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Abstract: Current strategies of combating bacterial infections are limited and involve the use of
antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number
of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food
preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since
ancient times and are well known for their successful antimicrobial activity. Often photosensitizers
are present in many edible plants; they could be a promising source for a new generation of drugs
and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial
properties in plant photosensitizers. The purpose of this review is to present the verified data on
the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora,
including the various mechanisms of their actions.
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1. Introduction

Although plants are able to treat many pathological conditions [1], only 15% have
been investigated phytochemically, and 6% have been screened for biological activity [2].
It is widely acknowledged that many antimicrobial compounds identified and isolated
from medicinal plants are very active against both Gram-positive and Gram-negative
bacteria [3–7]. Between 1981 and 2019, 162 new antimicrobial drugs were approved, 94 of
which were produced from plants [8].

The best-known approach to combating bacterial diseases involves the use of antibi-
otics. During the last decades, the overuse of antibiotics resulted in selective pressures
that led to the widespread appearance of antibiotic-resistant microorganisms [9]. Each of
the antibiotics in use has generally inadequate efficacy and a number of serious adverse
effects [10]. It is imperative to investigate new antimicrobial agents that are more effective
and less toxic than these antibiotics. From this perspective, the application of herbal com-
pounds may potentially hold great promise. Isolation and identification of plant-based
antimicrobial agents is always a challenging task, because bioactive compounds often occur
as complex mixtures with other secondary metabolites. In addition, these compounds are
found in such small quantities that enhancement of their antimicrobial properties is very
important. The use of photodynamic therapy presents a promising possibility to improve
the antimicrobial activity of phytochemicals, since many of them are photosensitizers (PSs).
Although many aspects of PSs were covered by numerous reviews [11–16], edible plants
and their PSs were not seriously considered as sources of new drugs and preservatives.
They in fact deserve special attention, because actively cultivated edible plants are already
available which are rich in useful phytochemicals. These phytochemicals are not only po-
tential antimicrobial drugs, but are also ideal as possible preservatives for the food industry.
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There is an urgent need for new natural agents that are more effective and less toxic than
the currently popular compounds, such as sodium benzoate; acetic, lactic, benzoic, and
sorbic acids; hydrogen peroxide, and chelators. They are used in many cases because of
their ability to inhibit the activity of various microorganisms [17]. In addition, the majority
of these compounds have good stability and excellent solubility in water [18]. Yet each of
them has generally inadequate efficacy and a number of serious adverse effects [19]. Thus,
plant-based compounds may be an alternative strategy for the food industry.

We collected and analyzed information on edible plants with antimicrobial com-
pounds, including photodynamic phytochemicals. The aim of this review is to provide
verified data on plant-based antimicrobial activities, and discuss the various mechanisms
of their actions.

2. Antimicrobial Properties of Edible Plants

As already mentioned, many edible plants are important sources of antimicrobial com-
pounds exhibiting high activity against both Gram-positive and Gram-negative bacteria
(Table 1). Cultivated vegetables, fruits, nuts, herbs, and spices have been investigated more
thoroughly than wild species; thus, they dominate the list (Table 1). Although more than
7000 species of wild edible plants are present in human nutrition [20], their antimicrobial
properties are poorly investigated, and most of them still need to be studied [21,22].

A wide variety of compounds with different structures may have antimicrobial prop-
erties: polyphenols (phenolic acids, flavonoids, lignans, stilbenes, etc.); terpenoids, sulfides,
coumarins, saponins, furils, alkaloids, polyines, thiophenes, different sugars, fatty oils,
resins, glycosinolates, proteins, peptides, and others [23]. The quantitative distribution of
the phytochemicals can vary from organ to organ or from plant to plant, depending on
many factors: most notably, the plant genotype, growth conditions, developmental stage,
soil, environmental conditions, agricultural practices, abiotic, and biotic stress [24].

Most edible plants are consumed after being cooked or dried. Frying, grilling, boiling,
drying, and steaming are often detrimental to many phytochemicals.

Polyphenols, which occur in all plants, are the most potent antimicrobial compounds,
especially phenolic acids and flavonoids. In cases where the identification and purification
of active antimicrobial compounds from plants were not complete, the total phenol and
flavonoid content was estimated, based on the high probability that the active phytochemi-
cals belong to these groups.

Phenolic acids can be found in almost all edible plants. Antimicrobial properties of
phenolic acids relate to the presence of double bonds and hydroxyl, methoxy, and carboxyl
groups [25,26].

