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Abstract: (1) Background: The striped rice stem borer (SRSB), Chilo suppressalis, has severely di-
minished the yield and quality of rice in China. A timely and accurate prediction of the rice pest
population can facilitate the designation of a pest control strategy. (2) Methods: In this study, we
applied multiple linear regression (MLR), gradient boosting decision tree (GBDT), and deep auto-
regressive (DeepAR) models in the dynamic prediction of the SRSB population occurrence during
the crop season from 2000 to 2020 in Hunan province, China, by using weather factors and time
series of related pests. (3) Results: This research demonstrated the potential of the deep learning
method used in integrated pest management through the qualitative and quantitative evaluation of a
reasonable validating dataset (the average coefficient of determination R2

mean for the DeepAR, GBDT,
and MLR models were 0.952, 0.500, and 0.166, respectively). (4) Conclusions: The DeepAR model
with integrated ground-based meteorological variables, time series of related pests, and time features
achieved the most accurate dynamic forecasting of the population occurrence quantity of SRSB as
compared with MLR and GBDT.

Keywords: Chilo suppressalis; meteorological data; time series analysis; DeepAR; deep learning;
integrated pest management

1. Introduction

The Chilo suppressalis (striped rice stem borer, hereafter referred to as SRSB), the most
widely distributed and destructive rice pest [1], is also the worst rice pest in China [2].
The larvae of SRSB eat rice stems, which leads to rice with dead hearts in the tillering
stage, then forms white earheads during the heading stage, which can finally lead to
rice with dead sheath [3] (Figure 1). Annually, China suffers severe rice yield reduction
and economic losses from the SRSB pest [3–6]. This destruction is caused in part by the
rapid proliferation of pests within pest populations, which makes it difficult for farmers
to predict its outbreak. Continuously monitoring and accurately predicting the dynamic
changes in the pest population during the crop growth period may be helpful for protecting
rice from SRSB.

The insect population can be affected by many factors; both abiotic and biotic factors
are believed to be responsible for changes in the insect population [1]. The effects of abiotic
factors such as climate variables have been well-documented [7]. Therefore, an adequate
early warning of an SRSB infestation combined with meteorological factors can support
plant protection efforts. Apart from being threatened by SRSB, rice is also negatively
affected by various pests such as the rice planthopper (hereafter referred to as RPH) and
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the paddy leaf roller (hereafter referred to as PLR). Thus, the species and the numbers
of other pests in the region will also have effects on the population development trends
for SRSB.

Processes 2021, 9, x FOR PEER REVIEW 2 of 18 
 

 

paddy leaf roller (hereafter referred to as PLR). Thus, the species and the numbers of other 
pests in the region will also have effects on the population development trends for SRSB. 

 
Figure 1. The main symptom in rice of damage by SRSB. 

An agricultural pest prediction model is built on the pest occurrence mechanism, 
mathematical statistics, time series analyses, together with the critical factors affecting 
pest occurrence, which can provide information on pest occurrence, severity, and devel-
opment trends. Differentiated by the principles of prediction methods, the current range 
of pest prediction models include statistical regression models, machine learning models, 
and deep learning models. 

Statistical modeling for the early prediction of pest risks is one strategy that has been 
widely adopted [8], and whose essence is to ascertain the relationships between variables 
in the form of fitting equations. The predicting steps involve: performing a statistical anal-
ysis with the historical data on pests, extracting the relationship between the target pests 𝑦 and a related factor 𝑥, establishing the mathematical equations, and then making a 
quantitative prediction of pests by means of these equations. This kind of prediction ap-
proach treats pest occurrence as a separate system, without considering the occurrence 
process and mechanism. The most commonly used approach is the multiple linear regres-
sion (MLR) model. The severe difficulty for statistical regression methods lies in choosing 
the relevant factor 𝑥; most researchers currently tend to build predicting models with rel-
evant meteorological factors [9,10]. Some researchers have found that combining weather 
factors with other factors, such as variety, soil, fertilization, etc., can improve a model’s 
prediction capability [11,12]. The statistical learning-based methods focusing on finding 
the linear relations between variables have high interpretability. However, most problems 
in real-life production show rich, non-linear links for which traditional statistical regres-
sion methods do not work. 

The machine learning method has a strong predictive capability that automates the 
organization, fits the parameter adjustment model, obtains the optimal model to fit the 
current datasets, and predicts with the optimal model. The accuracy and speed of the ma-
chine learning method improve as the amount of data increases, which is what distin-
guishes it from traditional statistical regression methods. The machine learning method 
can also learn non-linear relationships; consequently, the machine learning-based regres-
sion analysis has become the mainstream in agricultural pest prediction, with support 
vector machines [13] and decision trees [10] as the two commonly adopted machine learn-
ing prediction algorithms. However, machine learning algorithms are so diverse that it is 
difficult for researchers to choose one for practical problems. Moreover, the pros and cons 
of machine learning algorithms also differ, such as the SVM being inefficient in processing 
large samples of data [14], while the performance of neural networks improves with an 
increase in data volume [15], but which also easily leads to higher computational costs 
and the overfitting of traditional neural networks [16]. 

