. Fiber laser gives a concentrated heat source to a narrow area for a short period of
time to minimize thermoelastic deformation and its high welding speed enables increased
productivity [10].

There have been studies on the welding of 9% nickel steel by applying fiber laser
welding. Huang conducted a study where a filler metal was used for fiber laser welding of
9% nickel steel [9] and Choi conducted a study on 9% nickel steel as a material for type B
LNG fuel tank [11]. Park performed and analyzed super TIG welding to weld 9% nickel
steel [12].

The main purpose of this study was to predict the amount of welding deformation
and deformation patterns through finite element analysis when welding 9% nickel steel,
i.e., a cryogenic material, using a fiber laser. In particular, the main goal of this study was
to find a high-quality welding heat source, and the welding heat source was assumed to be
a model composed of five layers. This is similar to the method in a prior study where a
welding heat source was discovered during fiber laser welding of STS304L [13–15]. It is a
model where the heat source radius and the ratio of heat source per layer are different for
each layer of the heat source.

Goldak’s double ellipse model [16,17], which is the most widely used in typical arc
welding, has the disadvantage that it cannot simulate the keyhole shape that occurs during
laser welding [18,19], so various models have been proposed.

Kim proposed a model of a circular cone shape as a welding heat source, performed
finite element analysis, predicted a fusion zone, and verified it through an experiment [20].
Farrokhi used a model where a conical shape and the Gaussian distribution were combined
and verified it through finite element analysis and an experiment [21]. Xu implemented
and verified a heat source shape that connects the upper and lower circular surfaces in a
quadratic fashion in a conical shape and the details are shown in Figure 1a [22]. As a heat
source model, Evdokimov implemented and verified a heat source shape that exponentially
connects the top and bottom circular surfaces in a conical shape and the details are shown
in Figure 1b [23]. Kik performed verification using a combination of two conical shapes
and also a combination of a conical shape and a cylinder shape as a heat source model and
the details are shown in Figure 1c [24].

A common characteristic of prior studies is that a heat source was estimated based
on the shape of a weld bead and it was used as the heat source for a finite element
analysis model. It has been confirmed that a simple conical-conical shape develops into
an exponential model, a conical-conical or conical-cylinder combination, which is due to
the fact that it is difficult to find a heat source for laser welding just by using a simple
model. Actually many researches [25–35] related to a laser welding heat source model have
their own model. In addition, the determination of the main dimension to determine a
heat source shape in the above studies is based on the welding experiment results and the
fusion zone dimension of a SEM photograph, so there is a limitation in that it is difficult to
implement the formula of a general welding heat source according to welding conditions.
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Figure 1. Laser heat source models. (a) Curve model; (b) exponential model; (c) conical-conical and conical-cylindrical models. 

A common characteristic of prior studies is that a heat source was estimated based 
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el. Actually many researches [25–35] related to a laser welding heat source model have 
their own model. In addition, the determination of the main dimension to determine a 
heat source shape in the above studies is based on the welding experiment results and 
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As the first step to derive the general welding heat source equation, the purpose of 
this study was to derive the shape of a welding heat source using a welding heat source 
model with a high degree of freedom. By dividing the heat source into five layers, a 
model that varies the welding heat source radius and the heat source ratio for each layer 
was developed and the fusion zone was estimated using finite element analysis. Then, 
after the experiment, the heat source radius and the ratio of heat source for each layer 
were found compared to the fusion zone in the SEM picture. Then, an optimal heat 
source model was sought by linking the global optimization algorithm and finite ele-
ment analysis. 

2. Simulation Using Experimental and Finite Element Analysis Models 
2.1. Welding Test Equipment and Test Conditions 

For this study, a fiber laser welding machine with a capacity of 5 kW was used. 
Miyachi welding equipment was used and it consists of a laser welding oscillator, opti-
cal system, controller, and chiller, as shown in Figure 2. The spot diameter of the optical 
system was 400 μm, its focal length was 148.8 mm, the focal depth was 6 mm, the defo-
cus was set to 0, and N2 was used as a protective gas and sprayed at a rate of 15 L/min. 
Both tilting and working angle were fixed at 0°. During the experiment, the power was 
fixed at 4 kW and the experiment was performed while changing the speed to 1.5 
m/min, and 2.0 m/min. 

Figure 1. Laser heat source models. (a) Curve model; (b) exponential model; (c) conical-conical and conical-cylindrical models.

