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Abstract: Continuous stirring tank reactors are widely used in the chemical production process, which
is always accompanied by nonlinearity, time delay, and uncertainty. Considering the characteristic of
the actual reaction of the continuous stirring tank reactors, the fault detection problem is studied in
terms of the T-S fuzzy model. Through a fault detection filter performance analysis, the sufficient
condition for the filtering error dynamics is obtained, which meets the exponential stability in the
mean square sense and the given performance requirements. The design of the fault detection filter is
transformed into one that settles the convex optimization issue of linear matrix inequality. Numerical
analysis shows the effectiveness of this scheme.

Keywords: continuous stirring reactors; fault detection; T-S fuzzy model; channel fading

1. Introduction

Continuous stirring tank reactors (CSTR) are the most widely used chemical reactors
in chemical production [1]. The CSTR reaction process is an important chemical production
process, and the complexity and risk of its operation are determined by the nonlinearity,
time delay, and uncertainty of the reaction process. With the development of chemical
equipment being geared towards integration and larger scales, the importance of fault
detection (FD) for the reaction process has increased and the technology used in its per-
formance is continuously being improved [2]. The nonlinear dynamic equation of CSTR
can be established according to the equilibrium formula of reaction materials. However,
in the actual production process, most of the systems are uncertain nonlinear systems,
and the uncertainty is represented by model error, parameter perturbation, and unknown
disturbance, which increases the complexity and difficulty of FD.

As is well known, the task of FD is to check whether there is a fault in the system
and to determine the time of the fault occurrence [3]. During the past several decades, the
technology for detecting faults has already been widely adopted in industrial processes
and has gradually become a significant method of enhancing both system security and
reliability [4–11]. For linear systems, the FD issue has been discussed since the 1970s, and
several applicable FD methods have been developed [12–16]. Nevertheless, numerous
industrial systems exhibit inherent nonlinearity. Nonlinearity is known to be a primary
factor that impacts system performance. The existence of nonlinearity raises the system
complexity, which simultaneously brings significant challenges to the issue of system
analysis and synthesis. Note that these problems can no longer be solved by using the
former FD approaches for linear systems. So far, the problem of FD for nonlinear systems
has not been discussed enough [17–19].
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On the other hand, the fuzzy set theory has been proven to be a powerful method
in dealing with nonlinear systems, and a considerable number of reports have been pub-
lished on it [20,21]. More particularly, a substantial amount of attention has been paid
to the Takagi–Sugeno (T-S) fuzzy model for the reason that it can approach any smooth
nonlinear system reaching an arbitrarily designated accuracy inside any compact set. This
approach has been employed in numerous fields, e.g., electrical controlling, quantitative
modeling, signal processing and pattern recognition, intelligent decision-making, and
robot investigation [22,23]. Compared with the extensive research on controller and filter
design problems with regard to the T-S fuzzy system, the corresponding FD problem has
not been investigated thoroughly [24].

The channel fading phenomenon unavoidably occurs in systems linked through
wireless and shared connections. As is known, the fading effect is one of the major
features of wireless transmission. Diffraction, reflection, and scattering seriously affect
signal power, which results in fading or attenuation. Some scholars have paid attention
to the problem of channel fading, and some works have emerged. For instance, [25]
studied the filtering problem of linear systems subject to channel fading. An event-based
state-feedback controller is designed in [26] for interval type-2 fuzzy systems over fading
channels. Nevertheless, despite the large number of research findings about filtering and
control issues in the case of channel fading [27], the FD problem still has not received
enough attention.

Inspired by the aforementioned statements, this paper is devoted to dealing with
the FD issue in CSTR with regard to parameter uncertainty and channel fading within a
networked environment and in terms of the T-S fuzzy model. We are to realize the FD
by carrying out the fuzzy FD filtering, which presents a residual signal in order to obtain
the estimate of the fault signal. The primary principle is to decrease the error between the
residual and the fault to the minimum. Distinct from other published results in previous
papers, the highlights of this paper are as follows: (1) the issue discussed is novel in view
of the fact that this paper represents the first of a few endeavors to settle the H∞ fault
detection issue against parameter uncertainties, channel fading, and delays for the CSTR
reaction process; (2) the considered system is comprehensive and reflects the reality of
the CSTR reaction process, which involves the Takagi-Sugeno fuzzy model, parameter
uncertainties, time delay, and channel fading; and (3) a specific fault detection scheme
is proposed, which ensures that CSTR fuzzy systems achieve exponential stability in the
mean square and H∞ performance.

The rest of this paper is organized as follows. The T-S fuzzy model of CSTR is
established in Section 2. The performance of an FD dynamic system is analyzed in Section 3.
A fuzzy FD filter is designed in Section 4. Section 5 presents a numerical example. A
conclusion is given in Section 6.