Deep learning, a branch of machine learning, is an algorithm using the artificial neu-
ral networks as an architecture to characterize and learn data [17–21]. The algorithm is 

Figure 1. The main symptom in rice of damage by SRSB.

An agricultural pest prediction model is built on the pest occurrence mechanism,
mathematical statistics, time series analyses, together with the critical factors affecting pest
occurrence, which can provide information on pest occurrence, severity, and development
trends. Differentiated by the principles of prediction methods, the current range of pest
prediction models include statistical regression models, machine learning models, and
deep learning models.

Statistical modeling for the early prediction of pest risks is one strategy that has
been widely adopted [8], and whose essence is to ascertain the relationships between
variables in the form of fitting equations. The predicting steps involve: performing a
statistical analysis with the historical data on pests, extracting the relationship between
the target pests y and a related factor x, establishing the mathematical equations, and
then making a quantitative prediction of pests by means of these equations. This kind of
prediction approach treats pest occurrence as a separate system, without considering the
occurrence process and mechanism. The most commonly used approach is the multiple
linear regression (MLR) model. The severe difficulty for statistical regression methods lies
in choosing the relevant factor x; most researchers currently tend to build predicting models
with relevant meteorological factors [9,10]. Some researchers have found that combining
weather factors with other factors, such as variety, soil, fertilization, etc., can improve a
model’s prediction capability [11,12]. The statistical learning-based methods focusing on
finding the linear relations between variables have high interpretability. However, most
problems in real-life production show rich, non-linear links for which traditional statistical
regression methods do not work.

The machine learning method has a strong predictive capability that automates the
organization, fits the parameter adjustment model, obtains the optimal model to fit the
current datasets, and predicts with the optimal model. The accuracy and speed of the
machine learning method improve as the amount of data increases, which is what distin-
guishes it from traditional statistical regression methods. The machine learning method can
also learn non-linear relationships; consequently, the machine learning-based regression
analysis has become the mainstream in agricultural pest prediction, with support vector
machines [13] and decision trees [10] as the two commonly adopted machine learning
prediction algorithms. However, machine learning algorithms are so diverse that it is
difficult for researchers to choose one for practical problems. Moreover, the pros and cons
of machine learning algorithms also differ, such as the SVM being inefficient in processing
large samples of data [14], while the performance of neural networks improves with an
increase in data volume [15], but which also easily leads to higher computational costs and
the overfitting of traditional neural networks [16].
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Deep learning, a branch of machine learning, is an algorithm using the artificial
neural networks as an architecture to characterize and learn data [17–21]. The algorithm is
extensively applied in most traditional fields [22–25], and some progress has been made in
the field of agricultural pest prediction in recent years [26]. With the reduction of hardware
costs and the improvement of algorithms, deep learning-based methods will become a
leading research topic for agricultural pest prediction.

Aiming at the prediction of SRSB occurrence in rice, and combining this with ground
meteorological observation data and related pest time sequence data, this paper constructs
a multi-dimensional dynamic probability prediction model based on the use of deep learn-
ing for time series analyses. The model presented in the paper is more applicable than the
traditional pest prediction models and can realize a dynamic timing prediction of pests. The
key works included in the paper are as follows: (1) investigating the relationships between
ground meteorological data, related pests, and SRSB; (2) comparing the performances of
the models using only meteorological variables to that of the models combining meteoro-
logical variables with the time series of related pests; (3) developing a deep learning-based
dynamic probability prediction DeepAR model for the occurrence of SRSB; (4) evaluating
the performance of the DeepAR model using the traditional MLR model and the machine
learning GBDT model.

Our method is expected to lead to an improved method for the management of SRSB
for following reasons:

(1) Our study suggests that combining related pest time series data with the ground
meteorological data can improve the model’s prediction accuracy as compared to
previous studies using only the ground meteorological data;

(2) Combining weather and associated pest time series with deep learning-based DeepAR
models can provide more accurate predictions than the traditional MLR and the
machine learning GBDT. These findings could be utilized to support an integrated
pest management (IPM) program to help farmers reduce the use of pesticides and
minimize crop loss in rice paddy fields.

2. Materials and Methods
2.1. Study Areas

This paper mainly studied the dynamic population change of SRSB in Hunan Province,
China, and the area selection was based on the following considerations:

1. Areas have a high number of insects;
2. Areas have a long history of rice cultivation;
3. Area characteristics can represent different regions in Hunan Province, China.

