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Abstract: This paper studies the dynamics of a two-stage gear transmission system in both the
normal state and the fault state with tooth breakage. The torsional vibration model of the two-stage
parallel shaft gear was developed by using the lumped parameter method. The time-varying mesh-
ing stiffness of the gear transmission system is described by Fourier series which is determined by
the periodical meshing characteristics of the gears with both the single-tooth and the double-tooth
contacts. By introducing the pulse into the regular time-varying meshing stiffness, the tooth breakage
existing in the gear transmission system is mimicked. Based on the numerical simulation of the
developed dynamic model, both the time domain analysis and the frequency domain analysis of the
gear transmission system under both the normal condition and the tooth breakage are compared
accordingly. The influence of the tooth breakage on the dynamic characteristics of the gear trans-
mission system is analyzed comprehensively. Furthermore, based on the developed test bench of a
two-stage gear transmission system, the experimental research was carried out, and the experimental
results show great agreements with the results of numerical simulation, and thus the validity of the
developed mathematical model is demonstrated. By comparing the periodic motion with the chaotic
motion, the fault identification for the gear transmission system is verified to be tightly related to its
vibration condition, and the control of the vibration condition of the gear transmission system as
periodic motion is of great significance to the fault diagnosis.

Keywords: gear transmission system; nonlinear dynamics; tooth breakage; experiment

1. Introduction

The gear transmission system is a key component of wind turbines, aircraft engines
and other equipment. The gear transmission system usually works in a high-load, high-
speed operating state for a long period, under such a circumstance, gears are easily dam-
aged under the interaction between the fatigue loads and other random factors. Once
the gear fails, the transmission system is affected immediately, and thus the safety of the
equipment, which can even trigger serious safety accidents and major property losses.
Therefore, the research of the vibration characteristics of the gear transmission system is
carried out to quickly and accurately identify the faults in the gearbox, which is essential
to ensure the stable operation of the gear transmission system.

The gear transmission system transmits power and movement through the meshing
of gear pairs, which includes a series of nonlinear factors during the meshing process:
time-varying meshing stiffness, meshing error, meshing phase of different tooth pairs,
tooth side clearance, friction and wear, etc. [1]. As the first step, the developed model
was a linear time-invariant model; specifically, the time-varying meshing stiffness was
replaced by the average stiffness, and the internal excitation caused by the time-varying
meshing stiffness was ignored, as well as the mutual influence and internal excitation
during multi-tooth meshing were also ignored. Kahraman [2] proposed a dynamic torsion
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model of single-stage planetary gear transmission. Wang et al. [3] established a torsion
model of 2K-H uniformly distributed planetary gear transmission. Aiming at studying the
error excitation, Yuan [4] established a multi-degree-of-freedom model of the planetary
reducer, derived the dynamic differential equation of the vibration system, and analyzed
the interaction influences of the meshing stiffness of the gear pair and the excitation of the
meshing error. Vinayak et al. [5] studied the influence of meshing error on the dynamics of
the single-stage gear system. Sun [6] analyzed a closed planetary gear transmission system.
Wang [7] studied the dynamic characteristics of a gear system by considering the time-
varying stiffness of gear teeth and the static transfer error excitation by using the multi-scale
method. Liu et al. [8] established a single-stage gear system whose clearance is a piecewise
linear function and studied the influence of system parameter on the nonlinear behavior of
the system. Kahraman et al. [9] studied nonlinear factors fora spur gear pair and received
the internal excitation of the gear. Ji [10] established a two-stage gear transmission system
considering multiple nonlinear factors. In addition, Sun et al. [11,12] constructed a multi-
degree-of-freedom nonlinear torsional vibration model of a planetary gear transmission
system, and their study found that the increase of the gear gap will affect the meshing state
of the gear pair. Tian [13] used the time-varying meshing stiffness as input excitation to
obtain the dynamic responses of the gear transmission system. Zhou [14] comprehensively
analyzed the influence of the machining error, assembly error, gear meshing time-varying
stiffness and clearance of each part on the uniform load performance of the planetary
gear. Qian et al. [15] used Lagrangian equations to establish a 2K-H planetary gear train
translation-torsional coupling vibration model, while Zhu [16] established a 2K-H planetary
gear translation-torsional coupling vibration model that considered friction, time-varying
meshing stiffness, tooth backlash and comprehensive meshing error.