2. Model of CSTR

The material enters CSTR at a certain concentration and temperature for exothermic
reaction. The operational goal is to continuously adjust the coolant temperature to make
the product concentration and reactor temperature meet the production requirements, as
shown in Figure 1. Based on the law of energy conservation and the principle of chemical
dynamics, the dimensionless mechanism model of the CSTR system is as follows [1]:

.
x1(t) = Dα[1− x1(t)] exp

[
x2(t)

1 + x2(t)/γ0

]
− 1

λ
x1(t) +

(
1
λ
− 1
)

x1(t− d(t))

.
x2(t) = HDα[1− x1(t)] exp

[
x2(t)

1+x2(t)/γ0

]
− ( 1

λ + β)x2(t) +
(

1
λ − 1

)
x2(t− d(t)) + ζw(t)

+δ f (t)

where x1(t) = C0−Ca(t)
C0

and x2(t) = γ0(Ta(t)−T0)
T0

represent the dimensionless product
concentration and reactor temperature, respectively.
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Figure 1. Schematic of CSTR. 
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Figure 1. Schematic of CSTR.

The symbols in the formula are explained as follows: λ, Dα, γ0, H, β, T0 are dimen-
sionless system parameters, ζ is the disturbance coefficient, w(t) is the external disturbance,
d(t) is the term of variable time delay. In this paper, the T-S fuzzy model is adopted in order
to approach the mechanism model. The reactor temperature, which is easier to measure
online, is chosen as the precursor variable, and the linear processing is carried out near
each steady-state equilibrium point. Then, considering the parameter uncertainty, the T-S
fuzzy model is obtained, which is expressed as follows:

Plant Rule i: IF θ1(k) is Mi1, θ2(k) is Mi2, . . . . . . θp(k) is Mip, then
x(k + 1) = (Ai + ∆Ai)x(k) + (Adi + ∆Adi)x(k− d(k)) + D1iw(k) + Gi f (k)

y(k) = Cix(k) + D2iw(k)
x(k) = ψ(k), ∀k ∈

[
−d, 0

] (1)

where r is the IF-THEN rule number; Mij is the fuzzy set; θ(k) = [θ1(k), θ2(k), · · · , θp(k)] is
the premise variable vector; x(k) ∈ Rn is the state vector; y(k) ∈ Rm is the measurement
output; w(k) ∈ Rq is the disturbance input; f (k) ∈ Rl is the fault signal; w(k) and f (k)
belong to l2[0, ∞); 0 ≤ d(k) ≤ d represents time delay; system matrices Ai, Ci, D1i, D2i,
and Gi are given real-valued matrices with appropriate dimensions; ψ(k), k ∈

[
−d, 0

]
is

the given initial state and satisfies supk∈[−d,0]E
{
‖ψ(i)‖2

}
< ∞; ∆Ai and ∆Adi represent

norm-bounded parameter uncertainties, which satisfy the following formula:[
∆Ai ∆Adi

]
= HiF(k)

[
Ea Ed

]
(2)

where F(k) is the unknown matrix that satisfies FT(k)F(k) ≤ I, and Hi, Ea, Ed stand for
known matrices with appropriate dimensions.

For the T-S fuzzy system (1), the defuzzified output is denoted as follows:

x(k + 1) =
r
∑

i=1
hi(θ(k))[(Ai + ∆Ai)x(k) + (Adi + ∆Adi)x(k− d(k))

+D1iw(k) + Gi f (k)]

y(k) =
r
∑

i=1
hi(θ(k))[Cix(k) + D2iw(k)]

x(k) = ψ(k), ∀k ∈ Z−

(3)

where the fuzzy basis functions are described as

hi(θ(k)) =
ϑi(θ(k))

r
∑

i=1
ϑi(θ(k))
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with ϑi(θ(k)) =
p

∏
j=1

Mij(θj(k)), ϑi(θ(k)) ≥ 0, i = 1, 2, · · · , r,
r
∑

i=1
ϑi(θ(k)) > 0, Mij(θj(k))

denoting the membership of θj(k) in Mij, understandably.

hi(θ(k)) ≥ 0, i = 1, 2, · · · , r,
r

∑
i=1

hi(θ(k)) = 1

For simplicity, we denote hi = hi(θ(k)).
Considering that the fading phenomenon occurs in the transmission process of the

measurement signal from the sensor to the FD filter, based on the Lth-order rice fading
model, the measurement signal obtained by the fault detection filter is expressed in the
following form:

y f (k) =
`

∑
s=0

βs(k)y(k− s) + Eyξ(k) (4)

where ` is a given positive scalar and βs
k(s = 0, 1, · · · , `) represent the channel coefficients,

and they are mutually independent. Moreover, βs
k own the probability density function over

the interval [0, 1], which has the expectation βs and variance β̃∗s . ξk ∈ l2([0, ∞);Rm) stands
for external noise and Ey denotes a given real-valued matrix with a proper dimension.

Remark 1. In this paper, channel fadings are characterized via the improved Lth-order Rice model.
Such a model has been extensively utilized in fields of signal processing and remote control due to
its capacity to describe both channel fadings and random time-delays at the same time. Differing
from the conventional model of channel fadings, in model (4), the channel coefficients are described
by random variables obeying an arbitrary probabilistic distribution over the interval [0, 1]. Note
that the consideration of channel fadings increases the complexity of acquiring the FD filter.