Based on these, A (Hongjiang), B (Yuangjiang), C (Dong’an), D (Linli), and E (Liling)
were selected as the study areas (Figure 2). Hunan Province belongs to an area with the
most extensive rice farming in China. The selected area has high temperatures and is rainy
in summer and hot at the same time, which is suitable for the occurrence of SRSB.

2.2. Data Collection
2.2.1. Pest Data

The pest data came from the daily records of the rice pest light traps for major insect
pests in the crop monitoring and early warning information system in Hunan Province,
China. Pest species include 11 rice pests (Table 1), such as SRSB, RPH, and PLR. Adult
pests were collected by a light trap set from 18:00 to 6:00 the next day, located in areas
A (2000–2020), B (2000–2020), C (2000–2020), D (2000–2020), and E (2010–2020). Plant
protection workers removed the insects from the traps every morning, and subsequently
identified and counted them.
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Table 1. The main rice pests captured by the light traps.

Number Name Abbreviation Latin Name

0 rice planthopper RPH -
1 paddy leaf roller PLR Cnaphalocrocis medinalis
2 striped rice stem borer SRSB Chilo suppressalis
3 pink sugarcane borer PSB Sesamia grisescens
4 yellow stem borer YSB Scirpophaga incertulas
5 rice green semilooper RGS Naranga diffusa
6 rice plant weevil RPW Echinocnemus squameus
7 rice water weevil RWW Lissorhoptrus oryzophilus
8 gall midge GM Orseoia oryzae
9 paddy armyworm PA Mythimna separata
10 - Other * -

* ‘Other’ is the sum of other species captured by our light traps apart from the rice pests shown (Numbers 0–9).

2.2.2. Meteorological Data

Meteorological data were obtained from the ground daily meteorological data down-
loaded by the National Meteorological Center, spanning the years 2000–2020, including
19 factors such as temperature, precipitation, and sunshine duration; the detailed informa-
tion is shown in Table 2.

2.2.3. Time Features

As pest occurrence is a typical time series problem, it has prominent temporal charac-
teristics. The extraction of the time characteristics of pest data facilitates the construction
of more accurate predictive models. We extracted the time features, including years, sea-
sons, months, weeks, weekdays, and days. Among these were March–May for spring,
June–August for summer, September–November for autumn, and from December to the
following February for winter. The weeks were composed of seven days as one week,
with 52 weeks per year. Weekdays entailed the obtainment of working day information
according to the Gregorian calendar, mainly considering that the acquisition of pest data
required manual recording.

2.2.4. Data Preprocessing

The original pest data had some missing and outlier values. The missing values were
interpolated using the average adjacent position interpolation method. We selected the
five previous and five subsequent effective values of the missing fraction to calculate the
arithmetic mean, and used this arithmetic mean to interpolate the missing part. The outliers



Processes 2021, 9, 2166 5 of 18

were processed using the exponentially weighted averages method, and the exponentially
weighted averages were defined as follows:

yt =
xt + (1− α)xt−1 + (1− α)2xt−2 + · · · · · ·+ (1− α)tx0

1 + (1− α) + (1− α)2 + · · · · · ·+ (1− α)t , (1)

where α is the smoothing factor (α ∈ (0, 1]), yt is the value after t moment smoothing, xt is
the value before t moment smoothing. In this paper, a sliding window with seven days as
a window and one day as a step were established to smooth the pest data.

Table 2. Types and units of meteorological factors.

Number Type Abbreviation Unit Number Type Abbreviation Unit

0 Temperature TEMP ◦C 10 Precipitation PRCP mm

1 Maximum temperature Tmax ◦C 11 Evaporation EVP mm

2 Minimum temperature Tmin ◦C 12 Atmospheric
pressure AP pa

3 Average relative humidity RH % 13
Maximum

atmospheric
pressure

APmax pa

4 Minimum relative humidity RHmin % 14
Minimum

atmospheric
pressure

APmin pa

5 Wind speed WDSP m/s 15 Skin
temperature SKT ◦C

6 Maximum wind speed MXWDSP m/s 16
Maximum

skin
temperature

SKTmax ◦C

7 Maximum wind direction MXWDD 16 direc-
tions 17

Minimum
skin

temperature
SKTmin ◦C

8 Extreme wind speed EXWDSP m/s 18 Sunshine
duration SDD H

9 Extreme wind direction EXWDD 16 direc-
tions

The meteorological data were processed in the same way. There were no meteorologi-
cal stations in some parts of the study area. This paper used meteorological stations near
cities and counties in the study area (Table 3).

Table 3. The study areas and the corresponding meteorological stations.

Number Study Area Meteorological Stations

0 Liling Zhuzhou

1 Hongjiang Zhijiang Dong Autonomous
County

2 Dong’An Lingling
3 Yuanjiang Yuanjiang
4 Linli Shimen

Some time series of related pests contain unique values. Unique values do not help
with model construction. In addition, there is a collinearity relationship among some
variables. Collinearity plays a consistent role in the process of model construction, where
it raises the complexity of the model. Therefore, we removed the unique values and
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excess collinearity variables during the model construction. In this paper, high-quality pest
variables, meteorological variables, and time datasets (Table 4) were constructed, laying
the material basis for the subsequent analysis and prediction.