However, in the actual operation of the gear transmission system, various faults are
always unavoidable, which affect the stable operation of the gear transmission system.
Thus, it is necessary to study the mechanism of failure and its impacts on the gear trans-
mission system. A large number of scholars have conducted studies on the dynamics
of gear transmission systems with various faults. Choy et al. [17] conducted numerical
and experimental research on gear transmission systems with tooth surface pitting, wear
and partial tooth-breaking faults. An et al. [18] used ANSYS to simulate the influence of
tooth surface pitting and spalling on the meshing stiffness of the system, and the results
showed that these faults reduced the meshing stiffness. Kang and Lin [19] studied the
influence of the surface wear of spur gears on the change of the frequency spectrum. Chari
et al. [20,21] considered the effect of gear cracks on the meshing stiffness, and compared
the differences between the normal and the faulty conditions in both the time domain and
the frequency domain. Panrey et al. [22,23] established a dynamic model with multiple
faults, and analyzed the corresponding response signals. Wang et al. [24,25] developed a
single-stage gear model for shock analysis. Ning et al. [26] studied the effect of tooth root
cracks. Wu et al. [27] discussed the effect of crack degree on gear meshing stiffness and
analyzed the evolution mechanism of cracks. Zhang et al. [28] conducted corresponding
research on the gear dynamic model with fatigue cracks, and the results showed that the
greater the load of the gearbox, the more obvious the fault characteristics. Su et al. [29]
found that the gear speed and tooth surface friction factor played a major role in the
influence of the vibration of gear transmission system. Wang et al. [30] studied the crack
propagation of spur gears and the effect of crack propagation on the time-varying meshing
stiffness. Wang et al. [31] studied the nonlinear dynamic characteristics of a single-stage
gear system with wear faults. Gao et al. [32] found that the gear system’s transmission
error, vibration shock state and vibration severity varied with the degree of wear on tooth
surface. For the feature extraction of rolling bearing faults, based on variational modal
decomposition and singular value decomposition, Liu et al. [33] proposed a method to
accurately extract fault features from vibration signals. Li et al. [34] used empirical wavelet
transform to extract the modulation components in the frequency spectrum of rubbing
fault signal. Yuan et al. [35] used the Hidden Markov model to diagnose multiple types
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of faults for gearbox shaft. Zhu and Feng et al. [36] used an improved empirical wavelet
transform method, combining empirical mode decomposition and wavelet transform, to
successfully realize the demodulation of vibration signals. Xu et al. [37] proposed a wavelet
correlation filtering method based on the characteristics of wavelet correlation filtering,
combined with envelope spectrum analysis, and successfully achieved the extraction of
early fault information of gearbox bearings under the influence of strong background noise.
Zhang et al. [38] combined multifractal and approximate entropy, and used subtractive
clustering and fuzzy C-means clustering to process vibration signals and successfully
extracted gearbox fault features. Munro [39] discovered the phenomenon of amplitude
jumping, multiple solutions, and irregular motion (chaotic motion) in the gear system in ex-
perimental research. Kahraman [40] found the abundant nonlinear phenomena of the gear
transmission system through a self-designed test rig. Via the comparison of experiments
and finite element methods, Kubur [41] found a number of factors that have important
effects on the dynamic responses of the gear transmission system.

Based on the aforementioned literature review, in order to study the nonlinear vi-
bration characteristics and fault mechanism of the gear transmission system, this paper
combines the theoretical modeling and the experimental testing, and introduces the fault
feature into the dynamic model of the gear transmission system, and analyzes its nonlinear
dynamic characteristics. This is beneficial for better understanding the operation state of
the gear transmission system, realizing the early fault prediction and identification for the
transmission system.

2. Mathematical Modeling

A two-stage gear transmission system consists of two pairs of meshing gears, all
of which are spur gears. Ignoring the lateral vibration between the gears, the torsional
vibration model of the two-stage gear transmission system is shown in Figure 1. Specifically,
kz12 and kz34 represent the meshing stiffness for gear 1 and gear 2, gear 3 and gear 4,
respectively; cz12 and cz34 represent the meshing damping for gear 1 and gear 2, gear 3 and
gear 4, respectively; ez12 and ez34 represent the meshing errors for gear 1 and gear 2, gear 3
and gear 4, respectively; θi (i = 1, 2, 3, 4) represents the torsion angular displacement for
each gear.
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2.1. Dynamic Model