As the first step to derive the general welding heat source equation, the purpose of
this study was to derive the shape of a welding heat source using a welding heat source
model with a high degree of freedom. By dividing the heat source into five layers, a model
that varies the welding heat source radius and the heat source ratio for each layer was
developed and the fusion zone was estimated using finite element analysis. Then, after the
experiment, the heat source radius and the ratio of heat source for each layer were found
compared to the fusion zone in the SEM picture. Then, an optimal heat source model was
sought by linking the global optimization algorithm and finite element analysis.

2. Simulation Using Experimental and Finite Element Analysis Models
2.1. Welding Test Equipment and Test Conditions

For this study, a fiber laser welding machine with a capacity of 5 kW was used.
Miyachi welding equipment was used and it consists of a laser welding oscillator, optical
system, controller, and chiller, as shown in Figure 2. The spot diameter of the optical system
was 400 µm, its focal length was 148.8 mm, the focal depth was 6 mm, the defocus was
set to 0, and N2 was used as a protective gas and sprayed at a rate of 15 L/min. Both
tilting and working angle were fixed at 0◦. During the experiment, the power was fixed
at 4 kW and the experiment was performed while changing the speed to 1.5 m/min, and
2.0 m/min.
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As shown in Figure 3, a digital optical microscope with a resolution of 2 mega pix-
els was used to measure the welding deformation. The shape of a fusion part caused by 
welding was classified according to top bead width and penetration and its size was 
checked for bead shape simulation. The shape and size information of a bead is shown 
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2.2. Weld Bead Analysis

The size of a welding specimen was 600 mm × 300 mm × 6 mm and the center
part was cut to 10 mm in the welding direction and 25 mm in the width direction and its
cross-sectional observation was performed. Polishing was performed to clearly check the
shape of a bead and etching was performed using a nital solution (10% HNO3, Ethanol).

As shown in Figure 3, a digital optical microscope with a resolution of 2 mega pixels
was used to measure the welding deformation. The shape of a fusion part caused by
welding was classified according to top bead width and penetration and its size was
checked for bead shape simulation. The shape and size information of a bead is shown
in Figure 4.
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temperature were derived using JMatpro [42] and material properties were derived us-
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Figure 4. Welding bead shape and dimension.

2.3. Finite Element Analysis Software

In this study, the optimization algorithm and finite element analysis were used to-
gether and Abaqus2020 and Isight2020 from Das-sault System were employed. In addition,
the user subroutine technique using Fortran was utilized to simulate the moving heat
source. The implementation of a welding heat source using Abaqus and Fortran has been
adopted in many prior studies [36–38] and the optimal design using Isight has also been
used in many prior studies [39,40].

2.4. Material Properties by Temperature

Table 1 [41] shows the chemical composition of 9% nickel steel used in this study.

Table 1. Chemical composition of 9% nickel steel (wt%).

Material C Si Mn S P Ni Fe

A553-1 0.05 0.67 0.004 0.003 0.25 9.02 Bal.

For the heat transfer analysis using finite element analysis, material properties such as
specific heat, thermal conductivity, and density are required. Although deriving material
properties through measurement is the most accurate method, there is a limitation in deriv-
ing material properties near the melting point. In a prior study, properties by temperature
were derived using JMatpro [42] and material properties were derived using JMatpro in
this study too. The details are shown in Figure 5.
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Figure 5. Material properties of 9% nickel steel by temperature. (a) Conductivity; (b) density; (c) specific heat.
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2.5. Welding Heat Source Model

The welding heat source model is configured as an integrated heat source model
that can cover all existing laser heat source models. Existing heat source models are
constructed based on a conical model which is based on a Gaussian distribution heat
source. In this study, a cone-based model consisting of multiple layers was adopted. By
selecting a different heat source radius for each layer, it was possible to cover all of the
existing heat source models such as the conical model (typical heat source model), the
secondary interpolation conical model, the exponential interpolation conical model, the
conical-cylindrical combination model, and the conical-conical model. The shape of a heat
source model is shown in Figure 6. The distribution of a heat source for each layer was
defined to follow a Gaussian distribution as in typical heat source models.
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Figure 6. Multi-layered laser welding heat source model.