Taking into account the physical object described by (1) and (2), an FD filter is con-
structed with the following expression:

Filter Rule i: IF θ1(k) is Mi1, θ2(k) is Mi2, . . . . . . θp(k) is Mip, then{
x̂(k + 1) = A f i x̂(k) + B f iy f (k)
r(k) = C f i x̂(k) + D f iy f (k)

(5)

where x̂(k) ∈ Rn denotes the state vector of the filter, r(k) ∈ Rl represents the residual
signal being compatible with the fault signal f (k), A f i, B f i, C f i, and D f i are appropriately
dimensioned filter gains to be decided. Therefore, the whole fuzzy fault detection filter is
constructed in the following formulation:

x̂(k + 1) =
r
∑

i=1
hi[A f i x̂(k) + B f iy f (k)]

r(k) =
r
∑

i=1
hi[C f i x̂(k) + D f iy f (k)].

(6)

In what follows, we denote

r

∑
a1,a2,··· ,as=1

ha1 ha2 · · · has =
r

∑
a1=1

ha1

r

∑
a2=1

ha2 · · ·
r

∑
as=1

has , ∀s ≥ 1

η(k) = [xT(k) x̂T(k)]
T

, v(k) = [wT(k) ξT(k) f T(k)]
T

, r(k) = r(k)− f (k),

η∗(k) = [ηT(k− 1) ηT(k− 2) · · · ηT(k− `)]
T

, v̂(k) =
[

vT(k) v∗T(k)
]T

v∗(k) = [vT(k− 1) vT(k− 2) · · · vT(k− `)]
T

.



Processes 2021, 9, 2127 5 of 16

By (3) and (6), the following FD dynamic system can be obtained:

η(k + 1) =
r
∑

i,j=1
hihj

[
(Aij + ∆Aij + β̃0(k)Âij)η(k) + (Adi + ∆Adi)η(k− d(k))

+(Λl A∗ij + Λ̃l(k)A∗ij)η
∗(k) + (Bij + β̃0(k)B̂ij)v(k)

+(Λl B∗ij + Λ̃l(k)B∗ij)v
∗ (k)]

r(k) =
r
∑

i,j=1
hihj[(Cij + β̃0(k)Ĉij)η(k) + (ΛlC∗ij + Λ̃l(k)C∗ij)η

∗(k)

+(Dij + β̃0(k)D̂ij)v(k) + (Λl D∗ij + Λ̃l(k)D∗ij)v
∗ (k)]

(7)

where

Aij =

[
Ai 0

B f jCi A f j

]
, ∆Ai =

[
∆Ai 0
0i 0

]
, Âij =

[
0 0

B f jCi 0

]
, Bij =

[
D1i 0 Gi

β0B f jD2i B f jEy 0

]
,

B̂ij =

[
0 0 0

B f jD2i 0 0

]
, Adi =

[
Adi 0
0 0

]
, ∆Adi =

[
∆Adi 0

0 0

]
, Cij =

[
β0D f jCi C f j

]
,

Ĉij =
[

D f jCi 0
]
, Dij =

[
β0D f jD2i Ey −I

]
, D̂ij =

[
D f jD2i 0 0

]
,

A∗ij = diag{Âij, · · · , Âij︸ ︷︷ ︸}
`

, B∗ij = diag{B̂ij, · · · , B̂ij︸ ︷︷ ︸}
`

, Λl = [β1 I, · · · , βl I],

Λ̃l(k) = [β̃1 I, · · · , β̃l I], C∗ij = diag{Ĉij, · · · , Ĉij︸ ︷︷ ︸}
`

, D∗ij = diag{D̂ij, · · · , D̂ij︸ ︷︷ ︸}
`

,

α̃m(k) = αm(k)− αm, E{α̃m(k)} = 0, E
{

α̃2
m(k)

}
= αm(1− αm),

E
{

β̃2
s(k)

}
= β̃∗s , β̃s(k) = βs(k)− βs(s = 0, 1, . . . , l).

Definition 1. With the FD dynamic system (7) and each initial condition ψ, in the situation of
v̂(k) = 0, system (7) is said to be exponentially mean-square stable if there are constants δ > 0 and
0 < κ < 1, which achieve the following [28].

E
{
‖η(k)‖2

}
≤ δκk sup

i∈Z−
E
{
‖ψ(i)‖2

}
, ∀k ≥ 0.

Thus, the ideal FD filter is designed via the following steps:
Step (1) Introduce a residual signal. With system (2), a fuzzy FD filter expressed as (5) is

designed to produce a residual signal r(k). Then, the filter is devised to guarantee that the whole
FD system (6) achieves exponential stability in the mean square and the following H∞ performance
under the zero-initial condition:

∞

∑
k=0

E
{
‖r(k)‖2

}
≤ γ2

∞

∑
k=0
‖v̂(k)‖2 (8)

where v̂(k) 6= 0 and γ > 0 are made as small as possible in the feasibility of (8).
Step (2) Establish a residual evaluation stage containing an evaluation function J(k) and a

threshold Jth as follows [29]:

J(k) =

{
k=s

∑
k=s−L

rT(k)r(k)

} 1
2

, Jth = sup
w∈l2, f=0

E{J(k)} (9)

where L is the length of the finite evaluating time horizon. Based on (9), whether a fault occurs is
detected according to the rule below:

J(k) > Jth → fault occurs and alarm
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J(k) ≤ Jth → no fault occurs.

