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Abstract: In this work, red mud (RM) and spinel iron oxide nanoparticles (SPIONs) were added to
pure silica/alumina sources (SAs) and fly ash (FA) with the aim of synthesizing and investigating
the magnetic behavior of different zeolites. SAs were used to synthesize zeolite with LTA topology
(zeolite A) with the addition of both red mud and spinel iron oxide nanoparticles. FA and RM were
mixed to synthesize sodalite whereas only FA with the addition of SPIONs was used to form zeolite
with FAU-topology (zeolite X). All the synthetic products showed magnetic properties. However,
zeolites with spinel iron oxide nanoparticles (zeolites A and X) showed ferromagnetic-like behavior.
Sodalite was characterized by a reduction in saturation magnetization, whereas zeolite A with red
mud displayed antiferromagnetic behavior. For the first time, all the synthetic products were tested
for polluted water remediation by a persistent emerging contaminant, ofloxacin (OFL) antibiotic.
The four zeolite types showed good adsorption affinity towards OFL under actual conditions (tap
water, natural pH). All materials were also tested for OFL removal in real waters spiked with OFL
10 µg L−1. Satisfactory recoveries (90–92% in tap water, 83–87% in river water) were obtained for the
two zeolites synthesized from industrial waste materials.

Keywords: zeolites; wastes; nano-magnetite; magnetic properties; ofloxacin antibiotic; water depollution

1. Introduction

According to the Subcommittee on Zeolites of the International Mineralogical Asso-
ciation, Commission on New Minerals and Mineral Names [1] “zeolites are microporous
crystalline materials with a structure characterized by a framework of linked TO4 tetrahe-
dra (where T = Si, Al, Be, P, Zn or others), each consisting of four O atoms surrounding a
cation. The structure contains channels, channel intersections and/or cages usually occu-
pied by H2O molecules and extra-framework cations that are commonly exchangeable.”
This zeolite definition refers not only to the natural phases but also to synthetic materials.
These last can crystallize with specific structures and different properties depending on
the utilization of pre-designed organic additives (SDAs), the nature and concentration
of alkali metal ions, heteroatom substitution, the time and temperature of crystallization,
pH, Si/Al and H2O/SiO2 ratios, topotactic transformations, charge density mismatch,
stirring, etc. [2–6]. However, synthetic zeolites are characterized by other properties such
as well-defined micropore dimension, high porosity, and surface area, making them good
candidates for soil [7–14] and polluted water remediation [15–20].
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The literature reports the synthesis of zeolites using many raw materials [21–24],
including wastes [25–28]. The approaches based on the use of sustainable routes for
synthesis of zeolites to deal with environmental problems are very intriguing. In recent
years fly ash (FA) and red mud (RM) have been used to form magnetic zeolites such as
FAU, 4A, ZSM-5, GIS, and X zeolites [29–33].

The combustion of coal in thermal power plants determines the production of fly ash.
Due to its chemical composition, potentially characterized by the presence of toxic elements,
this material is classified as a waste material to be disposed of in landfill. On the other
hand, the main FA component is amorphous aluminosilicate glass, thus making this waste
useful for zeolite synthesis. Red mud is a waste product produced by the caustic leaching
process to extract aluminum from bauxite. It is chemically characterized by the presence
of alumina and a high amount of iron oxy-hydroxides; thus, RM is expected to induce
magnetic behavior when used to synthesize zeolites [31–33]. Among the other phases,
some samples of red mud also show the presence of natrojarosite and Pb-natrojarosite, thus
increasing their toxicity, generally connected with the high pH [34].

In the last few years, the application of magnetic zeolites in polluted water treat-
ments has been well documented [35–37]. These materials can be useful to adsorb heavy
metals (HM), persistent and mobile organic compounds (PMOCs), organic dyes and
polymer-coated magnetic particles [35], and radio nuclides [38], as well as to accelerate the
coagulation of sewage [39]. These materials are even more attractive due to their ability to
be easily separated from the medium using an external magnetic field.

