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Abstract: We investigated the extent of the heritability underestimation for molecules from an in-
finitesimal model in mixed model analysis. To this end, we estimated the heritability of transcription,
ribosome occupancy, and translation in lymphoblastoid cell lines from Yoruba individuals. Upon
considering all genome-wide nucleotide variants, a considerable underestimation in heritability was
observed for mRNA transcription (−0.52), ribosome occupancy (−0.48), and protein abundance
(−0.47). We employed a mixed model with an optimal number of nucleotide variants, which maxi-
mized heritability, and identified two novel expression quantitative trait loci (eQTLs; p < 1.0 × 10−5):
rs11016815 on chromosome 10 that influences the transcription of SCP2, a trans-eGene on chromo-
some 1—whose expression increases in response to MGMT downregulation-induced apoptosis, the
cis-eGene of rs11016815—and rs1041872 on chromosome 11 that influences the ribosome occupancy
of CCDC25 on chromosome 8 and whose cis-eGene encodes ZNF215, a transcription factor that
potentially regulates the translation speed of CCDC25. Our results suggest that an optimal number
of nucleotide variants should be used in a mixed model analysis to accurately estimate heritability
and identify eQTLs. Moreover, a heterogeneous covariance structure based on gene identity and the
molecular layers of the gene expression process should be constructed to better explain polygenic
effects and reduce errors in identifying eQTLs.

Keywords: expression quantitative trait locus; gene regulation; heritability; MGMT; mixed model;
protein abundance; ribosome occupancy; ZNF215

1. Introduction

Gene expression is a critical process that links genetic information to phenotypes.
Nucleotide sequence variants that are associated with gene expression are called expres-
sion quantitative trait loci (eQTLs), and genome-wide eQTL analyses help to dissect the
genetic mechanism underlying gene regulation by generating cis- and trans-eQTL profiles
for a gene [1]. A substantial proportion of gene expression variation was attributed to
eQTLs [2,3]. The eQTLs were heterogeneous by ethnic groups [2], which indicates potential
spurious genetic associations produced by the population structure [4]. Moreover, the
polygenic effects of gene expression have been largely observed [3], and a great concern for
the accuracy of eQTLs was raised by ignoring polygenic effects in the eQTL analyses [5].
Both the population structure and polygenic effects can be explained in the genome-wide
analysis by a mixed model, which reduces false positive and negative eQTLs [6]. The
mixed model uses a genomic covariance structure among individuals to explain random
polygenic effects; thus, the polygenic effects in the analytical model reflect all the variants
across the genome simultaneously [5]. For a mixed model analysis with pedigree informa-
tion, an infinitesimal model is conventionally assumed [7,8]; however, the assumption that
gene expression is regulated by all genetic variants is unrealistic, especially when applied
to every gene. This concern was raised in a simulation study, wherein the infinitesimal
model led to an underestimation of heritability [9]. This was a consequence of the inclusion
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of an excessive number of non-effective variants, which include the regulatory sequences
for genes not expressed in a specific cell. Moreover, non-effective variants can be hetero-
geneous with respect to the molecular layers of gene expression, namely transcription,
ribosome occupancy, and translation.

In this study, we aimed to examine the extent of the underestimation of heritability
of gene expression under the infinitesimal model using a mixed model and to assess the
heterogeneity of heritability across the different molecular layers of the gene expression pro-
cess. This study illustrates, for the first time, false-negative eQTLs with an underestimated
heritability of gene expression by employing an infinitesimal model. Our results indicate
the need for the construction of an optimal genomic covariance structure for genome-wide
eQTL analyses.