3. Performance Analysis of an FD Dynamic System

In this part, we are concerned with the performance analysis of the FD filter for the T-S
fuzzy system, as stated previously. Before proceeding, we present several useful lemmas:

Lemma 1. (Schur Complement) Given constant matrices X =

[
X11 X12
X21 X22

]
, where X11 is r× r,

the following three conditions are equivalent:

(i) X < 0;
(ii) X11 < 0, X22 − XT

12X−1
11 X12 < 0;

(iii) X22 < 0, X11 − X12X−1
22 XT

12 < 0.

Lemma 2. (S-procedure) Given matrix E = ET , M and N are real matrices with suitable
dimensions, and F satisfies FT F ≤ I, then the sufficient condition for E + MFN + NT FT MT < 0
is that there is a positive number, so that

E + µMMT + µ−1NT N < 0 or Π =

 E
µMT

N

µM
−µI
0

NT

0
−µI

 < 0.

Lemma 3. For any real matrices Xij, i, j = 1, 2, · · · , r and Λ > 0 with proper dimensions, one
has [30].

r

∑
i=1

r

∑
j=1

r

∑
k=1

r

∑
l=1

hihjhkhlXT
ij ΛXkl ≤

r

∑
i=1

r

∑
j=1

hihjXT
ij ΛXij (10)

The following analysis outcome provides a theoretical basis for the subsequent discussion.

Theorem 1. For the fuzzy CSTR system (2) with known filter parameters and a specified H∞
performance γ > 0. The fuzzy FD system (6) becomes exponentially stable in the mean square with
a disturbance attenuation level γ if there are positive definite matrices P > 0 and Q > 0 satisfying

ΠT
ii P̃Πii + Π̃T

ii ṔΠ̃ii + Pii < 0 (11)

2(Pii + Pjj) + (Πij + Πji)
T P̃(Πij + Πji) + (Π̃ij + Π̃ji)

T
Ṕ(Π̃ij + Π̃ji) < 0 (12)

where

Πij =

[
Aij + ∆A Adi + ∆Adi Λl A∗ij Bij Λl B∗ij

Cij 0 ΛlC∗ij Dij Λl D∗ij

]
,

Π̃ij =
[

Π̃T
1ij Π̃T

2ij Π̃T
3ij Π̃T

4ij

]T
,

Π̃1ij =
[

β̌Âij 0 0 β̌B̂ij 0
]
, Π̃2ij =

[
0 0 β̌l A∗ij 0 β̌l B∗ij

]
,

Π̃3ij =
[

β̌Ĉij 0 0 β̌D̂ij 0
]
, Π̃4ij =

[
0 0 β̌lC∗ij 0 β̌l D∗ij

]
,

Ṕ = diag{P, P`, I, I},R = I`+2 ⊗ P, Pis = diag
{

Q,−Q,−γ2 I
}

,

Q = −P + (d + 1)Q +
`
∑

l=1
Rl ,

P̃ = diag{P, I},Rl = diag{R1, · · · , R`}, β̌ =
√

β̃∗0 I, β̌l = diag
{√

β̃∗1 I, · · · ,
√

β̃∗` I
}

,

Λ̃∗l = diag
{

β̃∗1, · · · , β̃∗l

}
,β̃∗l = E

{
β̃2

l (k)
}

,

E
{

Λ̃T
l (k)PΛ̃l(k)

}
= diag

{
β̃∗1P, · · · , β̃∗l P

}
, Λ̃∗l ⊗ P.
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Proof. For simplicity, denote η̂(k) =
[

ηT(k) ηT(k− d(k)) η∗T(k) vT(k) v∗T(k)
]T .

With the dynamic system (7), define the following Lyapunov function:

V(k) =
4

∑
i=1

Vi(k) (13)

where

V1(k) = ηT(k)Pη(k), V2(k) =
k−1
∑

i=k−d(k)
ηT(i)Qη(i),

V3(k) =
0
∑

n=−d+1

k−1
∑

i=k+n
ηT(i)Qη(i), V4(k) =

`
∑

l=1

k−1
∑

i=k−l
ηT(i)Rlη(i)

where P > 0 and Q > 0 denote unknown matrices yet to be decided. By (7), one has

E{∆V1(k)} = E
{

ηT(k + 1)Pη(k + 1)− ηT(k)Pη(k)
}

= E{
r
∑

i,j,s,t=1
hihjhsht[ηT(k)((Aij + ∆Ai)

T P(Ast + ∆As) + β̃∗0 ÂT
ij PÂst − P)η(k)

+2ηT(k)(Aij + ∆Ai)
T PΛl A∗stη

∗(k) + 2ηT(k)(Aij + ∆Ai)
T PBstv(k)

+2β̃∗0ηT(k)ÂT
ij PB̂stv(k) + 2ηT(k)(Aij + ∆Ai)

T PΛl B∗stv
∗(k)

+2ηT(k)(Aij + ∆Ai)
T P(Ads + ∆Ads)η(k− d(k))

+η∗T(k)A∗Tij ΛT
l PΛl A∗stη

∗(k) + η∗T(k)A∗Tij (Λ̃∗l ⊗ P)A∗stη
∗(k)

+2η∗T(k)A∗Tij ΛT
l PBstv(k) + 2η∗T(k)A∗Tij ΛT

l PΛl B∗stv
∗(k)