One phenolic acid is p-coumaric acid (4-hydroxycinnamic acid), which aroused inter-
est because of contradicting reports on its antimicrobial activity. This compound exhibits
antibacterial activity against three Gram-positive bacteria (Streptococcus pneumonia, Staphy-
lococcus aureus, and Bacillus subtilis) and three Gram-negative bacteria (Escherichia coli,
Shigella dysenteriae, and Salmonella typhimurium), eliminating bacterial cells via dual damage
mechanisms: increasing the membrane permeability of the bacteria and binding to the
phosphate anion of their DNA [27]. It was reported that p-coumaric acid demonstrated a
much lower inhibitory activity against Staphylococcus aureus, and no inhibitory effect on
Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium [28]. In addition, it had
no inhibitory effect on several Gram-positive bacteria and Gram-negative bacteria [29].
It was likewise found that p-coumaric acid was not effective against Klebsiella pneumonia,
Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus vulgaris; but a
significant antimicrobial effect was observed in combination with syringaldehyde. It is
noteworthy that syringaldehyde alone did not eliminate these microorganisms [30]. Thus,
antimicrobial ability can be obtained in a synergistic action between p-coumaric acid and
certain phytochemicals whose efficacy would be very low in its absence.

Chlorogenic acid is one of the most available acids among the phenolic acid com-
pounds. It is a well-known component in green coffee extracts [31] and many other edible
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plants [32]. Its bactericidal effects against Stenotrophomonas maltophilia resistant to trimetho-
prim/sulfamethoxazole [33], Klebsiella pneumoniae [34], Helicobacter pylori [35], Escherichia
coli [36], Staphylococcus epidermidis [37], and Staphylococcus aureus [38] were reported. In
addition, chlorogenic acid had an inhibitory effect on the multidrug efflux systems of
multidrug-resistant bacteria [38] and their biofilm formation [39]. On the other hand, it is
not toxic against probiotic bacteria, which makes this compound suitable to use in the food
industry [39].

Although caffeic acid is present in many edible plants, its antimicrobial properties were
observed in propolis [40,41]. The caffeic acid enhanced the activity of several antibiotics
against many bacterial strains [42–44]. The mechanism of its action is connected with the
inhibition of the bacterial RNA polymerase enzyme [42]. Ferulic, p-coumaric, and sinapic
acids of kidney beans also demonstrate antibacterial activity [42].

In many cases, there are synergistic or antagonistic reactions among phenolic acids
and other compounds, which make the results from in vitro and in vivo studies variable.

Numerous antimicrobial flavonoids are present in many species of edible plants.
Based on their differences in the phenyl-benzopyran core, flavonoids have been divided
into several subgroups: flavanols, flavones, flavanones, anthocyanidins, and isoflavones.
Several investigated mechanisms of their actions include the inhibition of nucleic acid
synthesis via interference in bacterial type II topoisomerases (DNA gyrase and topoiso-
merase IV) activity [43]; inhibition of cytoplasmic membrane function [43]; inhibition of
cell envelope synthesis [44]; inhibition of energy metabolism [43]; inhibition of cell-wall
synthesis [43]; inhibition of efflux pumps in bacteria [45]; inhibition of bacterial enzyme-
dependent virulence [46]; and membrane-disrupting activities [47,48]. In addition, the
antiquorum sensing activity of flavonoids was reported [49,50]. Bacterial quorum sensing
is a process of cell-to-cell communication that regulates genetic competence, bacterial
colonization, biofilm formation, virulence, and other properties that make many bacteria
more dangerous [3]. Although the mechanism of action of antiquorum-sensing flavonoids
is still poorly understood, it became clear that the bacterial proteins TtgR in complex with
flavonoids have properties that block the efflux pumps in bacteria [51]. In fact, epigallo-
catechin gallate is able to inhibit bacterial growth and suppress the expression of specific
genes related to biofilm formation [52]. Remarkably, some flavonoids also inhibit bacterial
toxins [53–55].

The antimicrobial activity of flavonoids is the result of a combination of several
mechanisms. The flavonol morin is indicative of how many modes of actions are known,
including promotion of bacterial aggregation, leakage of the cell membrane, intervention in
the biofilm growth, suppression of the PBP2a-mediated resistant mechanism of action [56],
and inhibition of bacterial enzyme-dependent virulence [57]. It is possible to improve
antibiotic efficiency against bacteria using flavonoids as potentiators [58].

Stilbenes are nonflavonoid polyphenols found in a number of plant families, including
Vitaceae. These compounds are produced in plants during the invasion of pathogens, with
the most studied stilbene being resveratrol, a constitutive compound found in some foods
and drinks such as red wine, of which it is a major component. Whereas resveratrol gener-
ally shows moderate antimicrobial activity, it is the precursor of more active derivatives
such as pterostilbene and viniferin [59,60].

The vegetables of the Brassicaceae family are rich in glucosinolates, a group of sulfur-
containing glucosides with significant antimicrobial properties [61]. At least 120 dis-
tinct glucosinolates have been identified [62]. Their modes of action include the break-
down of enzyme S-S bridges, DNA damage, and inhibition of bacterial cell growth and
proliferation [63].