PMOCs, as well as a wide range of other hazardous pollutants, are emerging contam-
inants (ECs) which are released from many sources, thus determining diffuse pollution,
mainly regarding environmental waters [40–45]. ECs enter the aquatic environment mainly
through wastewater due to their low biodegradability in urban wastewater treatment
plants (WWTPs). Despite the low concentrations, from ng to a few µg L−1, they have a
significant probability of being toxic [46,47]. Among these, antibiotics are of particular
concern since their large use in human as well as in veterinary medicine contributes to
the generation of antibiotic-resistant bacteria and antibiotic-resistant genes [48,49]. For the
reasons mentioned above, it is mandatory to find new strategies to remove them [48,50,51].

In this study, different zeolites were synthesized using pure reagents or fly ash as
the silica/alumina sources, and spinel iron oxides (i.e., magnetite or maghemite) and
Fe oxides/hydroxides from red mud to confer magnetic properties. To the best of our
knowledge, such materials were tested here for the first time for removing ofloxacin
(OFL) under relevant environmental conditions (i.e., tap and river water, natural pH,
microgram per liter concentration). Due to our previous investigations on the antibiotic
fluoroquinolone’s (FQ) behavior towards natural and synthetic substrates [52–55], OFL
was chosen as a model molecule in these new experiments. Kinetic and equilibrium studies
were performed in tap water to evaluate the adsorption properties of such materials
towards OFL, while structural investigations were performed on the materials, before and
after antibiotic loading, to elucidate the adsorption mechanism. The removal efficiency
was also evaluated under representative conditions, viz. a few micrograms per liter river
water. Such results can provide useful information for future research on adsorption
technology [47,56].

2. Materials and Methods
2.1. Materials

Sodium silicate, fly ash (Cerano, Brindisi, Italy), and sodium aluminate were used as
silica and alumina sources. Spinel iron oxide nanoparticles (SPIONs), and two samples
of red mud from Sulcis, Cagliari (Italy) (RMs) and from Podgorica (Montenegro) (RMp)
were also used, along with sodium hydroxide pellets. All chemicals of reagent grade were
purchased from Aldrich Chemicals Ltd. (Burlington, MA, USA).

High Performance Liquid Chromatography (HPLC) gradient–grade acetonitrile (ACN)
was purchased by VWR International (Milano, Italy), H3PO4 (85% w/w) and water for
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LC/MS by Carlo Erba Reagents (Cornaredo, Milano, Italy), OFL VETRANAL®, analytical
standard by Merck Life Science S.r.l. (Milano, Italy).

Aqueous OFL stock solution (293 mg L−1) was prepared in tap water and stored in
the dark at 4 ◦C before use.

Structures and chemical characteristics of OFL antibiotic under investigation are
reported in Figure 1.
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2.2. Zeolite Synthesis

The synthesis using pure silica and alumina sources was carried out as described
in our previous paper [34] adding SPIONs and red mud during the process (in separate
experiments). The hydrothermal process was performed at 40 ◦C. The samples were
labelled SAnM and SARMs, respectively (Table S1).

The synthesis with FA and SPIONs or red mud (RMp) was performed using the modi-
fied method described in Belviso et al., [31,61], respectively. In both cases, the hydrothermal
process was carried out at 60 ◦C. The samples were labeled FAnM and FARMp, respectively
(Table S1).

2.3. Characterization of Wastes and Zeolites

Chemical analyses of wastes were performed by X-ray fluorescence (XRF) (Philips
PW 1480), whereas the mineralogical composition of the raw materials and synthetic
products was analyzed by X-ray powder diffraction (XRD). A Rigaku Rint 2200 powder
diffractometer with Cu-Ka radiation was used. The XRD patterns were collected in the
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angular range 3–70◦ 2θ, step-size of 0.02, scan-step time of 3 s, accelerating voltage of 40 kV,
and electric current of 30 mA. The ratio of crystalline (%) to non- or nano-crystalline species
in all investigated samples was determined by careful evaluation of the baseline to peak
separation using the software DIFFRAC.EVA [62].

Scanning electron microscopy (SEM, Zeiss Supra 40) equipped with an energy
dispersive spectrometer (EDS) was used to perform morphological observations on all
the samples.

A vibrating sample magnetometer (VSM Model 10–Microsense) equipped with an
electromagnet producing a magnetic field in a range from −2 to +2 T was used to investigate
the field dependence of magnetization.