+2η∗T(k)A∗Tij (Λ̃∗l ⊗ P)B∗stv
∗(k) + 2η∗T(k)A∗Tij ΛT

l P(Ads + ∆Ads)η(k− d(k))

+vT(k)BT
ij PBstv(k) + β̃∗0vT(k)B̂T

ij PB̂stv(k) + 2vT(k)BT
ij PΛl B∗stv

∗(k),

+2vT(k)BT
ij P(Ads + ∆Ads)η(k− d(k)) + v∗T(k)B∗Tij ΛT

l PΛl B∗stv
∗(k)

+v∗T(k)B∗Tij (Λ̃∗l ⊗ P)B∗stv
∗(k) + 2v∗T(k)B∗Tij ΛT

l P(Ads + ∆Ads)η(k− d(k))
+ηT(k− d(k)(Adi + ∆Adi)P(Ads + ∆Ads)η(k− d(k))],

(14)

E{∆V2(k)} = E{V2(k + 1)−V2(k)}

≤ [ηT(k)Qη(k)− ηT(k− d(k))Qη(k− d(k)) +
k
∑

i=k−d+1
ηT(i)Qη(i)], (15)

E{∆V3(k)} = E{V3(k + 1)−V3(k)}

≤ E
[

dηT(k)Qη(k)−
k
∑

i=k−d+1
ηT(i)Qη(i)

]
,

(16)

E{∆V4(k)} = E{V4(k + 1)−V4(k)}

=
`
∑

l=1

{
k
∑

i=k+1−l
ηT(i)Rlη(i)−

k−1
∑

i=k−l
ηT(i)Rlη(i)

}
=

`
∑

l=1

{
ηT(k)Rlη(k)− ηT(k− l)Rlη(k− l)

}
.

(17)

In the next stage, firstly, we are to verify the exponential stability of the FD dynamic
system (7) with v̂(k) = 0. By (14)–(17) and Lemma 1, we acquire the following:
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E{∆V1(k)|v̂(k) = 0}
≤ E

r
∑

i,j,s,t=1
hihjhsht[ηT(k)((Aij + ∆Ai)

T P(Ast + ∆As) + β̃∗0 ÂT
ij PÂst − P)η(k)

+2ηT(k)(Aij + ∆Ai)
T PΛl A∗stη

∗(k) + 2ηT(k)(Aij + ∆Ai)
T PΛl B∗stv

∗(k)
+2ηT(k)(Aij + ∆Ai)

T P(Ads + ∆Ads)η(k− d(k)) + η∗T(k)A∗Tij ΛT
l PΛl A∗stη

∗(k)

+η∗T(k)A∗Tij (Λ̃∗l ⊗ P)A∗stη
∗(k) + 2η∗T(k)A∗Tij ΛT

l P(Ads + ∆Ads)η(k− d(k))
+ηT(k− d(k)(Adi + ∆Adi)P(Ads + ∆Ads)η(k− d(k))].

(18)

Denote Aij = [Aij + ∆AAdi + ∆AdiΛl A∗ij], Ãij = diag
{

β̌Âij, 0, β̌l A∗ij
}

, then

E{∆V(k)|v̂(k) = 0}
≤ E{

r
∑

i,j,s,t=1
hihjhshtη̂

T(k)(Aij
T PAst + Ã

T
ijPÃst + P̂is)η̂(k)}

≤
r
∑

i,j=1
hihjη̂

T(k)Ai
T PAij + Ã

T
ij PÃij + P̂ii)η̂(k)

≤
r
∑

i=1
hij

2η̂T(k)Aii
T PAii + Ã

T
ii PÃii + P̂ii)η̂(k)

+ 1
2

r
∑

i,j=1,i<j
hihjη̂

T(k)[(Aij = Aji)
T P(Aij = Aji)

+(Ãij = Ãji)
T

R(Ãij = Ãji) + 2(P̂ii + P̂jj)]η̂(k)

(19)

where P̂is = diag{Q,−Q,−Rl}, Q = −P + (d + 1)Q +
`
∑

l=1
Rl .

By Theorem 1, we have Ω < 0. Furthermore, according to the method used in the
proof in reference [31], it is observed that system (7) reaches exponential stability. Next, the
H∞ performance of fuzzy dynamic system (7) is analyzed. Suppose zero initial conditions
and construct the exponential function as follows:

J(n) = E
n
∑

k=0
[rT(k)r(k)− γ2v̂T(k)v̂(k)]

≤ E
n
∑

k=0
[rT(k)r(k)− γ2vT(k)v(k)− γ2v∗T(k)v∗(k) + ∆V(k)].