Terpenes are secondary metabolites (based on an isoprene structure) produced by all
plants via two alternative metabolic pathways. The first is the mevalonate pathway in the
cytoplasm, and the second is the methylerythritol phosphate pathway in the plastids [64].
These compounds have enormous structural diversity, with about 200,000 variants existing
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in nature [65]. Indeed, the terpenes are one of the most important classes of antimicrobial
phytochemicals; they are mostly found in the form of essential oils [66].

Examination of the 33 terpenes frequently reported in the secondary metabolism of
plants revealed that 16 of the 33 compounds showed antimicrobial activity at the initial
screening. Higher antimicrobial activity was related to the presence of hydroxyl groups
(phenolic and alcohol compounds), whereas hydrocarbons reduced that activity [67]. Sup-
port of this idea is found in terpineol and eugenol, whose antimicrobial properties were
demonstrated in some studies [21,68]. Moreover, these compounds are able to cause
dysfunction in the bacterial membrane [67]. It was found that essential oils and their
compounds are divided into two groups: slow-acting and fast-acting [68]. It was reported
that terpineol, eugenol, geraniol, carveol, and citronellol were fast-acting compounds,
inactivating several bacterial organisms in a two-hour period [67]. A possible mechanism
of their antimicrobial action is their ability to destroy cell membrane integrity by form-
ing a phenolic cluster that initiates lipid–protein interaction, improves the membrane’s
permeability, and results in leakage of the cellular contents [69,70].

Ursolic acid is a natural terpene identified in many edible plants, such as apples,
marjoram leaves, oregano leaves, rosemary leaves, sage leaves, thyme leaves, black elder
leaves and bark, hawthorn leaves and flowers, coffee leaves, and the wax layer of many
fruits [71,72]. A number of studies have been performed to evaluate the antibacterial
properties of ursolic acid [73–75]. Its antimicrobial mode of action is connected with its
ability to influence the integrity of the bacterial membrane initially, followed by inhibition
of protein synthesis and the metabolic pathway [76]. It was reported that ursolic acid is
able to improve antibiotic activity [77,78].

Lupeol (phytosterol and triterpene) is identified in many edible vegetables and
fruits; although it exhibits significant antimicrobial activity, the mechanism of its action is
not clear [79].

The saponins are a subclass of terpenoids. There are three classes of saponins (triter-
penoids, steroids and glycoalkaloids) based on their different aglycone structures [22]. The
triterpenoid 18-β-glycyrrhetinic acid showed an antibiotic effect on Staphylococcus aureus
by influencing some of its important genes [22]. In addition, this compound is an immuno-
logical adjuvant [80,81].

Six saponins from Chenopodium quinoa Willd. were identified; these compounds
destroy the bacterial biofilm system. The mechanism of their action is related to disruption
of the cytoplasmic membrane and membrane proteins [82].

Both licochalcone [83] and liquiritigenin were effective against Staphylococcus aureus [84].
In addition, licochalcone A inhibited the formation of biofilms in many cases [85].

Although Sapindus saponins are prevalent in nonedible plants, they have such broad-
spectrum antibacterial effects that it is worthwhile to pay attention to these compounds.
Screening of their antibacterial activity in various combinations against seven bacteria
demonstrated that only the combination of Sapindoside A and B was effective against
Micrococcus luteus, causing damage to cell membrane proteins [86]. Sapindus saponins
(Mukurozisaponin E1, Rarasaponin II, Mukurozisaponin G, and Rarasa ponin VI) inhibited
Propionibacterium acnes; the mechanism of their action is connected with suppressing the
activities of bacterial enzymes, such as lipase and tyrosinase [87].

Two lignans (sesamin and sesamolin) found in Sesamum indicum (L.) had significant
antiquorum sensing and antibiofilm properties against Pseudomonas aeruginosa. The possible
mechanisms of action of the lignans were investigated; they influence LasR-mediated
virulence factor production [88].

A number of antimicrobial phytochemicals have not yet been identified (Table 1).
Whether the antimicrobial effects of many edible plants may be a synergy of multiple
phytochemicals or a single component should be a focus for future investigations. In
addition, various metabolites in plant extracts have synergic or antagonistic effects on
antimicrobial activity.
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Table 1. Edible plants with antimicrobial properties.