Table 4. Rice pests, weather, and time datasets.

Weather Variables Time Series of Related Pests Time Features

TEMP EVP RPH Year
RH AP PLR season

RHmin PRCP SRSB month
WDSP EXWDD PSB weeks

MXWDSP EXWDSP YSB -
MXWDD SDD - -
SKTmax - - -

2.3. Methods
2.3.1. Datasets Preparation

To predict the SRSB, weather variables (including TEMP, RH, and PRCP) and the
associated time series of related pests were included as input variables. Furthermore,
the daily SRSB light trap catches were natural log-transformed before analysis to satisfy
the regression hypothesis [27,28]. The SRSB light trap catches were treated as an output
variable in all models and an input variable in the autoregressive model.

The datasets of all variables of crop seasons in E (Liling) from 2010 to 2019, and those
of other study areas from 2000 to 2018 were used as training datasets. E (Liling) training
datasets contained 3726 samples, and other study areas’ training datasets contained 7013
samples. In Liling 2020, the remaining observations from other regions from 2019 to 2020
were used as test datasets to verify the model. We chose data from March to October to
develop the models, as this period was commonly used to plan pest monitoring. All the
details are summarized in Table 5.

Table 5. Details of the data used in model development.

Site Place Input
Variable

Output
Variable

Month
(Yearly)

Training
Data

Testing
Data

A Hongjiang

Weather
variables,

Time series
of related
pests, and

Time
features

Chilo sup-
pressalis
(SRSB)

March to
October

2000 to
2018

2019 to
2020

B Yuanjiang 2000 to
2018

2019 to
2020

C Dong’an 2000 to
2018

2019 to
2020

D Linli 2000 to
2018

2019 to
2020

E Liling 2010 to
2019 2020

2.3.2. Model
Multiple Linear Regression (MLR)

Pearson correlation analysis was used to obtain the relationship between SRSB and
meteorological data, associated pest time series, and time features. Taking the significant
correlation coefficient (R) as the standard, we selected appropriate variables to develop the
linear model of SRSB.

An MLR model using stepwise selection was established in three scenarios: (1) only
meteorological variables were considered to estimate the maximum determination coeffi-
cient of the SRSB (the R square); (2) meteorological variables and time series-related pests
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were combined to estimate the maximum determination coefficient of the SRSB (the R
square); (3) meteorological variables, time series-related pests, and time features were
considered to estimate the maximum determination coefficient of the SRSB (the R square).

MLR is a statistical method of regression for analyzing the relationship of an indi-
vidual dependent variable with two or more independent variables [29], which can be
demonstrated as follows:

y = α0 + α1x1 + α2x2 + · · ·+ αixi · · ·+ αkxk + ε, (2)

Here y is the dependent variable, xi is the independent variable, α0 represents the
intercept, αi is the slope of xi to y, ε is the residual. Stepwise regression can automatically
select the most relevant independent variables when the number of independent variables
is large and where it is noted possible to fit all potential models [30]. We used Python’s
statsmodels library to implement the MLR model.

Gradient Boosting Decision Tree (GBDT)

The GBDT or the Gradient Boosting Decision Tree, an ensemble model of an iterative
decision tree algorithm proposed by Jerome Friedman in 1999, is a representative model of
the ensemble method. GBDT takes the regression tree as a base learner, integrated gradient
boosting algorithm [31].

To train the GBDT model, we used a grid search combined with a 5-fold cross-
validation [32]. The GBDT model was parameter-optimized to obtain the best performing
GBDT model under the current datasets. The training and test datasets contained all
variables (meteorological, related pest, and time features). We selected the model with the
highest R2 as the best GBDT model, calculating and plotting the importance of the input
variables. This model was developed using the LightGBM library of python.

DeepAR Model

DeepAR is a probabilistic prediction method based on auto-regression recurrent neu-
ral networks. The approach solves the prediction problem through deep neural network
learning by combining the appropriate likelihood, using non-linear data transformation
techniques. DeepAR takes advantage of LSTM-based recurrent neural network architec-
ture [33,34]. It also builds on previous deep learning work on time-series data [35–37] to
address the probabilistic prediction problem. Deep networks, allowing for more abstract
data representation through more complex transformations [21], thus generally outperform
shallow and broad neural networks.

DeepAR has the following advantages: First, it performs a probabilistic prediction of
the sample using the Monte Carlo method and can calculate consistent quantile estimates
across all sub-ranges in the predicted range. Secondly, the method does not assume Gaus-
sian noise, but broad likelihood functions can be supported and allow users to select the
parts most suitable for the statistical data properties. Once again, by learning from similar
data, being able to provide predictions from data with little or no history is something that
conventional one-dimensional predictions cannot do. Finally, DeepAR can understand
seasonal behavior and complex dependencies with minimal human intervention [38].