(20)

It can be deduced from (7) that

rT(k)r(k) =
r
∑

i,j,s,t=1
hihjhsht[ηT(k)(CT

ijCst + β̃∗0ĈT
ij Ĉst)η(k)

+2ηT(k)(CT
ijΛlC∗st)η

∗(k) + 2ηT(k)(CT
ij Dst + β̃∗0ĈT

ij D̂st)v(k)

+2ηT(k)(CT
ijΛl D∗st)v

∗(k) + η∗T(k)(C∗Tij ΛT
l ΛlC∗st + Λ̃∗l C∗Tij C∗st)η

∗(k)

+2η∗T(k)((ΛlC∗ij)
T Dst)v(k) + 2η∗T(k)(C∗Tij ΛT

l Λl D∗st + Λ̃∗l C∗Tij D∗st)v
∗(k)

+vT(k)(DT
ij Dst + β̃∗0D̂T

ij D̂st)v(k) + 2vT(k)(DT
ijΛl D∗st)v

∗(k)

+v∗T(k)(D∗Tij ΛT
l Λl D∗st + Λ̃∗l D∗Tij D∗st)v

∗(k)].

(21)

Denote

η̂(k) =
[

ηT(k) ηT(k− d(k)) η∗T(k)
]T , η̃(k) =

[
η̂T(k) vT(k) v∗T(k)

]T .
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By (19) and (20) and Lemma 1, we have

J(n) ≤ E
{

n
∑

k=0

r
∑

i,j,s,t=1
hihjhshtη̃

T(k)(ΠT
ij P̃Πst + Π̃T

ij ṔΠ̃ij + Pis)η̃(k)

}
≤

r
∑

i,j=1
hihjη̃

T(k)(ΠT
ij P̃Πij + Π̃T

ij ṔΠ̃ij + Pii)η̃(k)

≤
r
∑

i=1
h2

i η̃T(k)(ΠT
ii P̃Πii + Π̃T

ii ṔΠ̃ii + Pii)η̃(k)

+ 1
2

r
∑

i,j=1,i<j
hihjη̃

T(k)[(Πij + Πji)
T P̃(Πij + Πji)

+(Π̃ij + Π̃ji)
T

Ṕ(Π̃ij + Π̃ji) + 2(Pii + Pjj)]η̃(k).

(22)

With Theorem 1, J(n) ≤ 0, then (8) is obtained, and the proof is complete. �

4. Fuzzy FD Filter Design

In this section, on the basis of the previous analysis, the fuzzy FD filter design problem
will be settled by the subsequent theorem.

Theorem 2. Consider the fuzzy dynamic system (7) and make γ > 0 a known scalar. If there are
matrices P > 0, Q > 0, Xand K satisfying the following linear matrix inequality (LMI): Γ1 ∗ ∗

MT
i −εI ∗

εN 0 −εI

 < 0 (23)

 Γ2 ∗ ∗
MT

i + MT
j −εI ∗

εN 0 −εI

 < 0 (24)

then the FD filter in the form of (6) exists with the following:

Γ1 =

[
Pii ∗
Z1ii −P

]
, Γ2 =

[
2(Pii + Pjj) ∗
Z1ij + Z1ji −P

]
,

Z1ij =



PÂ0i + XjR̂1i PAdi Λl ⊗ (XjR̂2i) PB̂0i + XjR̂3i Λl ⊗ (XjR̂4i)

KjR̂1i 0 Λl ⊗ (KjR̂2i) D0 + KjR̂3i Λl ⊗ (KjR̂4i)

β̌XjR̂2i 0 0 β̌XjR̂4i 0
0 0 β̌l ⊗ (XjR̂2i) 0 β̌l ⊗ (XjR̂4i)

β̌KjR̂2i 0 0 β̌KjR̂4i 0
0 0 β̌l ⊗ (KjR̂2i) 0 β̌l ⊗ (KjR̂4i)


,

Mi =
[

0 0 0 0 0 HT
i P 0 0 0 0 0

]T
,

N =
[

Ea Ed 0 0 0 0 0 0 0 0 0
]
,

Ê = [ 0 I ]
T , D0 =

[
0 −I

]
,Â0i =

[
Ai 0
0 0

]
,

B̂0i =

[
D1i Gi
0 0

]
, R̂1i =

[
0 I
Ci 0

]
, R̂2i =

[
0 0

D2i 0

]
If P, Q, Xj and Kj are feasible solutions to (23) and (24), then the FD filter gains of (5) are computed
via the following formula:

[A f j B f j] = (ÊT PÊ)
−1

ÊTXj, [C f j D f j] = Kj.



Processes 2021, 9, 2127 10 of 16

Proof. For the purpose of avoiding splitting the matrix P, Qm, and Rl , the parameters in
Theorem 1 are rewritten as follows:

Aij = Â0i + ÊLjR̂1i, Bij = B̂0i + ÊLjR̂2i, Cij = KjR̂1i, Dij = D0 + KjR̂2i

where Lj = [A f j B f j], Kj = [C f j D f j].
Then, according to Lemma 1, (11) and (12) are rewritten as follows:[

Pii ∗
Z̃ii −P−1

]
< 0 (25)

[
2(Pii + Pjj) ∗

Z̃ij + Z̃ji −P−1

]
< 0 (26)

where 1 ≤ i < j ≤ r (i, j ∈ R).