2. Materials and Methods
2.1. Expression and Genotype Data

To estimate the heritability of mRNA transcription, ribosome occupancy, and protein
abundance, we used gene expression data from lymphoblastoid cell lines derived from
unrelated Yoruba individuals from Ibadan, Nigeria [10,11]. The expression levels of the
mRNA transcript and the ribosome occupancy were quantified as a logarithm of read
counts per kilobase per million mapped reads of each gene for each individual using the
Illumina Genome Analyzer 2 platform [10] and an Illumina HiSeq 2500 [11], respectively.
The protein abundance level was quantified as a logarithm of ratio to the stable isotope
labeling by amino acids in cell culture (SILAC) internal standard sample of each gene
for each individual using protein mass spectrometry [11]. The expression data were stan-
dardized and quantile-normalized for each molecular layer of each gene to fit a standard
normal distribution. This study used the expression data of 2246 genes that are commonly
available for mRNA transcription, ribosome occupancy, and protein abundance.

The genotype data of the Yoruba individuals were obtained from the 1000 Genomes
Project Phase 3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/, accessed
on 15 May 2018). After filtering out nucleotide sequence variants using the Hardy–
Weinberg disequilibrium criteria (p < 1.0 × 10–6) and a minor allele frequency <0.1, the
genotype data of 5,594,467 variants remained. Finally, the heritability was estimated us-
ing 63, 62, and 51 individuals for mRNA transcription, ribosome occupancy, and protein
abundance, respectively.

2.2. Statistical Analysis

We employed a mixed model to estimate heritability as follows:

y = g + ε

where y is the vector for gene expression levels for mRNA transcription, ribosome occupancy,
or protein abundance, g is the vector for random polygenic effects with g ∼ N

(
0, Aσ2

g

)
, and

ε is the vector for random residuals with ε ∼ N
(
0, Iσ2

ε

)
. σ2

g is the polygenic variance
component, and σ2

ε is the environmental variance component. A is the genomic similarity
matrix (GSM), and I is the identity matrix. The GSM has elements of pairwise genomic
similarity coefficients estimated using sequence variants, all or a part of them with a
significance threshold ranging from 1.0 × 10−6 to 5.0 × 10−2. The genomic similarity
coefficient between individuals j and k was calculated as follows:

gjk =
1

nv

nv

∑
i=1

(
τij − 2 fi

)
(τik − 2 fi)

2 fi(1− fi)

where nv is the number of nucleotide variants that contribute to the genomic similarity, τij
and τik represent the number (0, 1, or 2) of minor alleles for the nucleotide variant i, and fi
is the frequency of the minor allele.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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The variance components of σ2
g and σ2

ε were estimated using the AI-REML algorithm,

and the heritability was calculated as
σ2

g

σ2
g+σ2

ε
. All estimates were obtained using Genome-

wide Complex Trait Analysis (GCTA, v1.26; http://cnsgenomics.com/software/gcta/,
accessed on 10 July 2018).

An optimal GSM for mRNA transcription, ribosome occupancy, and protein abun-
dance was proposed to maximize heritability. A mixed model analysis with the optimal
GSM was conducted to identify novel eQTLs that were not identified with the conventional
GSM that considered all the nucleotide variants. We identified eQTLs using the following
analytical model including random polygenic effects with GSM:

y = µ1 + xβ + g + ε

where µ is the overall mean, 1 is the vector of 1′s, β is the fixed minor allele effect of the
nucleotide variant to be tested for association, and x is the vector with elements of 0, 1,
and 2 for the homozygote of the major allele, the heterozygote, and the homozygote of
the minor allele, respectively. The vectors of random variables (y, g, and ε) are the same
as above. The eQTL analysis was conducted with optimal and conventional GSMs, and
eQTLs. Thus, the two different definitions of g are as follows: go ∼ N

(
0, Aoσ2

g

)
and

gc ∼ N
(

0, Acσ2
g

)
, where Ao is the optimal GSM, and Ac is the conventional GSM. When

the optimal GSM was calculated, we included the nucleotide variants with eQTLs that were
proposed to maximize the heritability of each molecular layer of the expression process. On
the other hand, the conventional GSM considered all the nucleotide variants. However, on
the construction of the GSM for both analyses, we excluded all the nucleotide variants on a
chromosome where the candidate eQTL to be tested was located. This helped avoid the
underestimation of the eQTL effect and reduce false negatives. The variance components
were estimated using the AI-REML algorithm, and the allele effect was then estimated
and tested.