Through the use of the deep learning DeepAR time series prediction model, combining
the time series of related pests, meteorological variables, and time features to predict the
daily capture of SRSB light traps produced training and test datasets that contained all
variables (meteorological, pest, and time).

We used the Gluonts library based on the MXNet framework to build the DeepAR
model of the rice SRSB, selected the negative binomial distribution as the likelihood func-
tion of the DeepAR model; all the other hyperparameters used the default hyperparameters.
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2.3.3. Evaluation Metrics

Multiple metrics can be used to analyze the performance of our prediction, so we
opted to use the top 4 most used metrics for time series forecasting. We used the Coefficient
of Determination (R2), Mean Absolute Error (MAE), Symmetric Mean Absolute Percentage
Error (sMAPE), and Root Mean Square Error (RMSE) to evaluate the prediction model.

Coefficient of Determination (R2)

R2 was used to measure the proportion of various independent variables that in-
dependent variables could explain to judge the explanatory power of the regression
model [39–41].

Suppose that a dataset includes y1, · · · · · · , yn total n observations, the corresponding
model of predicted values is thus f1, · · · · · · , fn. Defining the residual with ei = yi − fi, the
average observed value is calculated as follows:

y = α0 + α1x1 + α2x2 + · · ·+ αixi · · ·+ αkxk + ε, y =
1
n ∑n

i=1 yi, (3)

The total sum of the square can thus be obtained with:

SStot = ∑i(yi − y)2, (4)

The sum of the squares of residuals can be calculated with the following formula:

SSres = ∑i(yi − fi)
2 = ∑i e2

i , (5)

Thus, the determination coefficient can be defined as follows:

R2 = 1− SSres

SStot
, (6)

The R2 usually ranges from 0 to 1. The R2 can be more truthful than sMAPE, MAE,
MAPE, MSE, and RMSE in regression analysis evaluation [42].

Mean Absolute Error (MAE)

MAE refers to the meaning of the distance between the predictive model value fi and
the true value yi of the sample. MAE is calculated as:

MAE =
1
n ∑n

i=1|yi − fi |, (7)

Symmetric Mean Absolute Percentage Error (sMAPE)

sMAPE is an accuracy measure based on percentage (or relative) errors. It is usually
defined as follows:

sMAPE =
100%

n ∑n
i=1

| fi − yi|
(| fi|+|yi|)/2

, (8)

Root Mean Square Error (RMSE)

RMSE is widely used to measure the differences between values predicted by a model
and the values observed. It is defined as follows:

sMRMSE =

√
1
n ∑n

i=1( fi − yi)
2, (9)

In general, lower MAE, sMAPE, and RMSE are better than higher values, and all three
metrics are non-negative. But for the R2, higher is better.
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3. Results
3.1. Relationship between Climatic Variables, Time Series of Related Pests, and Time Features, and
the SRSB Light Trap Catch

The correlation coefficient (R) was calculated between the natural log-transformed
SRSB light trap catch and the selected environmental variables (climatic variables, related
pest, and time features), and the correlation coefficient (R) and sig. (p > |t|) were cal-
culated for five study regions and then averaged (Table 6). Our results show that the
SRSB light trap catch had a significant positive correlation with the RPH light trap catch
(R = 0.458 ± 0.111, p > |t|), and had an extremely significant positive correlation with the
PSB light trap catch (R = 0.271 ± 0.098, p > |t|), but had a significant negative correla-
tion with AP (R= −0.445 ± 0.070, p > |t|) and the season (R = −0.247 ± 0.079, p > |t|).
Meanwhile, it there was some correlation between the SRSB light trap catch and the TEMP,
SDD, and PLR light trap catch, but not significant. Extremely significant and significant
correlation variables were included in the linear and non-linear models to predict SRSB
light trap catches.

3.2. Multiple Linear Regression Prediction

Using a stepwise selected MLR model, we combined meteorological, associated pest,
and time features (Table 7). Coe f is the MLR model coefficient that indicates the contribu-
tion of each variable to the model. std err is the standard error of the coefficient estimation.
t and p > |t| represent the effects of the independent variable on the dependent variable.
The meteorological variable AP was significantly and negatively correlated with the SRSB
light trap catch. Related pest RPH, YSB, and PSB with the light trap catch and the time
variable season were negatively correlated with the SRSB light trap catch.