Z̃ij =



Â0i + ÊLjR̂1i + ∆Ai Adi + ∆Adi Λl ⊗ (XjR̂2i) B̂0i + ÊLjR̂3i Λl ⊗ (ÊLjR̂4i)

KjR̂1i 0 Λl ⊗ (KjR̂2i) D0 + KjR̂3i Λl ⊗ (KjR̂4i)

β̌ÊLjR̂2i 0 0 β̌ÊLjR̂4i 0

0 0 β̌l ⊗ (ÊLjR̂2i) 0 β̌l ⊗ (ÊLjR̂4i)

β̌KjR̂2i 0 0 β̌KjR̂4i 0
0 0 β̌l ⊗ (KjR̂2i) 0 β̌l ⊗ (KjR̂4i)


Pre- and post-multiply inequalities (25) and (26) by diag

{
I, P
}

, respectively, and
denote Xj = PÊLj, one acquires the following:

Γ1 =

[
Pii ∗
Zii −P

]
< 0 (27)

Γ2 =

[
2(Pii + Pjj) ∗

Zij + Zji −P

]
< 0 (28)

where

Zij =



PÂ0i + XjR̂1i + P∆Ai PAdi + P∆Adi Λl ⊗ (XjR̂2i) PB̂0i + XjR̂3i Λl ⊗ (XjR̂4i)

KjR̂1i 0 Λl ⊗ (KjR̂2i) D0 + KjR̂3i Λl ⊗ (KjR̂4i)

β̌XjR̂2i 0 0 β̌XjR̂4i 0

0 0 β̌l ⊗ (XjR̂2i) 0 β̌l ⊗ (XjR̂4i)

β̌KjR̂2i 0 0 β̌KjR̂4i 0

0 0 β̌l ⊗ (KjR̂2i) 0 β̌l ⊗ (KjR̂4i)


According to the expression of the uncertainty parameters, we have

∆Ai = HiF(k)Ea, ∆Adi = HiF(k)Ed, Hi =
[

HT
i 0

]T , Ea =
[

Ea 0
]
, Ed =

[
Ed 0

]
.

Equations (27) and (28) can be rewritten as follows:

Γ1 + MF(k)N + NT FT(k)MT
i < 0 (29)

Γ2 + (Mi + Mj)F(k)N + NT FT(k)(Mi + Mj)
T < 0 (30)

where 1 ≤ i < j ≤ r (i, j ∈ R); the parameters therein are defined in Theorem 2. In
accordance with the S-procedure in Lemma 2, (23) and (24) are obtained, and the proof is
now complete. �
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Remark 2. Until now, the H∞ fault detection filter design has been accomplished for the CSTR
reaction process subject to parameter uncertainties, channel fadings, and delays. The main results of
this paper are thus highlighted as follows. In Section 3, Lemmas 1–3 lay a necessary foundation for
later analysis and design, and Theorem 1 realizes the performance analysis (exponential stability in
the mean square of the error dynamics of the fault detection filter and the H∞ disturbance rejection
level of the residual filtering error against external disturbances). In Section 4, the fault detection
filter design is fulfilled in Theorem 2, the gain expression of the desired fault detection filter is
acquired by virtue of the feasible solution to certain LMIs. More specifically, Theorem 2 contains
all the system parameters such as delay bound, parameters in the parameter uncertainties, and
statistical characteristics of the channel coefficient.

Remark 3. The main work of this paper is further emphasized as follows: (1) constructing a fuzzy
T-S model to reflect the CSTR reaction process on the basis of the dimensionless mechanism model;
(2) the channel fading phenomenon is considered in the transmission process of CSTR measurement
signal from the sensor to the FD filter, which is characterized by the improved Lth-order Rice fading
model by reflecting the actual situation of signal transmission more accurately; and (3) a reinforced
stochastic analysis technique is implemented in order to conform to the H∞ performance of the fault
detection filter concerning the CSTR fuzzy systems, except for the constraint of exponential stability
in the mean square.

5. Numerical Example

The chosen CSTR system parameters are the following: γ0 = 20, H = 8, β = 1,
Dα = 0.072, and λ = 0.8. Let d = 5, D11 = D12 = D13 =

[
0 1

]T . In the reaction, the

CSTR system has three equilibrium points: x̂01 =
[

0.1440 0.8862
]T ,

x̂02 =
[

0.4472 2.7520
]T , x̂03 =

[
0.7646 4.7052

]T , the following T-S fuzzy rules
are then employed to expand near the three equilibrium points.

Rule 1: If x2(k) is small (x2(k) is about 0.8862), then

x(k + 1) = (A1 + ∆A1)x(k) + (Ad1 + ∆Ad1)x(k− d(k)) + D11w(k) + G1 f (k);

Rule 2: If x2(k) is medium (x2(k) is about 2.7520), then

x(k + 1) = (A2 + ∆A2)x(k) + (Ad2 + ∆Ad2)x(k− d(k)) + D12w(k) + G2 f (k);

Rule 3: If x2(k) is large (x2(k) is about 4.7052), then

x(k + 1) = (A3 + ∆A3)x(k) + (Ad3 + ∆Ad3)x(k− d(k)) + D13w(k) + G3 f (k).