The lumped parameter method is used to develop the dynamic model of the two-stage
gear transmission system based on the consideration of time-varying meshing stiffness,
comprehensive meshing error, and tooth side clearance as

J1
..
θ1 + r1Fz12 = Tin

J23
..
θ2 − r2Fz12 + r3Fz34 = 0

J4
..
θ4 − r4Fz34 = −Tout

(1)
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where Ji (i = 12,34) is the moment of inertia for gear; Fz12 and Fz34 are the meshing forces for
gear 1 and gear 2, gear 3 and gear 4, respectively; x12 and x34 are the relative displacements
on the meshing lines of each gear. Specifically

F12 = k12 f (x12)− c12
.
x12, F34 = k34 f (x34)− c34

.
x34, x12 = rz1θz1 − rz2θz2 − e12(t), x34 = rz3θz3 − rz4θz4 − e34(t).

The nonlinear function of gear backlash is defined as f (xi) (i = 12,34) as

f (xi) =


xi − bi x1 > bi
0 − bi ≤ x1 ≤ bi
xi + bi x1 < −bi

(2)

where bi (i = 12,34) is half of the tooth flank clearance. Therefore, the Equation (1) can be
further simplified as 

..
x1 +

..
e12(t) =

Tinr1

J1
− c12

.
x1

me1
−

k12(t) f(x1)

me1

+
c34

.
x2

me2
+

k34(t) f(x2)

me2
..
x2 +

..
e34(t) =

Toutr4

J4
+

c12
.
x1

me2
+

k12(t) f(x1)

me2

− c34
.
x2

me3
−

k34(t) f(x2)

me3

(3)

where me1, me2, me3 are the equivalent mass of the gear, which can be expressed as
me1 = J1 J23

J23r2
1+J1r2

2
, me2 = J23

r2r3
, me3 = J4 J23

J23r2
4+J4r2

3
.

Defining the time scale as wh =
√

k12
me1

, then the dimensionless time τ = wht; in
addition, the dimensionless displacement can be set as xi = xi/b1 (i = 1,2); hence, the
dimensionless nonlinear function of gear backlash can be set as

f (x1) =


x1 − 1 x1 > 1
0 − 1 ≤ x1 ≤ 1
x1 + 1 x1 < −1

(4)

f (x2) =


x2 − b2/b1 x2 > b2/b1
0 − b2/b1 ≤ x1 ≤ b2/b1
x2 + b2/b1 x2 < −b2/b1

(5)

Therefore, Equation (3) can be further dimensionalized as

Tinr1
J1b1w2

h
− c1

.
x1

me1wh
− k1(τ) f(x1)

+ c2
.
x2

me2wh

+
kmk2(τ) f(x2)

me2w2
h

=
..
x1 −

Ω2
1e12 sin(Ω1τ)

b1

Toutr4
J4b1w2

h
+ c1

.
x1

me2wh
+

kmk1(τ) f(x1)

me2w2
h
− c2

.
x2

me3wh

−
kmk2(τ) f(x2)

me3w2
h

=
..
x2 −

Ω2
2e34 sin(Ω2τ)

b1

(6)

where Ωi =
wi
wh

(i = 1,2) is the dimensionless excitation frequency, and ki (i = 1,2) is the

dimensionless time-varying stiffness ki = 1 + εi sin(Ωit + ϕi), and εi =
kMi
kmi

.

2.2. Time-Varying Stiffness

The gears studied in this work are all straight cylindrical gears. In the process of gear
meshing, there will be both single-tooth meshing and double-tooth meshing. In the case
of continuous rotation of the gear, the meshing stiffness of the gears will show periodic
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changes with the continuous alternation between the single-tooth meshing and double-
tooth meshing. When only a pair of gears bear the load, and the elastic deformation of the
gear pair is large, the comprehensive meshing stiffness of the gears is small. While two
pairs of gears are meshed, the elastic deformation of the gear pairs is small, and the meshing
comprehensive stiffness is large, hence the gear teeth meshing has obvious step mutations.
According to the gear meshing frequency, the gear’s comprehensive meshing stiffness can
be simplified as a periodic function of a rectangular wave. Finally, it is expanded as a
Fourier series, and the first harmonic term is generally used as the time-varying meshing
stiffness of the gear for numerical simulation.

k(t) = kmi + kMi sin(ωit + ϕi) (7)

where kmi is the average meshing stiffness of the i-th gear pair; kMi is the change amplitude
of the meshing stiffness for the i-th gear pair; ωi is the meshing frequency of the i-th gear
pair; ϕi is the initial phase angle for the meshing stiffness change of the i-th gear pair.