Phytochemicals Plant Microorganism References

2-vinyl-2,4-dihydro-1,3-
dithiin, 3-vinyl-3,4-
dihydro-1,2-dithiin,

and ajoene

Allium cepa Bacillus subtilis [89]

Ajoene,
kaempferol, and allicin Allium sativum

Pseudomonas aeruginosa
Enterococcus faecalis

Salmonella, Escherichia coli, Pseudomonas, Proteus,
Staphylococcus aureus, Helicobacter

[90–93]

Proteins Ananas comosus Saccharomyces cerevisiae, Escherichia coli [94]

Phenolic compounds Annona squamosa

Staphylococcus aureus, Bacillus cereus,
Staphylococcus epidermidis, Monilia albican,

Escherichia coli, Salmonella typhimurium, Shigella
flexneri, Pseudomonas aeruginosa

[37]

Limonene, pinene (-α, -β),
and selinene (-α, -β) Apium graveolens Staphylococcus aureus, Bacillus subtilis, Escherichia

coli, Pseudomonas aeruginosa [95]

Berteroin and lesquerellin Armoracia macrocarpa Bacillus subtilis, Escherichia coli [96]

Iberin and some
undetermined compounds

5-phenylpentyl isothiocyanate
Armoracia rusticana

Pseudomonas aeruginosa
6 strains of facultative anaerobic bacteria,

Streptococcus mutans, Streptococcus sobrinus,
Lactobacillus casei, Staphylococcus aureus,
Enterococcus faecalis, and Aggregatibacter

actinomycetemcomitans; one strain of yeast,
Candida albicans, and 3 strains of anaerobic
bacteria, Fusobacterium nucleatum, Prevotella

nigrescens, and Clostridium perfringens
Staphylococcus aureus, Bacillus subtilis, Bacillus

cereus, Proteus vulgaris, Escherichia coli,
Salmonella enterica

[97–99]

Phenolic compounds Aronia melanocarpa Proteus mirabilis [100]

Berberine Berberis vulgaris Helicobacter pylori [101]

Protein: BjCHI1 Brassica juncea Several Gram-negative bacteria [102]

Epicatechin, epicatechin
gallate, epigallocatechin, and

epigallocatechin gallate
Camellia sinensis

Staphylococcus epidermidis, Micrococcus luteus,
Brevibacterium linens, Pseudomonas fluorescens,

Bacillus subtilis
[103]

Capsaicin and
dihydrocapsaicin Capsicum species

Bacillus cereus, Bacillus subtilis, Clostridium
sporogenes, Clostridium tetani,

Streptococcus pyogenes
[104]

Saponins Chenopodium quinoa
Staphylococcus aureus, Staphylococcus epidermidis,

Bacillus cereus, Salmonella enteritidis, Pseudomonas
aeruginosa, Listeria ivanovii

[82]

Kaempferol and some
undetermined compounds

presumably, tannins, saponins,
flavonoids, alkaloids

Centella asiatica L. Chromobacterium violaceum
Escherichia coli [105,106]

Oxalic, succinic, shikimic, and
quinic acids Cichorium intybus Streptococcus mutans, Actinomyces naeslundii [107]

Unknown Cinnamomum verum Pseudomonas aeruginosa [108]

Unknown Citrus medica Listeria monocytogenes [109]

l-limonene Citrus reticulata Escherichia coli, Staphylococcus aureus [110]
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Table 1. Cont.

Phytochemicals Plant Microorganism References

Polyphenols Citrus sinensis
Staphylococcus aureus, Enterococcus faecalis,

Pseudomonas aeruginosa, Escherichia coli, and
Salmonella typhimurium

[111]

Unknown Coffea arabica Staphylococcus aureus, Staphylococcus epidermidis,
Pseudomonas aeruginosa, Escherichia coli [112]

α-pinene, camphene, and
linalool (2E)-dodecenal Coriandrum sativum L. Listeria monocytogenes, Salmonella choleraesuis [113]

Protein PR-5 Cucurbita moschata Fusarium oxysporum [114]

Unknown Cucurbita pepo Escherichia coli BL21, Escherichia coli B-23,
Escherichia coli BL24 JPN, Shigella sonnei [115]

The octamers of
epigallocatechin and its

gallate Phenolic compounds
Diospyros kaki

Salmonella enterica
Staphylococcus aureus, Bacillus cereus,

Staphylococcus epidermidis, Monilia albican,
Escherichia coli, Salmonella typhimurium, Shigella

flexneri, Pseudomonas aeruginosa

[37,116]

Sesquiterpenoids:
jambolanins Eugenia jambolana Staphylococcus aureus [117]

Unknown Ficus carica Streptococcus pyogenes, 10 Lactobacillus strains [118]

Unknown Hibiscus sabdariffa

Staphylococcus aureus, Klebsiella pneumoniae,
Pseudomonas aeruginosa, Acinetobacter baumannii,

Streptococcus mutans, Campylobacter jejuni,
Campylobacter coli, Campylobacter fetus,

Pseudomonas fluorescence

[119]