2.4. Analytical Measurements

A UVmini-1240 UV-Vis spectrophotometer (Shimadzu Corporation, Milano, Italy)
was used to perform the adsorption experiments. The wavelength selected for analysis
was 280 nm corresponding to the maximum OFL adsorption.

Calibration with six standards at concentrations between 1 and 10 mg L−1 yielded
optimal linearity (R2 > 0.9999). The quantification limit was 0.8 mg L−1.

HPLC system characterized by a Series 200 pump (Perkin Elmer, Milano, Italy)
equipped with a programmable fluorescence detector (FD) and a vacuum degasser was
used to perform the kinetic experiments and OFL adsorption at 10 µg L−1. The fluores-
cence excitation/emission wavelengths selected were 280/450 nm. A 50 µL quantity of
each sample was filtered (0.22 µm nylon syringe filter) and injected into a 250 × 4.6 mm,
5 µm Ascentis RPAmide (Supelco-Merck Life Science, Milano, Italy) coupled with a sim-
ilar guard-column. The mobile phase was 25 mM H3PO4–ACN (85:15); the flow rate
1 mL min−1.

Optimal linearity (R2 > 0.9997) was yielded when performing the calibration with six
standards in the range 1–10 µg L−1. The quantification limit was 0.9 µg L−1.

2.5. Adsorption and Kinetic Experiments

OFL adsorption on SAnM, SARMs, FAnM, and FARMp was studied using a batch
mode. A 100 mg quantity of each material was mixed with 10 mL of OFL tap water
solutions at concentrations in the range 10–293 mg L−1. The solution pH was adjusted
to around 7 with the addition of 50 µL 1 M HCl. Subsequently, the tubes were wrapped
with aluminum foil to prevent light-induced drug decomposition and shaken (orbital
shaker) at room temperature for 24 h. After equilibration, the adsorbent was separated and
filtered (0.22 µm nylon syringe filter), and the OFL concentration (Ce) in the liquid phase
was determined.

The adsorbed OFL amount at equilibrium (qe, mg g−1) was calculated by Equation (1):

qe =
(C0 − Ce)× V

M
(1)

where C0 is the initial concentration of OFL (mg L−1), Ce the concentration of OFL in
solution at equilibrium (mg L−1), V the volume of the solution (L), and M the amount of
the adsorbent (g).

For the kinetic experiments, 200 mg of each material was suspended in 20 mL of tap
water with an initial OFL concentration of 10 mg L−1 to guarantee an adsorption efficiency
in the range of 10–85% (ASTM D3860 [63]). The suspensions were stirred (glass stirring
rod) throughout the experiment. At planned times, the stirring was stopped, and 50 µL
supernatant was collected in the range 0–60 min. Subsequently, it was diluted to 5 or 10 mL
tap water, filtered using a 0.22 µm nylon syringe filter, and finally injected in the HPLC-FD
system to determine the concentration of OFL at time t (Ct).
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The adsorbed OFL amount at time t (qt, mg g−1) was calculated following Equation (2):

qt =
(C0 − Ct)× V

M
(2)

where C0 is the initial concentration of OFL (mg L−1), Ct the concentration of OFL in
solution at time t (mg L−1), V the volume of the solution (L), and M the amount of the
adsorbent (g).

The experiments were carried out in triplicate with good reproducibility (RSD ≤ 10%).
The control sample (tap water solutions containing OFL and no adsorbent phase) showed
no change in OFL concentration.

A dedicated software (OriginPro, Version 2019b. OriginLab Corporation, Northamp-
ton, MA, USA) was used to calculate the thermodynamic and kinetic parameters.

3. Results
3.1. Magnetic Properties of Synthetic Zeolites

Table S2 displays the chemical composition of the red mud and fly ash. The data
confirmed the high percentage of Fe2O3 in both RM samples (36.80 and 37.04%, respectively)
and the large amount of SiO2 (46.80%) and Al2O3 (28.21%) in FA. Moreover, the XRD pattern
of the RMs indicated the presence of natrojarosite and franklinite (Figure S1a); the RMp
showed hematite/goethite/pyrite and gibbsite with a lower amount of calcite and sodalite
(Figure S1b), whereas the FA was mainly characterized by amorphous aluminosilicates
and, subordinately, hematite (Figure S1c).