The height of all layers was set to be the same and the radius of each layer and the
thermal energy ratio of each layer was set as the main variable. In addition, a total of
12 variables was set by configuring the welding efficiency and the height of a welding
heat source as variables. The heat source distribution in each layer follows a Gaussian
distribution and the equation is as follows. The heat source distribution of each layer is
shown in Equations (1) and (2) and the meaning of the variables in Equation (1) is shown
in Table 2.

q(x, y, z) =
9Qe3

π(e3 − 1)(YT1)
(

R2
T + RT RT1 + R2

T1
) exp

(
3[(x − vt)2 + z2]

(R1(y))
2

)
(1)

R1(y) = RT − (RT − RT1)
yT − y

yT − yT1
(2)
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Table 2. Variables of heat source model.

Variables Meaning

Efficiency Welding efficiency
RT Top radius of 1st layer (top layer)
RT1 Top radius of 2nd layer
RT2 Top radius of 3rd layer
RT3 Top radius of 4th layer
RT4 Top radius of 5th layer
RB Bottom radius of 5th layer

Heat Ratio 1 Heat ratio of 1st layer
Heat Ratio 2 Heat ratio of 2nd layer
Heat Ratio 3 Heat ratio of 3rd layer
Heat Ratio 4 Heat ratio of 4th layer
Heat Ratio 5 Heat ratio of 5th layer
Heat depth Length of heat source in depth direction

2.6. Research Process

Finite element analysis was performed while changing the variables of the welding
heat source model introduced in Section 2.5 and the coefficients of the welding heat source
model suitable for each welding condition were sought through a parametric study that
compares the analysis results with actual experimental results. For the comparison with
actual experimental results, the shape of a bead was reflected in the finite element analysis
modeling and the shape offset by 0.2 mm from the bead was reflected in the modeling.
The inner side of a bead must exceed the melting point of 9% nickel steel at least once
during the welding process and the outer side must not exceed the melting point even for
a moment. As shown in Figure 7, the suitability of heat source parameters was judged by
setting three points each in the internal/external offset shape.
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2.7. Boundary Conditions of Heat Transfer Analysis

To perform the parametric study introduced in Section 2.6, a heat source was searched
for by performing heat transfer analysis for 1000~2000 models for each welding condition.
Therefore, an analysis model was constructed that minimizes the number of grids although
modeling was basically performed under similar conditions to the experiment. In particular,
the analysis was performed by reducing the length in the welding direction and its validity
was verified in previous similar studies [36]. The model is shown in Figure 8.
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Figure 8. Simplified model.

Welding speed and welding power were performed under the same conditions as the
actual experiment and an analysis considering both convective heat transfer and radiative
heat transfer was performed. The convective heat transfer coefficient was set to 20 W/m2K,
the emissivity was set to 0.8, and the atmospheric temperature was set to 20 ◦C Those
conditions are referred to other research [43,44].

2.8. Optimization Algorithm

For this study, adaptive simulated annealing (ASA), one of the global optimization
techniques, was used as an optimization algorithm. ASA is one of the probabilistic method-
ologies to find an optimal value in the global search space and it was inspired by the
annealing process that seeks to reduce metal defects. It is a process of deriving an optimal
value by searching for an optimal value by increasing the change of variables, not falling
into a local optima, and reducing the variable change while conducting a case study. The
advantage of ASA is that it reduces the time taken for optimization by automatically
adjusting the variable change range according to the optimization trend [45].

ASA has already been used for design optimization in the electronics and bio indus-
tries, and has also been applied to welding research [46].

3. Results
3.1. Welding Test Results

As mentioned in Section 2, welding was performed by using a fiber laser at different
welding speeds while the welding power was fixed. Experiments were conducted in two
speeds, i.e., 1.5 m/min and 2.0 m/min and cross-sectional observation was performed. The
cross-sectional observation results are shown in Figure 9.
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As mentioned in Section 2.2, the penetration shape was classified according to four ma-
jor dimensions: top bead width, concave bead width, concave bead depth, and penetration.
The data are shown in Table 3.

Table 3. Key bead dimension per welding speed.

Welding Speed (m/min) Top Bead Width (mm) Concave Bead Width
(mm)

Concave Bead Depth
(mm)

Penetration
(mm)

1.5 2.583 1.075 2.275 4.867
2.0 1.717 0.941 1.410 4.860

3.2. Results of Welding Heat Source Model Search

The 11 parameters of the welding heat source model introduced in Section 2 were
checked based on the key welding bead dimensions introduced in Section 3.1 and the
results are shown in Table 4.

Table 4. Key parameters of welding heat source per welding speed.