Kaempferol
3-O-alphaL-(2”,4”-di-E-p-

coumaroyl)-rhamnoside (C2),
and Kaempferol

3-O-alphaL-(2”-Z -p-
coumaroyl)-rhamnoside (C3)

Laurus nobilis Streptococcus pneumonia, Pseudomonas aeruginosa,
Serratia marcessens [120,121]

Flavonoids Lepidium sativum Proteus mirabilis, Staphylococcus epidermidis,
Staphylococcus aureus [122]

Unknown Medicago truncatula Chromobacterium violaceum, Pseudomonas putida,
Escherichia coli [123]

L-canvanine Medigo sativa Sinochrizobium melioti [124]

Unknown
Peptide Momordica charantia

Microorganisms of clinical interest (standard
strains and multiresistant isolates)

Escherichia coli, Staphylococcus aureus
[125,126]

Unknown Moringa oleifera Pseudomonas aeruginosa, Staphylococcus aureus [127]

Morin Morus alba Staphylococcus aureus [56]

APC protein Murraya koenigii L
Escherichia coli,

Staphylococcus aureus, Vibrio cholerae, Klebsiella
pneumoniae, Salmonella typhi, Bacillus subtilis

[128]

Estragol Ocimum basilicum Bacillus subtilis, Staphylococcus aureus [129]

Hydroxytyrosol, oleuropein Olea europaea Salmonella enterica, Escherichia coli [130]

Unknown
Thymol and carvacrol Origanum vulgare

Chromobacterium violaceum,
Bacillus species,

Salmonella enteritidis
[131–133]

Anglicin and psoralen Pastinaca sativa Staphylococcus aureus [134]
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Table 1. Cont.

Phytochemicals Plant Microorganism References

Apiol, myristicin, and
b-phellandrene Petroselinum crispum Staphylococcus aureus, Listeria monocytogenes,

Salmonella enterica [135]

Unknown Piper longum L. Chromobacterium violaceum [136]

Unknown Pistachia vera
Bacillus cereus, Staphylococcus aureus, Escherichia

coli, Pseudomonas aeruginosa, Salmonella typhi,
Candida albicans, Neurospora intermedia

[137]

3-methoxy-4,5-dinitrophenol Portulaca oleracea Staphylococcus aureus, Staphylococcus sonnei,
Acinetobacter baumannii, Bacillus subtilis [138]

Phenolics, flavonoids,
ortho-diphenols,

and saponins.
Prunus avium Staphylococcus aureus, Escherichia coli [139]

Citric acid Prunus mume Enterobacteria [140]

Quercetin and
quercetin-3-O-arabinoside Psidium guajava L. Chromobacterium violaceum,

Pseudomonas aeruginosa [105]

α-amyrin and flavonoid
compounds, steroidal

compounds
Pyrus bretschneideri Rehd. Staphylococcus aureus, Escherichia coli [141]

Unknown Raphanus raphanistrum L. Klebsiella pneumoniae, Pseudomonas aeruginosa [142]

Sulforaphene Raphanus sativus Staphylococcus aureus [143]

Unknown Rheum officinale
Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio

alginolyticus, Vibrio carchariae, Aeromonas
hydrophila, Edwardsiella tarda

[144]

Unknown Ribes nigrum Streptococcus pyogenes, 10 Lactobacillus strains [118]

Unknown Rosa rugosa Bacillus cereus [145]

Unknown Rosmarinus officinalis Streptococcus pneumoniae [146]

Unknown Solanum melongena Pseudomonas aeruginosa [147]

Eugenol Syzygium aromaticum Streptococcus pneumoniae [148]

Unknown Squalene,
campesterol, tocopherol,
isooctyl phthalate, ethyl

glicopyranoside, stigmasterol,
hexadecanoic acid, malvidin

Syzygium cumini

Chromobacterium violaceum Actinomyces naeslundii,
Fusobacterium nucleatum, Staphylococcus aureus,

Staphylococcus epidermidis, Veillonella dispar,
Klebsiella pneumoniae

[105,149,150]

Chebulic acid, combretastatin
A1, corilagin,

diethylstilbestrol, ellagic acid,
ethyl gallate, gallic acid,

piceid, resveratrol

Terminalia ferdinandiana Proteus mirabilis, Proteus vulgaris [151]

Phenolic compounds,
γ-terpinene Thymus vulgaris

Staphylococcus aureus, Pseudomonas aeruginosa,
Salmonella typhimurium, Escherichia coli, Klebsiella

pneumoniae, Enterococcus faecalis
[152]

Unknown Vanilla planifolia Andrews Chromobacterium violaceum [153]

Isothiocyanates Wasabia japonica Staphylococcus aureus, Pseudomonas aeruginosa,
Salmonella typhimurium, Escherichia coli [154]