Here, x(k) and x(k− d(k)) are the set of differences between the temperature state
value and the corresponding equilibrium point temperature value. According to the
selected parameters, there are

A1 =

[
0.0418 0.0132
0.0346 −0.0194

]
, A2 =

[
0.0590 0.0346
−0.0472 0.0515

]
, A3 =

[
0.0498 −0.0167
0.0983 0.0758

]
,

Ad1 = Ad2 = Ad3 = diag{0.25, 0.25}, F(k) = sin(0.6k), C2 =
[
−0.79 0.65

]
,

H1 = H2 = H3 =

[
0.2

0.01

]
, Ea =

[
0 0.15

]
, Ed =

[
0 0.2

]
, G1 =

[
0.21
−0.14

]
, C3 =

[
−0.81 0.65

]
,

G2 =

[
0.20
−0.12

]
, G3 =

[
0.19
−0.15

]
, D21 = D22 = D23 = 0.02, C1 =

[
−0.8 0.65

]
.

The membership functions are shown in Figure 2.
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The order of the fading model is ` = 2, the probability quality function of the channel
coefficient is as follows:

f (β0) = 0.0005(e9.89β0 − 1), 0 ≤ β0 ≤ 1

f (β1) =

{
10β1, 0 ≤ β1 ≤ 0.20
−2.50(β1 − 1), 0.20 < β1 ≤ 1

f (β2) = 8.5017e−8.5β2 , 0 ≤ β2 ≤ 1

The mathematical expectations βs(s = 0, 1, 2) are acquired as 0.8991, 0.4000, and

0.1174, the variance (β̃s)
2

are 0.0133, 0.0467, and 0.01364, respectively. In terms of the above
parameters and using the LMI toolbox in the Matlab software, the gains of the FD filter
can be calculated by solving the feasible solution to matrix inequalities (23) and (24). The
obtained gains of the fault detection filter (5) are shown in Table 1.

Table 1. The computed gains of the fault detection filter.

Afi Bfi Cfi Dfi

i = 1
[
−0.8972 0.7112
−0.4820 0.4996

] [
0.0145
0.0017

] [
0.0893 −0.4515

]
2.4358

i = 2
[

0.4122 −0.3698
−0.6324 0.5753

] [
−0.0166
0.0139

] [
0.4414 −0.3681

]
−5.2732

i = 3
[

0.0014 −0.0012
0.0002 −0.0002

] [
−0.0489
−0.0214

] [
0.1356 −0.0628

]
−7.4592

The initial state is taken as x(0) =
[

0.9 0.9
]T , noise

w(k) =

{
0.2rand(1, 1), 30 ≤ k ≤ 130
0, else

, and the fault signal f (k) is chosen as follows:

f (k) =

{
1, 50 ≤ k ≤ 100
0, else

Figure 3 plots measurement curves, in which the dashed line denotes the ideal mea-
surement output, and the solid line represents the signal actually received by the fault
detection filter. It can be seen that the amplitude change of the received signal is more
intense than that of the ideal measurement, which validates that channel fadings may
lead to the signal distortion (signal missing and delays). Additionally, the occurrence and
existence of faults cause the abnormal values of the measurement signals. Figures 4 and 5
describe the residual signal curves with and without noise, respectively. We notice that the
residual signal curve without noise is smoother than the one with noise, and the influence
of both faults and channel fadings on the residual signal is obvious, which is in accordance
with Equation (5). In terms of Equation (9), Figures 6 and 7 reflect the evolution of the
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residual evaluation function curves with and without noise, respectively. It is shown that
there are more fluctuations in the residual evaluation function with noise than those with-
out noise. In Figure 6 (or Figure 7), the dashed line and the solid line depict the residual
evaluation function with and without faults, respectively. It is also illustrated that the value
of the residual evaluation function increases due to the existence of faults, which lay a basis
for the fault detection.
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Assuming the threshold Jth = sup f=0

√
200
∑

h=0
rT(h)r(h), after 200 fault-free simulation

runs, the average threshold is then Jth = 0.2622. It can be recognized from Figure 6 that
2.519 = J(59) < Jth < J(60) = 2.772, i.e., the fault is detected in step 10, after it occurs. It
can be concluded that the residual can not only reflect the fault in time, but also detect the
fault in the case of disturbance.

6. Conclusions

In this paper, the FD issue for CSTR with respect to time delay, uncertainty parameters,
and channel fadings was investigated in terms of the T-S fuzzy model. Norm-bounded
uncertainties were adopted to describe parameter imprecision caused by modelling errors.
The phenomenon of channel fadings was considered while the measurement output signal
was transmitted from the sensor to the FD filter, which was then reflected with an improved
L-th Rice fadings model. The performance constraints to be met by the constructed fault
detection filter were both the exponential stability in the mean square of the filtering error
system and the H∞ disturbance rejection level of the residual filtering error in resistance
to external disturbances. With the help of the Lyapunov stability theory and reinforced
stochastic analysis techniques, the analysis of the performance and the design of the fault
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detection filter were carried out for the CSTR. As a result, a sufficient condition was
put forward, ensuring the existence of a satisfactory FD filter. Simultaneously, a direct
expression was acquired from the FD filter in accordance with the feasible solution to a
specified LMI, which is solved conveniently via the standard Matlab software. Lastly, a
simulation example demonstrated that faults can be reflected and detected in time under
circumstances of disturbance by choosing the thresholds appropriately, which validates the
effectiveness and the correctness of the developed FD strategy for CSTR in this paper. For
subsequent research topics, we would like to deal with fault estimation, fault prognosis,
and related issues therein [32].
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