3. Results

The heritability of gene expression was estimated by considering eQTLs with var-
ious significance thresholds for mRNA transcription, ribosome occupancy, and protein
abundance, and their average values are presented in Figure 1. The maximum estimate of
heritability was approximately 1 (0.99) for each molecular layer examined. The maximum
value resulted from the analysis wherein GSM was calculated by considering eQTLs with
p < 6.0 × 10−4, p < 1.0 × 10−3, and p < 1.0 × 10−3 for mRNA transcription, ribosome
occupancy, and protein abundance, respectively. Additionally, including all the variants
in the analysis resulted in smaller values of heritability of 0.47, 0.51, and 0.52 for mRNA
transcription, ribosome occupancy, and protein abundance, respectively (Figure 1).

We compared the heritability of mRNA transcription, ribosome occupancy, and protein
abundance and found that the heritability of protein abundance was higher than that for
mRNA transcription when the significance threshold was 1.0 × 10−5 or less. On the
contrary, this difference was smaller when a larger significance threshold (2.0 × 10−5

to 1.0 × 10−3) was used. The minimum difference between the heritability of mRNA
transcription and that of protein abundance was observed at a significance threshold
of 5.0 × 10−6, while the maximum difference was noted at a significance threshold of
9.6 × 10−5 (Table 1). The number of protein abundance eQTLs (pQTLs) was larger than
and lower than that of narrow-sense eQTLs (neQTLs), at the minimum and the maximum
differences, respectively. However, the average proportion explained by one pQTL was
larger than that explained by one neQTL, regardless of the significance threshold values.

http://cnsgenomics.com/software/gcta/
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Figure 1. The heritability of mRNA transcription, ribosome occupancy, and protein abundance ac-
cording to different significance thresholds of quantitative trait loci. Δne, Δr, and Δp represent the 
differences between the maximum heritability and the heritability considering all the variants across 
the genome for mRNA transcription, ribosome occupancy, and protein abundance, respectively. 

We compared the heritability of mRNA transcription, ribosome occupancy, and pro-
tein abundance and found that the heritability of protein abundance was higher than that 
for mRNA transcription when the significance threshold was 1.0 × 10−5 or less. On the 
contrary, this difference was smaller when a larger significance threshold (2.0 × 10−5 to 1.0 
× 10−3) was used. The minimum difference between the heritability of mRNA transcription 
and that of protein abundance was observed at a significance threshold of 5.0 × 10−6, while 
the maximum difference was noted at a significance threshold of 9.6 × 10−5 (Table 1). The 
number of protein abundance eQTLs (pQTLs) was larger than and lower than that of nar-
row-sense eQTLs (neQTLs), at the minimum and the maximum differences, respectively. 
However, the average proportion explained by one pQTL was larger than that explained 
by one neQTL, regardless of the significance threshold values. 

Table 1. The characteristics at the minimum and maximum differences in heritability between 
mRNA transcription and protein abundance, explained by expression quantitative trait loci 
(eQTLs). 

 Features mRNA Transcription 
(A) 

Protein Abundance 
(B) 

Difference 
(A-B) p-Value 𝑑௠௜௡ * h2  0.477 0.525 −0.048 1.06 × 10−6 

 No. of eQTLs 13.9 16.9 −3.0 2.82 × 10−1 
 h2/No. of eQTLs 0.221 0.281 −0.060 1.48 × 10−5 𝑑௠௔௫ * h2  0.801 0.699 0.102 1.32 × 10−156 
 No. of eQTLs 138.2 75.6 62.6 9.56 × 10−46 
 h2/No. of eQTLs 0.011 0.044 −0.033 4.80 × 10−151 

* 𝑑௠௜௡ and 𝑑௠௔௫ indicate the minimum and maximum h2 differences between mRNA transcrip-
tion and protein abundance. 𝑑௠௜௡(𝑑௠௔௫) were observed when eQTLs with p < 5.0 × 10−6 (p < 9.6 × 
10−5) were considered for constructing the genomic similarity matrix. h2, heritability; eQTL, expres-
sion quantitative trait locus. 