Phenolic components Zingiber officinale Roscoe Chromobacterium violaceum, Pseudomonas
aeruginosa [155]
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3. Photosensitizers from Edible Plants as a Source of New Drugs

An important group of antimicrobial agents was mentioned in our Introduction: pho-
tosensitizers. Excitation of these compounds by light leads to the generation of reactive
oxygen species (ROS) that damage pathogenic cells. Light is absorbed by a photosensitizer,
leading to a photodynamic process which can develop either a type I or a type II pro-
cess. The former results in the formation of free radicals, such as superoxide anion (O2

−),
hydroxyl radicals (OH·), and hydrogen peroxide (H2O2), which oxidize biomolecules.
The type II process is characterized by the formation of singlet oxygen (1O2)—a highly
reactive and strong oxidizing agent (Figure 1) [12,156,157]. ROS produced during the
photodynamic process attack various targets outside of cells (for example, extracellular
polysaccharides), on the surface of cells and inside them (such as proteins, lipids, and
nucleic acids), and oxidize biomolecules, causing cell damage and ultimately their destruc-
tion [157–159]. The ratio between mechanisms I and II depends on the type of PS used
and the microenvironment in which the photodynamic process occurs. Furthermore, an
additional, oxygen-independent photoinactivation pathway has recently been proposed,
a type III photochemical mechanism [160]. It includes photoinduced electron transfer,
accompanied by the generation of reactive inorganic radicals which (according to the
author’s assumption) then attack microbial cells.

Processes 2021, 9, x FOR PEER REVIEW 8 of 33 
 

 

Chebulic acid, com-

bretastatin A1, corilagin, 

diethylstilbestrol, ellagic 

acid, ethyl gallate, gallic 

acid, piceid, resveratrol 

Terminalia ferdinandiana Proteus mirabilis, Proteus vulgaris [151] 

Phenolic compounds, γ-

terpinene 
Thymus vulgaris 

Staphylococcus aureus, Pseudomonas aeru-

ginosa, Salmonella typhimurium, Escherichia 

coli, Klebsiella pneumoniae, Enterococcus fae-

calis 

[152] 

Unknown Vanilla planifolia Andrews Chromobacterium violaceum [153] 

Isothiocyanates Wasabia japonica 

Staphylococcus aureus, Pseudomonas aeru-

ginosa, Salmonella typhimurium, Escherichia 

coli 

[154] 

Phenolic components Zingiber officinale Roscoe 
Chromobacterium violaceum, Pseudomonas ae-

ruginosa 
[155] 

3. Photosensitizers from Edible Plants as a Source of New Drugs 

An important group of antimicrobial agents was mentioned in our Introduction: pho-

tosensitizers. Excitation of these compounds by light leads to the generation of reactive 

oxygen species (ROS) that damage pathogenic cells. Light is absorbed by a photosensi-

tizer, leading to a photodynamic process which can develop either a type I or a type II 

process. The former results in the formation of free radicals, such as superoxide anion (O2 

˙ˉ), hydroxyl radicals (OH ˙), and hydrogen peroxide (H2O2), which oxidize biomolecules. 

The type II process is characterized by the formation of singlet oxygen (1O2)—a highly 

reactive and strong oxidizing agent (Figure 1) [12,156,157]. ROS produced during the pho-

todynamic process attack various targets outside of cells (for example, extracellular poly-

saccharides), on the surface of cells and inside them (such as proteins, lipids, and nucleic 

acids), and oxidize biomolecules, causing cell damage and ultimately their destruction 

[157–159]. The ratio between mechanisms I and II depends on the type of PS used and the 

microenvironment in which the photodynamic process occurs. Furthermore, an addi-

tional, oxygen-independent photoinactivation pathway has recently been proposed, a 

type III photochemical mechanism [160]. It includes photoinduced electron transfer, ac-

companied by the generation of reactive inorganic radicals which (according to the au-

thor’s assumption) then attack microbial cells. 

 

Figure 1. Schematic presentation of light-mediated cell damage during photodynamic treatment. 

Photodynamic therapy was discovered over a century ago. It has been studied and 

developed for many years for the treatment of cancer [161–163]. At the beginning of the 

1990s, in response to the emergence of the first drug-resistant infections, interest was re-

newed in studying the antibacterial properties of PSs [164,165]. Since then, many 

Figure 1. Schematic presentation of light-mediated cell damage during photodynamic treatment.

Photodynamic therapy was discovered over a century ago. It has been studied and de-
veloped for many years for the treatment of cancer [161–163]. At the beginning of the 1990s,
in response to the emergence of the first drug-resistant infections, interest was renewed in
studying the antibacterial properties of PSs [164,165]. Since then, many “synthetic” PSs
have been shown to be effective against various types of microorganisms [165–168]. The
wider spectrum of PS action compared to antibiotics, their bactericidal efficacy regardless
of antibiotic resistance, as well as a lack of development of resistance to them after sev-
eral sessions of therapy, emphasize the potential of using photodynamic antimicrobial
chemotherapy (PACT) for the eradication of various microorganisms, such as bacteria,
protozoa, and fungi [11,169,170].