2.3. Model for Tooth Breakage

When tooth breakage occurs on single tooth surface of a gear, it will cause the gear to
generate a positive meshing impact signal when the tooth is meshed, which will weaken
the stiffness of the broken tooth. In order to study this phenomenon, the broken tooth is
assumed as belonging to the part of the middle-speed pinion. The gear shown in Figure 2
is a middle-speed pinion with partial broken teeth which will be tested experimentally.
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Moreover, αδ(t) is applied to represent the broken tooth fault, where α represents
the degree of broken tooth, and δ(t) is a periodic continuous pulse function with a unit
amplitude. According to the periodicity of gear meshing, the frequency of the fault shock
signal is equal to the rotation frequency of the faulty gear, and the pulse width is the gear
meshing period. By considering Equation (7), the time-varying meshing stiffness with
failure can be obtained as

k′(t) = k(t) - αδ(t) (8)

2.4. Meshing Error of Gear Pair

The comprehensive meshing error of gears can be regarded as a displacement excita-
tion, which is generally determined according to the initial design grade, and a harmonic
function is used to describe the error mathematically as

et = e0 + eri sin(wit + ϕi) (9)
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where e0 is the constant value of the comprehensive meshing error of a gear pair; eri is the
amplitude of the comprehensive meshing error of the i-th gear pair; wi is the rotational
angular velocity of the i-th gear pair; ϕi is the initial phase angle for the i-th gear pair.

3. System Parameters

As a prerequisite for the simulation solution based on the developed dynamic model,
the parameters for the gear transmission system need to be determined, which mainly
include the geometric parameters of the gear transmission system and a series of structure
parameters.

3.1. Geometric Parameters

Compared with the experimental device that will be introduced later, the geometric
parameters of each gear are listed in Table 1. Moreover, in order to obtain the moment of
inertia of each gear, SolidWorks was used to establish the three-dimensional models for all
the gears of the two-stage gear transmission system, as shown in Figure 3.

Table 1. Geometric parameters of gear transmission system.

Gear Zi Modulus Jzi (kg·mm2)

1 25 2 84.2 × 10−6

2 60 2 3118.7 × 10−6

3 45 2 955.9 × 10−6

4 60 2 3118.7 × 10−6
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3.2. Structure Parameters

Primarily, the finite element method is used to calculate the meshing stiffness of each
gear kzi. Specifically, the geometric model established by SolidWorks is introduced into
Abaqus, the gear tooth is simplified as an elastic cantilever beam, and an example of the
calculation result is shown in Figure 4. In addition, the meshing damping between gear

pairs can be solved using empirical calculation formulas [42] as Czi = 2ξg

√
km IP Ig

IPR2
p+IgR2

g
,where

ξg is the gear meshing damping ratio, generally 0.03–0.17, hence 0.1 is used in this work; Rp,
Rg are the radius of the base circle of the driving and driven gears, respectively; Ip, Ig are
the moment of inertia of the driving and driven gears, respectively; km is comprehensive
meshing stiffness of the gear pair. Finally, assuming that the initial phase angle is 0 and
the design of the gear is the 8th grade, the comprehensive meshing error parameters of
the gear pair can be determined. In summary, the key calculation parameters of the gear
transmission system finally obtained are shown in Table 2.
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Table 2. Structure parameters.

Parameters G12 G34

Kzi (N/m) 2.8 × 106 2.8 × 106

e0 (µm) 10 10
er (µm) 1 1

Czi (N s/m) 51.05 159.27

4. Numerical Simulation

Based on the mathematical model developed in Section 2 and the system parameters
identified in Section 3, the numerical simulation of the gear transmission system can be
carried out subsequently.

4.1. Bifurcation Analysis

The variable-step Runge–Kutta method was used to solve the corresponding differ-
ential equations numerically for the gear transmission system. Primarily, in order to get
a comprehensive understanding of the dynamic evolution law of the gear transmission
system for both the normal or the fault conditions, their bifurcation diagrams were depicted
and compared. Based on the comparison between Figures 5 and 6, it can be seen that the
basic structure of the bifurcation diagram for the medium-speed pinion in the fault state
with tooth breakage is similar to that for the normal state. Their key difference comes from
the numbers of cycles for the system’s periodic motions. Specifically, when compared with
the system’s normal state, its fault state with the same system parameters triggers more
complicated periodic motions. In addition, when the system enters into chaotic states, the
vibration amplitude for the fault state is also greater than that for the normal state.
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4.2. Time-Frequency Characteristics

In order to further understand the influences of the tooth breakage on the dynamic
responses of the gear transmission system, the phase portraits for the time domain analysis
and the frequency spectrums for the frequency domain analysis are depicted for detailed
comparison.