The use of meteorological variables (Model 1) alone explain approximately 35%
(Adj.R2 = 0.346) of the variability in the SRSB light trap catch; the model based on me-
teorological variables and related pest (Model 2) explains 39.9% (Adj.R2 = 0.399) of the
variability in the SRSB light trap capture; in comparison, a model based on meteorological
variables, associated related pests, and time features (Model 3) could explain 40% (Adj.R2

= 0.400) of the variability in the SRSB light trap catch. The variance inflation factor (VIF)
for all the input variables was less than three, indicating no multiple collinearities among
the variables. The adjusted R2 selected the model combining meteorological variables,
associated pests, and time features (Model 3) as the best model.

According to the results of the stepwise regression shown in Table 7, the prediction
model of the Yuanjiang can be represented using the following regression equation:

ln(SRSB)535.9426 + (−45.5917× AP) + (0.1283× RPH) + (0.4709× PSB) + (2.1272×YSB)+
(−0.005× Season),

(10)

The dependent variable ln(SRSB) indicates the natural logarithm of the SRSB light
trap catch. The independent variables AP, RPH, PSB, YSB, and Season indicate the AP, RPH
light trap catch, PSB light trap catch, YSB light trap catch, and Season, respectively.

The MLR model of the other SRSB light trap catch of the study area was obtained
using the same method, and a summary of the MLR model for the training datasets of each
study area is shown in Table 8. R2 and Adj.R2 represent the MLR fitting accuracy of the
training datasets, and N represents the length of the training datasets. The results show that
in different study regions, stepwise regression selected different independent variables.
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Table 6. Pearson’s correlation coefficient (R) between the natural log-transformed SRSB light trap
catch and its associated pest, meteorological, and time features from March to October in the rice
crop season.

Variable Types External Variables Correlation
Coefficient (R) Sig. (p > |t|)

Related pests

RPH 0.458 ± 0.111 0.008 ± 0.011 *
PLR 0.368 ± 0.068 0.123 ± 0.179
PSB 0.271 ± 0.098 0.000 ± 0.000 **
YSB 0.086 ± 0.029 0.119 ± 0.265

Weather

TEMP 0.449 ± 0.046 0.213 ± 0.374
RH −0.031 ± 0.047 0.048 ± 0.235

RHmin −0.041 ± 0.064 0.082 ± 0.133
WDSP 0.049 ± 0.136 0.052 ± 0.048

MXWDSP 0.161 ± 0.083 0.121 ± 0.131
MXWDD 0.086 ± 0.161 0.335 ± 0.364
EXWDSP 0.175 ± 0.061 0.352 ± 0.355
EXWDD 0.098 ± 0.155 0.334 ± 0.291

SDD 0.282 ± 0.013 0.112 ± 0.174
PRCP 0.091 ± 0.039 0.090 ± 0.121
EVP 0.409 ± 0.033 0.073 ± 0.163
AP −0.445 ± 0.070 0.013 ± 0.029 *
SKT 0.469 ± 0.050 0.208 ±0.209

Time

Weeks 0.112 ± 0.042 0.562 ± 0.264
Month 0.113 ± 0.041 0.477 ± 0.238

Year 0.146 ± 0.087 0.191 ± 0.418
Season −0.247 ± 0.079 0.001 ± 0.001 *

** Extremely significant, * significant.

Table 7. Statistical diagnostics of the stepwise multiple linear regression models (taking the Yuanjiang SRSB as an example).

Model Variables Coef Std Err t p>|t| VIF < 3

Weather
Const. 708.1329 11.604 61.026 0.000

AP −61.3799 1.007 −60.977 0.000 True
N = 7013 R2 = 0.347 Adj.R2 = 0.346

Weather and
related pests
time series

Const. 536.1561 13.543 39.591 0.000
AP −46.4895 1.175 −39.568 0.000 True

RPH 0.1205 0.006 19.113 0.000 True
YSB 2.1725 0.194 11.182 0.000 True
PSB 0.4584 0.043 10.694 0.000 True

N = 7013 R2 = 0.3998 Adj.R2 = 0.399

Weather, time
series of related
pests, and time

features

Const. 535.9426 13.535 39.589 0.000
AP −45.5927 1.210 −37.688 0.000 True

RPH 0.1283 0.007 18.889 0.000 True
YSB 2.1272 0.195 10.924 0.000 True
PSB 0.4709 0.043 10.943 0.000 True

Season −0.0050 0.002 −3.067 0.002 True
N = 7013 R2 = 0.400 Adj.R2 = 0.400

The average coefficient of determination, minimum coefficient of determination, and
maximum coefficient of determination of the MLR model based on the test dataset in
the study areas (Linli, Liling, Yuanjiang, Dong’an, and Hongjiang) are R2

mean = 0.166,
R2

min = 0.083, and R2
max = 0.312, respectively.