When we employed the GSM that resulted in the maximum heritability of gene ex-
pression, two novel eQTLs, rs11016815 (neQTL) and rs1041872 (ribosome occupancy 
eQTL; rQTL), were identified for SCP2 and CCDC25 (Table 2, p < 1.0 × 10−5). These are both 
trans-acting eQTLs. 

  

Figure 1. The heritability of mRNA transcription, ribosome occupancy, and protein abundance
according to different significance thresholds of quantitative trait loci. ∆ne, ∆r, and ∆p represent the
differences between the maximum heritability and the heritability considering all the variants across
the genome for mRNA transcription, ribosome occupancy, and protein abundance, respectively.

Table 1. The characteristics at the minimum and maximum differences in heritability between mRNA
transcription and protein abundance, explained by expression quantitative trait loci (eQTLs).

Features
mRNA

Transcription
(A)

Protein
Abundance

(B)

Difference
(A-B) p-Value

dmin ∗ h2 0.477 0.525 −0.048 1.06 × 10−6

No. of eQTLs 13.9 16.9 −3.0 2.82 × 10−1

h2/No. of eQTLs 0.221 0.281 −0.060 1.48 × 10−5

dmax ∗ h2 0.801 0.699 0.102 1.32 × 10−156

No. of eQTLs 138.2 75.6 62.6 9.56 × 10−46

h2/No. of eQTLs 0.011 0.044 −0.033 4.80 × 10−151

* dmin and dmax indicate the minimum and maximum h2 differences between mRNA transcription and protein
abundance. dmin(dmax) were observed when eQTLs with p < 5.0 × 10−6 (p < 9.6 × 10−5) were considered for
constructing the genomic similarity matrix. h2, heritability; eQTL, expression quantitative trait locus.

When we employed the GSM that resulted in the maximum heritability of gene
expression, two novel eQTLs, rs11016815 (neQTL) and rs1041872 (ribosome occupancy
eQTL; rQTL), were identified for SCP2 and CCDC25 (Table 2, p < 1.0 × 10−5). These are
both trans-acting eQTLs.

Table 2. Novel expression quantitative trait loci (eQTLs) resulted from a mixed model analysis
employing the proposed genome similarity matrix *.

eQTL
Type SNP Position § Allele ¶ MAF eGene

(Chr)
cis/trans

Regulation

Significance w/ ‡

Conventional
GSM

Optimal
GSM

neQTL rs11016815 10;
129502351 G/C 0.1032 SCP2

(1) trans 2.84 × 10−3 2.98 × 10−6

rQTL rs1041872 11;
6979775 G/A 0.1048 CCDC25

(8) trans 3.40 × 10−3 9.46 × 10−6

* The nucleotide sequence variants with p < 1.0 × 10–5 are presented. ‡ The conventional GSM was estimated
using 5,594,467 nucleotide variants across the genome. The optimal GSM was estimated considering eQTLs
with p < 6.0 × 10−4 and p < 1.0 × 10−4 for mRNA transcription and ribosome occupancy, respectively. § The
chromosomal position (Chr; bp) was obtained from the GRCh38 reference genome. ¶ Major/minor allele. GSM,
genomic similarity matrix; SNP, single nucleotide polymorphism; MAF, minor allele frequency; eQTL, expression
quantitative trait locus; rQTL, ribosome occupancy eQTL; neQTL, narrow-sense eQTL.