Zeolite A (LTA topology) crystallized from pure silica/alumina sources with the
addition of both SPIONs and RMs (Figures 2 and 3). However, the XRD pattern of SAnM
(Figure 2a) also showed the presence of SPIONs. This result is confirmed by the SEM
images in Figure 2b showing the typical cubic morphology of zeolite with LTA topology
and crystals of SPIONs precipitated on the zeolite surfaces [34]. The amorphous fraction in
SAnM corresponds to ~13% (crystallinity estimated from 2 to 70◦ 2θ). The X-ray pattern
of SARMs shows the peaks of zeolite A and hematite (Figure 3a); the amorphous fraction
increases up to ~21.5%. Zeolite morphology is displayed in Figure 3b.

Field dependence of magnetization (full symbols) and remanent magnetization mea-
sured by Direct Current Demagnetization (DCD) protocol (empty symbol) has been re-
ported in Figure 4 for all the samples. In a typical DCD measurement, the sample is
saturated in an external field of −5 T, then the external field is removed, and the remanence
magnetization is recorded. To invert the magnetization, the sample is then exposed to
a reverse positive field (Hrev) then Hrev is removed and the remanence magnetization is
recorded. MDCD Vs. Hrev represents merely the irreversible part of the magnetization,
allowing the determination of a value of remanence coercivity (i.e., HCr, reverse field for
which MDCD = 0) excluding the reversible phenomena (i.e., superparamagnetic relaxation).
The differentiated remanence curves (i.e., dMDCD (H)/dH) reported in Figure S2 for FAnM
(full square) and FARMs (empty square) represent the irreversible component of the sus-
ceptibility (χirr) [64]. This quantity can be considered as a measure of the distribution
of the energy barrier, which is associated with the switching field distribution (SFD) in a
nanoparticle system [65].

The M vs. H curve of the SAnM sample mimics the ferromagnetic behavior of pure
SPIONs (Figure S3a), with a strong expected reduction of Ms (Table 1) due to a lower
content of magnetic phase. Switching field distribution (Figures 4a and S3b) and values of
Hc/HCR (Table 1) are equal within the experimental error in SAnM and SPIONs sample,
strongly suggesting that the synthesis process does not affect the magnetic properties
of SPIONs.
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Figure 4. Room temperature hysteresis curves (full symbols) and DCD remanent magnetization
curves (empty symbols) of (a) SAnM and (b) SARMs, (c) FAnM, and (d) FARMp.

Table 1. Saturation Magnetization (Ms) coercive field (Hc) extracted from hysteresis recorded at
300 K. Remanence Coercivity (HCr) extracted from DCD recorded at 300 K. Uncertainties in the last
digit are given in parentheses.

Sample Ms (Am2kg−1) Hc (mT) HCr (mT)

SAnM 2.2 (5) 11.0 (1) 36.0 (2)
SARMs 0.07 (5) 27.0 (1) 244.0 (5)
FAnM 1.9 (5) 10.0 (1) 35.0 (2)

FARMp 0.4 (5) 10.0 (1) 31.0 (2)
SPIONs 88.2 (5) 11.0 (1) 32.0 (2)

The magnetic behavior dramatically changed in the sample SARMs, showing an anti-
ferromagnetic (i.e., not saturating tendency at high field) contribution superimposed on a
ferromagnetic-like component (Figure 4b). To quantify the origin of the ferro(ferri)magnetic
component, the effective magnetic moment (Meff) was determined by the extrapolation to
zero of the high-field parts of the hysteresis [31]. The value of Meff in the SARMs sample
was around 0.03 Am2kg−1, which is on the same order of magnitude as nanostructured
hematite (<0.5 Am2kg−1) [66], suggesting that the small ferromagnetic-like contribution
could have been due to the uncompensated spin of nanostructured hematite in agree-
ment with XRD results. Interestingly, a quite strong anisotropy (i.e., enlargement of the
hysteresis loop in the region 0.3 to −1 T) was observed as confirmed by relatively high
value of coercivity (Hc ~27 mT) and remanence coercivity (Hcr ~244 mT). This increase in
anisotropy can be ascribed to magnetoelastic components of anisotropy, strictly related to
the nanoparticle shape, already observed in hematite nanoparticles [64].