Primarily, the time domain analysis is conducted. It can be seen from Figure 7 for the
time domain analysis of the gear transmission system under its normal condition, when the
excitation frequency Ω1 = 0.31, a non-circular closed curve appears on the phase portrait,
and the Poincarémap displays three discrete points, hence, such avibration condition is
a three-period motion. However, as shown in Figure 8, when the middle-speed pinion
has the fault as tooth breakage, due to the impact of the broken tooth pulse, the phase
portrait under the same excitation frequency becomes a more complicated closed curve
with a wider range than that for the normal state; and its Poincarémap changed from
three discrete points to ten discrete points, namely, the corresponding vibration condition
becomes the ten-period motion.
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Subsequently, the frequency domain analysis was carried out. The relative displace-
ment between the gear 3 and the gear 4 is shown in Figure 9a for the normal state of the
gear transmission system with the dimensionless excitation frequency for the first-stage
gear Ω1 = 0.31, thus the corresponding dimensionless excitation frequency for the second-
stage gear can be calculated as Ω2 = 0.233, andthe corresponding dimensionless meshing
frequencyω1 = 0.035. Moreover, from the frequency spectrum shown Figure 9b, it can be
seen that the main frequency for such a vibration condition is just the meshing frequency
ω1. Furthermore, the amplitude of the n/3 (n is an integer) multiple of the main meshing
frequency is obviously large, which further demonstrates the three-period characteristics
for the corresponding vibration condition.

Comparatively, when the gear has the fault with broken tooth, the time series shows
pulse fluctuations (see Figure 10a), indicating that the broken tooth is meshing at that time.
In addition, it can be seen from Figure 10a that the interval between the two pulse peaks
is the rotation period of the medium-speed gear. For the frequency spectrum shown in
Figure 10b, the amplitudes of the dimensionless main meshing frequency 0.0354 Hz and its
double frequency 0.0723 Hz are obviously large, and there are also obvious equally spaced
sidebands, which are consistent with the amplitude-frequency characteristics for broken
teeth.
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Similarly, the vibration condition for the gear transmission system with the dimen-
sionless excitation frequency for the first-stage gear Ω1 = 0.64 is further discussed. It can
be seen from both Figures 11 and 12 that the system enters into chaotic motionsno matter
the normal state or the fault state of the gear transmission system. Moreover, when the
gear has the fault with the tooth breakage, its motion trajectory is more complicated than
that for the normal state.
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In addition, via the frequency domain analysis as shown in Figures 13 and 14, it can be
seen that when the system stays in chaotic motion and the excitation frequency is high, the
fault state of the system is not obvious in the frequency domain. Especially, it is difficult to
confirm the sidebands in the frequency spectrum, and the time-frequency characteristics
are not distinguishing from that of the normal state. On the one hand, when the system
stays in chaos for its normal state, the added faults only make its vibration condition more
chaotic, and it is hard to find out the fault pulse in the time domain signal. On the other
hand, due to the high excitation frequency, the short meshing period decreases the duration
of the fault impact, and thus the fault pulse in the time domain signal is difficult to be
identified effectively. Under such circumstances, in order to better monitor the operation
of the gear transmission system, the parameter ranges of excitation frequency for chaotic
motion should be avoided, and the stable periodic motion is ideal for the gear transmission
system.
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5. Experimental Verification

In order to further verify the result of numerical simulation, the corresponding experi-
ment was carried out by using the developed test bench, which is a 0.55 kW two-stage gear
transmission system. A load end of this experimental device is equipped with magnetic
powder brake, which can generate load by adjusting excitation current. Figure 15 shows
the three-dimensional design, the experimental rig for this gear transmission system and
the dynamic signal acquisition instrument. During the experimental test, the YA series of
three-directional accelerometer was selected, which can collect vibration signals in x, y, and
z directions. The advantage of this sensor is that it has a wide range of installation positions
and strong flexibility. In this paper, the YSV8016 dynamic signal acquisition instrument
was used to convert the analog signal into digital signal, and then the computer records
the digital signal to complete the acquisition of the vibration signal. The gearbox bearing
seat was selected as the measuring position.
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This experimental rig can be applied to study the vibration characteristics of the
transmission system under different working conditions by changing gears, which is
beneficial for the fault diagnosis of the transmission system.