4. Discussion

This study showed the gene expression heritability explained by eQTLs, considered
for the polygenic covariance structure among individuals in a mixed model framework.
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As expected, we found that the heritability estimates increased as the number of signif-
icant eQTLs increased. The heritability estimates were, however, underestimated when
all the genome-wide nucleotide variants were included in the analysis. Polygenic effects
might be diluted with the undesirable covariance structure reflecting non-effective eQTLs.
As a result, the heritability was underestimated. The heritability was maximum when
eQTLs with p < 6.0 × 10−4, p < 1.0 × 10−3, and p < 1.0 × 10−3 were considered for mRNA
transcription, ribosome occupancy, and protein abundance, respectively. The maximum
estimates were almost equivalent to one (>0.99), indicating that the considered eQTLs
almost fully explained the variability in gene expression. A considerable reduction in heri-
tability (∆ne = −0.52, ∆r = −0.48, and ∆p = −0.47) was found by including the nucleotide
variants across the whole genome. This underestimation concurred with a previous study
in which such an underestimation was also found in the heritability explained by QTLs
for phenotypes [9]. However, the enormous underestimation for the gene expression may
not be negligible in contrast to the underestimation for phenotypes (e.g., ∆ = −0.02 for
hypertension). The assumption that gene expression variability is a consequence of all
genetic variants should be avoided. Our results suggest that an optimal GSM should be
employed for the mixed model analysis of eQTLs.

Moreover, an optimal GSM customized for each molecular layer of the expression
process should be used to account for heterogeneous polygenic effects, even though the
same gene is being analyzed across the different molecular layers. As shown above, a
larger underestimation was found for mRNA transcription compared to that for ribosome
occupancy and protein abundance. Correspondingly, the number of eQTLs considered
in constructing the GSM for mRNA transcription (1242 neQTLs) was smaller than that
for ribosome occupancy (1604 rQTLs) and protein abundance (1540 pQTLs). The use of a
GSM heterogenous across molecular layers is critical for genes that are heavily controlled
at some specific step(s) in gene expression. For example, the gene expression of ribosomal
proteins is mainly controlled by pQTLs during translation in response to the instantaneous
changes in the cell environment [12].

The current study revealed two novel eQTLs using the optimal GSM in mixed model
analysis. This indicates that false negatives were produced as a result of a diluted genomic
background, wherein polygenic effects were confounded by the presence of non-effective
variants in an infinitesimal model. This indicates that the underestimated polygenic
variance components lead to the identification of inaccurate individual eQTL effects across
the genome.

The novel eQTLs were identified as trans-acting neQTLs and rQTLs of the SCP2 and
CCDC25 genes. They are both intragenic variants (rs11016815 and rs1041872) in the MGMT
and ZNF215 genes, respectively. The MGMT might be a cis-eGene of the rs11016815, which
was supported by previous studies in which this variant has been found to be associated
with the transcription levels of MGMT in the blood (p = 5.4 × 10−11; [13]) and pancreas
(p = 2.8 × 10−7; GTEx Consortium, 2020) [14]. A potential influence of MGMT on the
SCP2 gene expression is suspected. This is because MGMT can repair damaged guanine
nucleotides and prevent apoptosis [15], and the SCP2 gene increases lipid transfer during
apoptosis [16]. The evidence that ZNF215 might be a cis-eGene of rs1041872 arises from
their association (p = 7.2 × 10−6) in the GTEx Consortium [14]. Because the functions of
ZNF215 are relatively unknown [17], it is difficult to infer the functional influence on the
CCDC25 gene [18]. However, it is highly likely that ZNF215 functions as a transcription
factor because this zinc finger protein has motifs that commonly exist in transcription
factors. Its C2H2 zinc finger motif can interact directly with DNA, and this is the most
common characteristic of transcription factors in humans [19]. Its KRAB region can bind to
the KAP1 co-repressor as a transcription repressor domain [20]. Moreover, a study observed
that ZNF215 was transported to the nucleus using GFP fusion proteins [21]. We suspect
that ZNF215 acts as a cis-eGene of rs1041872 and might be involved in trans-regulating the
speed of the translational elongation of the CCDC25 gene.
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5. Conclusions

This study demonstrated the inaccurate identification of eQTLs produced by em-
ploying a GSM under the infinitesimal model and that an optimal GSM was critical for
accurate eQTL mapping. We suggest that an optimal GSM should be constructed based
on the different molecular layers of gene expression as well as the identity of the gene.
More accurate eQTL profiles would help understand the genetics of complex diseases and
ultimately contribute to precision medicine.
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