3.3. GBDT Model Prediction

Based on the training dataset, the GBDT models from different study regions (Linli,
Liling, Yuanjiang, Dong’an, and Hongjiang) yielded other results (R2 = 0.420, 0.104, 0.639,
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0.509, and 0.564, RMSE = 0.999, 1.799, 0.860, 1.078, and 0.733). Figure 3 shows the GBDT
model input variable’s importance in the natural log conversion ln (SRSB) light trap catch.
The season is the least important input variable in the Yuanjiang GBDT model. Weeks and
Year are the most important input variables in the GBDT model.

Table 8. Summary of the MLR model for the training datasets of each study area.

Variable

Place Yuanjiang (R2 =
0.400, Adj.R2 = 0.400,

N = 7013)

Hongjiang (R2 =
0.379, Adj.R2 = 0.378,

N = 7013)

Dong’an (R2 =
0.398, Adj.R2 =
0.398, N = 7013)

Linli (R2 =
0.257, Adj.R2 =
0.256, N = 7013)

Liling (R2 =
0.359, Adj.R2 =
0.358, N = 3726)

Const. 535.943 2.146 0.425 −0.489 −0.952
TEMP 0 0 0.071 0.494 0.701
RHmin 0 −0.412 0 0 0

AP −45.592 0 0 0 0
RPH 0.128 0.209 0.258 0 0
PSB 0.471 0.759 0 2.123 0.430
YSB 2.127 −0.235 3.359 0.169 3.070
PLR 0 0 0 0.054 0.397

Season −0.005 −0.134 −0.165 −0.159 −0.175
Weeks 0 −0.007 0 0 0
Month 0 0 −0.030 0 0

The average coefficient of determination, minimum coefficient of determination, and
maximum coefficient of determination of the GBDT model based on the test dataset in
the study areas (Linli, Liling, Yuanjiang, Dong’an, and Hongjiang) are R2

mean = 0.500,
R2

min = 0.295, and R2
max = 0.687, respectively.

3.4. DeepAR Model Prediction

DeepAR uses the previous time step value to set the current time step of the model.
These values were available within the regulatory range during training and prediction.
For the prediction range, the training and the forecast values must be distinguished. During
projection, time-series values within the prediction range were not available because these
were the results to be predicted. Therefore, the samples from the likelihood function (whose
parameters were predicted in the previous step) were used as the input values for the
current time step.
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Figure 4 shows the learning process of the DeepAR model [43], with the training
process on the left and the prediction process on the right. After the training, the historical
data t < t0 were entered into the network to obtain the predicted initial hidden state
hi,t0−1t0, and then the prediction results were obtained using ancestral sampling. More
specifically, at each time step, t0, t0 + 1, · · · , T could be randomly sampled to get zi,t, the
zi,t as a partial input for the next time step. In this way, a series of all sampling values from
t0 to T could be obtained on the time scale, and these sampling values could then be used
to calculate the required target value.
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The average coefficient of determination, minimum coefficient of determination, and
maximum coefficient of determination of the DeepAR model based on the test dataset
in the study areas (Linli, Liling, Yuanjiang, Dong’an, and Hongjiang) are R2

mean = 0.952,
R2

min = 0.945, and R2
max = 0.958, respectively.

3.5. MLR, GBDT, and DeepAR Model Validation and Performance Comparison

Figure 5 compares the true and predicted values of the test datasets of the rice SRSB
light trap capture after natural log transformation (ln) in different study regions under
different models (traditional MLR model, machine learning GBDT, and deep learning
DeepAR model).

We found that for all study regions, the MLR model could not correctly fit the actual
values. Even negative predicted values were obtained for some periods (for example, in
Hongjiang from December 2019 to January 2020), which have a large gap with the actual
value. The GBDT model had good prediction results, although the prediction values in
Hongjiang and Yuanjiang still could not accurately fit the actual values. However, the trend
of the SRSB light trap catch was correctly reflected. It showed the upward and downward
movement of the SRSB light trap catch in some periods (for example, in Hongjiang from
April 2019 to October 2020, and in Yuanjiang from April 2019 to October 2020). The DeepAR
model had the best predictions, and actual values could be accurately fitted in all study
regions and periods.

The results show that the deep learning DeepAR model produced good predictions for
all sites as compared to the traditional MLR model and the machine learning GBDT model.
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Figure 5. Predicted results of the SRSB light trap catches from the test datasets using the MLR, GBDT,
and DeepAR models.

Figure 6 shows the comparison between the light trap catch of natural log-transformed
SRSB populations as predicted by the MLR, GBDT, and DeepAR models, respectively.
Compared to R2 and RMSE, DeepAR models produced more accurate predictions than the
MLR and GBDT models, and the GBDT was more accurate than the MLR. The R2 values
for DeepAR, GBDT, and MLR were 0.944–0.960, 0.295–0.687, and 0.083–0.312, respectively,
and the RMSE values were 0.228–0.425, 0.733–1.271, and 1.158–1.576, respectively.
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Figure 6. Actual versus predicted natural log-transformed ln (SRSB) in (a) Hongjiang, (b) Yuanjiang, (c) Dong’an, (d) Linli,
and (e) Liling.