Natural products from plant and animal origins contain many bioactive components
that are phototoxic when activated by light [19]. The cells of microorganisms, algae, plants,
and animals produce pigments for various biological purposes: photochemical reactions,
antioxidant activity, defense mechanisms, attraction of pollinators, etc. Some of these
pigments are photoactive and exhibit the photodynamic properties required for therapeutic
use [14]. To date, more than 100 natural compounds having photodynamic activity are
known [14,171]. Both pure compounds and extracts are used as PSs for PACT [13].

The main classes of natural PSs that can be found in edible plants are curcumi-
noids, anthraquinones, perylenequinones, furano-coumarins, alkaloids, chlorins, and
flavins [13,14,171]. Table 2 presents structures of the most prospective antimicrobials from
edible plants exhibiting photodynamic activity.
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The curcuminoid class consists of four linear diarylheptanoids: dicinnamoylmethane,
curcumin, demethoxycurcumin, and bisdemethoxycurcumin. These compounds have
a wide range of pharmacological activities, including antiviral, anti-inflammatory, anti-
tumor, and antibacterial properties [172–174]. The natural yellow pigment of curcumin
(diferuloylmethane) is derived from the rhizomes of turmeric (Curcuma longa), which
for centuries was widely used for nutritional and therapeutic purposes in Asian coun-
tries [175,176]. Curcumin demonstrates photodynamic activity when irradiated with blue
light, leading to an increase in 1O2 production and induction of a strong phototoxic reac-
tion [176]. The inhibitory effect of this pigment under illumination has been demonstrated
against various Gram-positive and Gram-negative bacteria (Table 3), as well as against
Candida sp. [177–179], human norovirus on food [180], and even against mosquito lar-
vae [181]. Curcumin is known to participate in both type I and type II reactions [182],
and its antibacterial activity is associated with damaging the membranes of bacterial
cells [175,183]. However, poor water solubility, relatively low bioavailability, and intense
staining limit the possibilities of using curcumin as a therapeutic agent [15].

Anthraquinones (AQs) belong to a large family of compounds that are usually divided
into monomeric and dimeric anthraquinones [13,15,171]. These compounds are produced
by many species of flowering plants, as well as lichens and fungi. They can be found in
any plant part: roots, rhizomes, leaves, flowers, and fruits [184]. Most of the studied plants
containing AQ derivatives (81%) belong to the Polygonaceae, Rubiaceae, and Fabaceae fam-
ilies. The best known are: emodin, rhein, physcion, chrysophanol, catenarin, rubiadin, and
pupurin [13,184]. AQs have a wide range of biological properties, including bactericidal,
fungicidal, antioxidant, anti-inflammatory, anticancer, and many others [184]. For example,
different research groups have demonstrated the photodynamic activity of aloe emodin
from Rheum palmatum and Aloe vera against various bacteria [185–187] and fungi [188–190]
(Table 3).

The perylenequinone (PQ) class, including hypericin, hypocrellins, elsinochromes,
and others, has promising characteristics for photodynamic therapy [191]. PQs efficiently
produce singlet oxygen, leading to a type II photodynamic process [171]. Their lipophilic na-
ture helps them to penetrate cell membranes [14]. Major plant sources of PQs include herbs
such as buckwheat (Fagopyrum esculentum) and St. John’s wort (Hypericum perforatum) [13].
For example, hypericin isolated from the latter is known for its antibacterial and antifungal
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properties (Table 3). At the same time, hypericin is poorly soluble in water; to increase effi-
ciency of delivery, it was proposed to use liposomes or micelles [13,192]. The antimicrobial
activity of some perylenequinones is summarized in Table 3, but it should be noted that a
large number of PQ compounds have yet to be investigated for their photopharmaceutical
properties [171].

Furanocoumarins (FCs) or psoralens are coumarins containing a furan ring, found in
plants of the Rutaceae family (common rue (Ruta graveolens), bergamot fruits, lime, gas
plant (Dictamnus albus), cloves (Syzygium aromaticum)); the Umbelliferae family (e.g., parsley
(Petroselinum crispum), celery (Apium graveolens), parsnip (Pastinaca sativa)); the Moraceae
family (figs (Ficus carica)); and others [14,171,193]. These compounds are phytoalexins, not
normally found in uninfected tissues and appearing only when the plant is damaged by
pathogens. Furthermore, the FC content is related to the growing season of the plant and
can differ significantly before and after flowering [193].