1.5 Mpm 2.0 Mpm

EFFICIENCY 0.884 0.873
R_T 2.164 2.110
R_T1 0.446 1.454
R_T2 0.357 1.075
R_T3 0.781 0.371
R_T4 0.861 0.869
R_B 4.010 1.184

HEAT_depth 5.242 4.885
Heat Ratio 1 0.233 0.292
Heat Ratio 2 0.327 0.124
Heat Ratio 3 0.018 0.203
Heat Ratio 4 0.148 0.189
Heat Ratio 5 0.274 0.192

In addition, it was found that the shape of a welding heat source is the shape of a
conical-conical combination under all three conditions as shown in Figure 10.
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In addition, the results of heat transfer analysis using three different heat sources are
shown in Figures 11 and 12 and it was found that they are similar to the fusion zone line of
cross-sectional observation results in Figure 10.
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4. Discussion

As shown in Table 4, it was found that the energy efficiency is similar for all two cases.
When the fiber laser welding was performed on 9% nickel steel, it was found that the
welding efficiency was about 87~88% and the welding efficiency was very high compared
to arc welding.

As the welding speed increases, the amount of energy input per hour is reduced and
it is expected that the size of a welding heat source will be affected. The depth of a welding
heat source (heat depth) follows the trend as shown in Figure 13.
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For the shape of a welding heat source, it was found that all two cases showed a shape
close to the conical-conical one. In particular, it was found that the Radius (R_B) of a heat
source in Layer 5 increased to 60% or more compared to the Radius (R_T) of a heat source
in the top layer and the smallest Radius appeared in Layer 3 under all conditions.
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In this study, it was assumed that the ratio of heat source energy per layer was different.
In prior studies, it was assumed that the energy ratio of two layers is the same when they
are divided into two layers [21]. The latter case has a limitation in that the energy density
becomes higher at the lower layer where the radius becomes smaller. In a prior laser
welding heat source-related study, the heat source is defined as a primary heat source if the
laser heat source is irradiated to the top of a base material and the heat source is defined
as a secondary heat source when the heat source turns into a plasma state and creates a
keyhole due to flow [21–24]. It is not realistic to assume the same energy ratio for each
layer, so a parametric study was performed in this study by assuming that the energy ratio
for each layer was also an independent variable. Therefore, as shown in Figure 14, it was
found that the sum of energy ratios in Layer 1 and Layer 2 was 61% at 1.5 mpm, and 42%
at 2.0 mpm. As a result, it can be inferred that the concentration of heat energy at the top
part of a heat source is higher when the speed is lower. In this experiment, it was found
that the concentration of energy by height appeared evenly when the speed was 2.0 mpm
(Figure 15).
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The main purpose of this study was to implement an integrated heat source model,
to find the key parameters of a heat source per welding condition, and to check the trend
of parameters according to the welding speed, which is the key welding condition. There
is a limitation, however, because there are only two cases compared and the welding test
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also has a limitation in that in order to ensure the reliability, the experiments should be
repeated more than five times. Nevertheless, this study is meaningful in that it attempted
to implement an integrated heat source model that has never existed before. In future
research, it is planned to conduct a study that precisely analyzes the trend of parameters
for each welding condition by further defining more welding speeds and conducting a
study that compares not only the welding speed but also the welding power.

5. Conclusions

This study is an initial research effort to implement a general model regarding a fiber
laser welding heat source. The constructed heat source model in a multi-layer form can
cover all the models including curve, exponential, conical, conical-conical combination,
conical-cylindrical combination that have featured in prior studies.

1. The temperature distribution was checked through the heat transfer analysis using a
moving heat source by simulating the fiber laser welding experiment of STS304L.

2. Heat transfer analysis was performed using the heat source radius and the ratio of
heat energy for each layer as variables and the pass or failure of a heat source was
determined by comparing it to the experimental results. By changing the variables in
conjunction with the optimization algorithm, a heat source model with pass condition
was found in a short period of time.

3. Each analysis was performed with different welding speeds and it was found that the
welding heat source at 1.5 m/min, and 2.0 m/min under 4 kw condition was similar
to the conical-conical combination model.

4. From the analysis according to the welding speed, it is found that welding speed and
the heat depth are inversely related. In addition, the energy ratio was different for
each layer of a heat source and the concentration of the upper part of a heat source
was higher as the speed is lower.

5. In future research, the relationship between the welding conditions and the heat
source model will be checked by comparing the heat source model under the welding
conditions with different welding power and welding speed, and ultimately, a study
will be performed to find a general heat source model for fiber laser welding.
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