Figure 7 shows the performance of MLR, GBDT, and DeepAR in evaluating the
indicators MAE, RMSE, sMAPE, and R2 in different study areas. We found that the
MLR model showed the worst performance in the SRSB light trap catches in Hongjiang,
Yuanjiang, Dong’an, and Linli. The Liling GBDT model had the worst performance,
probably the smallest sample of the datasets (compared to other study regions). The
DeepAR model (MAE, RMSE, sMAPE, and R2 were 0.125–0.245, 0.228–0.425, 0.360–0.657,
and 0.945–0.959, respectively) had the best performance in all areas, outperforming the MLR
(MAE, RMSE, sMAPE, and R2 were 0.856–1.297, 1.158–1.576, 0.808–1.414, and 0.083–0.312,
respectively) and the GBDT (MAE, RMSE, sMAPE, and R2 were 0.494–0.981, 0.733–1.271,
0.003–1.296, and 0.295–0.687, respectively) models in terms of stability and accuracy.

In conclusion, it is feasible to predict the SRSB light trap catch using the deep learning
DeepAR model.
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4. Discussion

Predicting pest populations helps specify pest management strategies, reduce the use
of pesticides, and is an integral part of the successful implementation of IPM. For pest
prediction models, weather variables such as temperature, humidity, rainfall, and sunshine
duration are often used as abiotic predictors in model development [8–13,26]. We found
that TEMP [1,7], RH, and SDD were positively associated with the SRSB light trap catch,
while AP and PRCP were negatively associated with the SRSB light trap catch. WDSP, EVP,
and MXWDSP were also associated with the SRSB light trap catch. Generally, when WDSP,
EVP, and MXWDSP are moderate, the amount of SRSB is the highest.

The rice light trap was used to capture rice pests in order to study the relationship
between them. We found a significant positive correlation between SRSB and RPH, and a
highly significant positive correlation between SRSB and PSB. This indicates an interactional
relationship between rice pests, which could be used to predict some areas with little or
even no historical pest data, especially for migratory pests such as the Spodoptera odorata.

The stepwise multivariate regression model established in this study showed that
the model which combined meteorological variables, associated pests, and time features
(adjusted R2 = 0.400) was more accurate than the model using meteorological variables
alone (adjusted R2 = 0.346).
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The GBDT model is a suitable choice for predicting pest occurrence. Our study
showed that the GBDT model produced more accurate pest predictions than the MLR
model. The deep learning DeepAR model obtained the best predictions, probably because
of the extended data cycles we used, and deep learning is known to perform well with
large samples. Our study showed that the deep learning DeepAR model predicted the
natural log-transformed SRSB light trap catch with an average accuracy of 95.2% (the
average prediction accuracy of the MLR model was 16.6%, and that of the GBDT model
was 50.0%), which has a good application value. Since the rice field is an open environment,
the factors driving the growth of the SRSB population are variable. In addition to weather
and pest-related factors, rice growth phenology, natural enemies, rice varieties, pest pre-
vention, control information, and even farmer practices may affect population dynamics.
The observed and predicted kurtosis differences in SRSB may be due to seasonality and
changes in the surrounding environment. Rice-related pest factors with a larger area can
be considered in future work.

5. Conclusions

In this study, we presented a prediction model for SRSB population occurrence in
the Hunan Province of China by integrating time series variables of ground weather,
the number of related pests captured by light traps, and the number of SRSB captured
by light traps. The MLR, GBDT, and DeepAR models were constructed based on the
abovementioned variables. MLR was used to study the predictive power of meteorological
variables alone or combined with related pest and time variables. At the same time, the
GBDT and DeepAR models were established to enhance the model prediction performance
compared to MLR.

Based on the high correlation coefficient of the MLR model, the main features of the
MLR model for the SRSB captured by the light trap in the research areas were selected as
follows: Yuanjiang made use of AP, RPH, PSB, YSB, and Season; Hongjiang used RHmin,
RPH, PSB, YSB, and Season; Dong’an used TEMP, RPH, YSB, and Season; Linli used
TEMP, PSB, YSB, PLR, and Season; Liling used TEMP, PSB, YSB, PLR, and Season. The
GBDT model performed better than the MLR model in four regions (Hongjiang, Yuanjiang,
Dong’an, and Linli), and DeepAR performed better than MLR and GBDT in all areas.

In conclusion, deep learning-based DeepAR models can dynamically predict SRSB
populations combined with the ground meteorological variables, associated pest variables,
and pest variable-derived time variables, which can be applied to the timely management
of crop pests after proper validation in different regions. We anticipate that these results can
cooperate with an online rice pest monitoring and intelligent prediction system developed
by the Hunan Provincial Department of Agriculture to support an effective early pest
warning system.
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