During the experimental test, the gearbox bearing seat was selected as the measuring
position, and the sampling frequency was set as 512 Hz with the test duration at 50 s.
Since the noise is inevitable for the signals measured via the experiment, the wavelet noise
reduction algorithm was also applied [43].

Primarily, the normal state of the gear transmission system was considered. For the
experimental test, the rotate speed of the high-speed gear was set as 35 r/min; correspond-
ingly, for numerical simulation, the first-stage gear meshing frequency was14.58 Hz, and
the second-stage gear meshing frequency was 10.93 Hz. Under such circumstances, the
obtained frequency spectrums of the gear transmission system for both the numerical
simulation and the experimental test are shown in Figure 16.
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Figure 16. Comparison of frequency spectrums between numerical and experimental results for normal condition. (a)
Numerical result. (b) Experimental result.

As can be observed in Figure 16, the main frequency in the simulated frequency spec-
trum is 14.5 Hz, which roughly matches the main frequency of 14.95 Hz in the experimental
frequency spectrum. Moreover, for the high-speed pinion with rotate speed of 35 r/min, the
theoretical meshing frequency is 14.5 Hz. Hence, a great agreement is achieved. The double
frequency (29.66 Hz) of the first-stage gear meshing frequency (14.5 Hz) is also observed
in the simulated frequency spectrum, comparatively, the double frequency (29.9 Hz) also
appeared in the experimental frequency spectrum. In addition, the meshing frequency
of the second-stage gear is explored in both the simulated and experimental frequency
spectrums, which appears at 10.91 Hz and 11.68 Hz, respectively.

Subsequently, the medium-speed pinion gear was replaced by a gear with tooth
breakage as shown in Figure 2, and then the above experimental test was repeated. The
simulated and experimental frequency spectrums for the gear transmission system with
fault state are shown in Figure 17. The main frequency for numerical result is 11.29 Hz,
which roughly matches the main frequency of 11.67 Hz obtained from the experimental
frequency spectrum. Numerical simulation shows that the amplitude of the dominant
frequency in the fault state (shown in Figure 17a) is higher than that in the normal state
(shown in Figure 16a). Furthermore, comparing Figure 17b with Figure 16b, the experimen-
tal results also show the same result. Therefore, it can be concluded that the amplitude of
the dominant frequency increases when the tooth of gear breaks. In addition, the sidebands
with an interval of 0.26 Hz are explored for both the numerical and experimental results,
which satisfy the characteristics of the fault with tooth breakage.
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Based on the above analyses, it can be concluded that the simulation results of the
gear transmission system under both the normal condition and the fault condition are
consistent with the experimental results, and thus the developed dynamic model is further
verified.

6. Conclusions

In this present work, a dynamic model regarding the torsional vibration for a two-
stage gear transmission system was developed by considering the time-varying meshing
stiffness, the meshing error, and the nonlinear tooth side clearance simultaneously. The
corresponding system parameters were identified according to the built experimental test
bench for a 0.55 kW two-stage gear transmission system. The normal state and the fault state
with tooth breakage for the medium-speed pinion gear were compared systematically, and
thus the influences of the tooth breakage on the dynamic responses of the gear transmission
system were discussed. The corresponding experimental test was also carried out, and
thus the developed dynamic model was further verified experimentally.

Based on the results of numerical simulation, the two-stage gear transmission system
exhibits rich bifurcation scenarios under the influence of time-varying meshing stiffness,
tooth backlash and meshing error. Both the periodic motions and the chaos were observed.
When compared with the normal state of the gear transmission system, its fault state with
the same system parameters triggered more complicated periodic motions. In addition,
when the system entered into chaotic states, the vibration amplitude for the fault state was
also greater than that for the normal state.

In addition, the fault identification for the gear transmission system is tightly related
to its vibration condition. Specifically, the fault characteristics of the system in periodic
motion can be conveniently explored from the frequency spectrum, while once the system
entered into chaos, the fault characteristics were mixed with the chaotic motion, and it was
then hard to find out in the frequency spectrum. Therefore, the control of the vibration
condition of the gear transmission system as periodic motions is of great significance to the
fault diagnosis.
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