Figure 5a shows the XRD pattern of the FAnM sample. The use of FA as silica/alumina
source confirms the formation of zeolite X (FAU topology) (database_code 0006772 amcsd—
American Mineralogy Crystal Structure Database); peaks referable to precipitated SPIONs
(database_code 0002400 amcsd—American Mineralogy Crystal Structure Database) were
also detectable. The estimated amorphous content corresponds to ~32.6%. The hydrother-
mal treatment at 60 ◦C and the following aging of the FA and RM mixture determined the
formation of more stable sodalite (Figure 5b). Relict zeolite X and aluminosilicate were also



Processes 2021, 9, 2137 9 of 16

detectable. RMp was used to form this type of zeolite due to its higher amount of SiO2 and
Al2O3 compared to the RMs (Table S2). The amorphous fraction corresponded to ~50.4%
(crystallinity was estimated in the 2–70◦ 2θ range). The field dependence of magnetization
(Figure 4c,d) of both FAnM and FARMp showed a ferromagnetic-like behavior. If this
behavior was expected for sample FAnM, because SPIONs had been added during the
synthesis process, the data obtained from FARMp confirm that, using FA as precursor,
the magnetic behavior of the zeolites was dominated by ferrimagnetic oxides with spinel
structure. This similarity is further confirmed by Hc and HCr values that were equal, within
the experimental error, in both samples. Additionally, irreversible susceptibility showed
a very good qualitatively agreement between the FAnM and FARMp samples and with
SPIONs (Figure S2).
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3.2. Adsorption and Kinetic Behavior

The adsorption efficiency of the investigated magnetic zeolites in OFL removal was
studied in tap water because of its invariant composition and great similarity to environ-
mental waters. Table S3 shows the physicochemical parameters of tap water from Pavia
municipal waterworks and Ticino River.

3.2.1. Preliminary Experiments

For evaluating working pH, 50 mg of each material was suspended in 10 mL of tap
water not containing the drug and shaken overnight at room temperature. Subsequently,
the adsorbent was removed for the pH measurement of the liquid phase. Due to the
high pH values measured (>10), several washing cycles were performed to eliminate any
alkaline and salt residuals from the materials before use. After washing and air drying,
50 mg of each material was re-suspended in 10 mL of tap water not containing the drug
and treated as above. The measured pH values were in the range 8.3–8.9. The addition
of 50 µL of 1 M HCl allowed a pH of between 6.5 and 7.5, close to the environmental pH.
Quantities of 50, 100, and 250 mg of each material were suspended in 10 mL of tap water
spiked with 10 mg L−1 OFL following the procedure described above (Section 2.5). The
solution’s pH was adjusted to around 7, adding appropriate amounts of 1 M HCl. After
equilibration (24 h, room temperature, orbital shaker), the adsorbed OFL amount was
calculated by Equation (1). As apparent in Figure S4, a moderate effect on the percentage
of adsorbed OFL was observed, increasing the amount of the adsorbent materials. Thus,
to guarantee the adsorption efficiency in the range 10–80% as indicated by ASTM D3860
guidelines [63] and to avoid an excess of waste, 100 mg of each adsorbent were used in
the experiments.

3.2.2. Adsorption Experiments

Different isotherm models—namely, the well-known Freundlich and Langmuir mod-
els and the BET model—were applied to describe OFL uptake onto SAnM, SARMs, FAnM,
and FARMp. The Freundlich model is an empirical model used to describe non-ideal
sorption, and Equation (3) expresses it:

qe = KFC1/n
e (3)

where KF is the empirical constant indicative of sorption capacity, and n is the empirical
parameter indicative of the adsorption intensity.

The Langmuir model (Equation (4)) assumes that the adsorption process takes
place at specific homogeneous sites and occurs in a monolayer that covers the surface of
the material:

qe =
qmKLCe

1 + KLCe
(4)

where KL is the Langmuir constant and qm the monolayer saturation capacity.
The BET isotherm, adapted to describe liquid-phase adsorption [55] through multi-

layer adsorption, has the following form (Equation (5)):

qe = qm
KsCeq

(1 − KL)
(
1 − KLCeq + KsCeq

) (5)

where (KS) is the equilibrium constant for the first layer and (KL) is the equilibrium constant
of potential upper layers.

The pseudo-first-order (Equation (6)) and pseudo-second-order (Equation (7)) used
for describing the kinetic OFL uptake are:

qt = qe

(
1 − e−k1t

)
(6)
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qt =

(
q2

e k2t
)

(1 + qek2t)
(7)

where qt and qe were the amount of OFL adsorbed at time t and equilibrium, respectively; k1
was the pseudo-first-order rate constant; and k2 was the pseudo-second-order rate constant.

Figure 6 displays the experimental adsorption profiles of OFL on the different mag-
netic zeolite types, and Table S4 gathers the isotherm parameters obtained by fitting the
experimental data using Freundlich, Langmuir, and BET models. The most relevant result
is that all the zeolites considered adsorbed the OFL antibiotic efficiently, showing a similar
trend well-described by the BET model (see Figure S5 and R2 values in Table S4). The
calculated first-layer maximum adsorption capacity, qm, is in good agreement with the
experimental profiles (see the inflection point in Figure 6), and the highest values of qexp
confirmed that a multilayer absorption process occurred on the different zeolites investi-
gated. FARMp and FAnM gave the highest OFL uptake, 11.6 and 8.5 mg g−1, respectively,
compared with SARMs (5.0 mg g−1) and SAnM (3.8 mg g−1). Moreover, the first layer
adsorption occurred faster for FARMp and FAnM than for SARMs and, in particular, SAnM.
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) (Experimental conditions: adsorbent 100 mg, 10 mL tap water, OFL concentration
10–293 mg L−1).

On the other hand, the samples synthesized by adding red mud (FARMp and SARMs)
were more efficiently adsorbent than the respective samples synthesized using SPIONs
(FAnM and SAnM, respectively). The addition of RM improved the adsorption perfor-
mances, especially for FARMp. These differences in adsorption indicated that the solid
matrices, including silica, alumina, and iron oxide, affect the adsorption of OFL from water,
and hydrophobic and/or electrostatic interaction can be proposed as the driving mecha-
nisms [58]. In addition, amorphous geopolymers create pores, thus increasing the surface
area as well as the reactivity of the bead. At the same time, the affinity of synthesized
phases towards OFL cannot be due solely to the chemical composition of the adsorbent
materials, but also to their different topologies. Figure 1 shows the structures and chemical
characteristics of the OFL antibiotic as well as those of synthesized zeolites. The OFL
length is about 12.055 Å; indeed, the dimension of the molecule is about 7.10 Å along the
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benzoxazine ring plane [66]. In FARMp, SARMs and SAnM samples, the OFL molecular
dimensions are too large when compared to the zeolites’ cavities (LTA topology, channels
<100> 4.1 × 4.1 Å; SOD topology, apertures formed by six rings only) [60,67]. On the
contrary, the molecular dimension of OFL is slightly smaller than the free aperture of the
12-ring windows of the FAnM sample (FAU topology, channels <111> 12 7.4 × 7.4) [68].
The pore structure is characterized by approximately 12 Å diameter cages, which are
linked through access windows which are 7.0 Å × 7.1 Å in diameter and are composed of
rings of twelve linked tetrahedra (12-membered rings). The zeolites’ CIF files taken from
the IZA-SC Database of Zeolite Structures were used to calculate the pore dimensions,
assuming an oxygen ionic radius of 1.35 Å [69]. Thanks to these cages and windows, quite
large molecules can enter therefore this structure is considered potentially useful in the
adsorption of the antibiotics under study.

Consequently, we can reasonably speculate that OFL molecules are weakly bonded to
the zeolite surface grains in FARMp, SARMs, and SAnM samples. Indeed, the dimensions
of antibiotic molecules are compatible with the dimensions of the FAnM sample’s cages
thus suggesting that the adsorption of OFL can occur on both the surface grains and their
porous structures.

Whit regard to the kinetic aspect, a fast OFL uptake—namely, 2 min for FARMp,
SAnM, and SARMs, and 5 min for FAnM—occurred on all the investigated zeolites (see
Figure S6 and Table S4). Consequently, a clear discrimination between the two kinetic
models is not possible. Likewise, the calculated amounts of OFL absorbed (qe) are not
significantly different from those experimentally obtained (qe exp) with both models.

Summing up, all zeolite types have a good affinity toward OFL. Unexpectedly, FARMp
and FAnM, which were synthesized from waste, were more efficient than SARMs and
SAnM in terms of adsorption capacity. Moreover, it is to be underlined that these synthetic
products obey the principles of the circular economy. They employed industrial waste
materials as precursors, which are low cost, easy to synthesize, and useful for water
depollution. Moreover, they can be efficiently removed after the treatment due to their
magnetic properties.

3.2.3. Ofloxacin Adsorption under Environmental Conditions

The suitability of SAnM, SARMs, FAnM, and FARMp as adsorbent phases for OFL
removal from polluted waters was assessed on a river sample collected from Ticino River
(Pavia, Northern Italy) spiked with low-level drug concentration [47,56].

Each material (100 mg) was separately added to 10 mL water samples (tap and river
water) spiked with 10 µg L−1 OFL, following the same procedure described in Section 2.5.
The supernatants were then separated and analyzed by HPLC-FD to determine the amount
of residual drug. The removal efficiency was calculated by Equation (8):

R =
(C0 − Ct)× V

C0
× 100 (8)

where C0 is the initial OFL concentration and Ct the OFL concentration after a contact time
t. Table 2 shows the removal efficiencies obtained in the two aqueous matrices.

Interestingly, fly-ash-based materials gained higher recoveries than zeolites prepared
from pure reagents, with no significant differences in % R between FARMp and FAnM in
both aqueous media. The presence of matrix constituents, such as NOM, anions, cations,
pH, and ionic strength did not significantly affect the adsorption process.

These preliminary data confirm that waste materials, such as red mud and fly ash, can
form zeolites with magnetic behavior competitive in drug removal efficiency compared to
feedstock under realistic conditions.
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Table 2. OFL removal efficiency (% R) for FAnM, FARMp, SAnM, and SARMs in tap and river
water samples (experimental conditions: adsorbent 100 mg, 10 mL water sample, OFL concentration
10 µg L−1).

R%

Zeolite Tap Water River Water

FAnM 90 83
FARMp 92 87
SAnM 45 43
SARMs 63 61

RSD % ≤ 10%

4. Conclusions

The data confirm that waste materials, such as red mud and fly ash, can be used to
form zeolites with magnetic properties that can be modified adding pre-formed SPIONS
during the synthesis process. In particular, sodalite synthesized using an FA and RM
mixture (FARMp) shows ferromagnetic behavior due to the composition of fly ash and the
red mud used, while the presence of red mud is responsible for antiferromagnetic behavior
with a consequent important reduction in Ms (SARMs sample) Finally, LTA and FAU
topology formed by adding SPIONs during the synthesis process show a ferromagnetic
behavior with a relatively higher saturation magnetization. All the synthetic zeolites adsorb
a significant percentage of ofloxacin; materials formed from wastes are more effective in
terms of their adsorption capacity, reducing the antibiotic concentration quantitatively in
the presence of matrix constituents. Red mud acts to improve the adsorption performance,
especially when added to fly ash, forming a zeolite with SOD topology in FARMp. OFL
adsorption occurs on both the surface grains and porous structures of the FAU topology
characterizing the FAnM sample.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr9122137/s1, Figure S1: XRD patterns of: (a) RMs; (b) RMp and (c) FA, Figure S2: Irre-
versible magnetic susceptibility for FAnM and FARM samples, Figure S3: (a) Field dependence of
magnetization (full circlee) and DCD remenence magnetization (empty cicles) recorded at 300 K;
(b) irreversible susceptibility extracted from DCD, Figure S4: % adsorbed OFL vs. adsorbent amount
(50, 100, 250 mg): SAnM (
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