FCs are incorporated into cell DNA in the dark; under the influence of UVA (ul-
traviolet A) or Vis illumination, a photochemical process then leads to the FC reacting
with pyrimidine nucleobases. In addition, FC can react with RNA, cell membranes, and
proteins; however, these reactions are less studied [171,193,194]. Moreover, under UVA
illumination, psolarens can react with DNA in the absence of oxygen (type III photochemi-
cal mechanism) [160,195]. The antibacterial and antifungal activity of psolarens has been
demonstrated (see Table 3), but their use for the treatment of humans is limited, due to
possible toxicity [171,182].

Alkaloids, the second largest group of natural products, contain a large number
of photoactive compounds. These include quinoline (chinolin) alkaloids, pterins, ben-
zylisoquinolines, beta-carbolines, and indigo alkaloids [13,171]. Many of them exhibit
antimicrobial properties when exposed to light. For example, dictamnine (4-methoxyfuro
[2,3-b] quinoline), found in many Rutaceae species such as Dictamnus albus, has been shown
to be effective in killing yeast (Saccharomyces cerevisiae) and bacteria (E. coli) [196]. Among
the edible plants containing alkaloids are Berberis species containing the well-known
alkaloid berberine [197]. The light-dependent antibacterial properties of this compound
have been demonstrated as effective against Gram-positive S. aureus and Gram-negative
E. coli [198–200] (Table 3).

Chlorins belong to the class of tetrapyrroles, macrocyclic compounds widely known
for their photodynamic properties. This group also includes porphyrins and bacteriochlo-
rins [13,14,201]. Chlorophyll, the green pigment which plays a crucial role in photosyn-
thesis, is found in plants, cyanobacteria, and eukaryotic algae. The most studied plant
sources of chlorophyll are spinach, green cabbage, and dandelion [14,15,202]. Chlorophyll
derivatives, chlorins, have strong photodynamic properties and generate large amounts
of singlet oxygen (type II photodynamic mechanism) which are not accompanied by the
formation of toxic byproducts [203]. However, their poor solubility and low photostability
limit their use [13,182].

Flavins, yellow-colored compounds with the basic structure of 7,8-dimethyl-10-
alkylisoalloxazine, are widespread in nature and are involved in many biochemical reac-
tions [204]. A well-known representative of flavins, riboflavin (vitamin B2), is synthesized
by a wide range of organisms, including plants, fungi, bacteria, and animals [13,205].
When exposed to visible or ultraviolet light, riboflavin generates singlet oxygen, hydrogen
peroxide, hydroxyl, and superoxide radicals exhibiting photodynamic properties (type I
or type II mechanisms, depending on the oxygen concentration) [14,182,206,207]. Edible
plants rich in riboflavin are green leafy vegetables (for example, spinach), dark-green veg-
etables (for example, asparagus), nuts (for example, almonds) and legumes (for example,
soybeans) [208–210]. The antimicrobial activity of riboflavin under illumination has been
demonstrated against a variety of microorganisms (Table 3).
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Table 3. Photodynamic antimicrobial phytochemicals from edible plants.

Chemical Class PS-Phytochemicals
Edible Plants

Containing the
PS-Phytochemicals 1

Tested
Microorganisms References

Curcuminoids Curcumin
Turmeric

(Curcuma longa)

Acinetobacter baumannii [211]

Aggregatibacter
actinomycetemcomitans [212,213]

Escherichia coli [214–220]

Enterococcus faecalis [221–227]

Helicobacter pylori [228]

Lactobacillus casei [179]

Listeria innocua [216,229]

Listeria monocytogenes [230,231]

Porphyromonas
gingivalis [212]

Propionibacterium acnes [224,232]

Pseudomonas [233]

Pseudomonas aeruginosa [234]

Staphylococcus aureus [177,214,215,218,220,234–243]

Salmonella strains [230]

Salmonella typhimurium [239]

Streptococcus mutans [177,179,244–252]

Staphylococcus
saprophyticus [253]

Vibrio parahaemolyticus [254,255]

Oral bacteria [202,256–261]

Bacterial Biofilms [262]

Candida albicans [179,263,264]

Anthraquinones

Aloe emodin Rheum palmatum

Acinetobacter baumannii [186,187]

Escherichia coli [218]

Enterococcus faecalis [185]

Staphylococcus aureus [185,218]

Streptococcus pneumonia [185]

Trichophyton rubrum [190]

Candida albicans [189]

Emodin Cassia occidentalis
Bacillus subtilis [265]

Staphylococcus aureus [265]

Rhein Rheum palmatum
Porphyromonas

gingivalis [266]

Saprolegnia sp. [188]
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Table 3. Cont.

Chemical Class PS-Phytochemicals
Edible Plants

Containing the
PS-Phytochemicals 1

Tested
Microorganisms References

Perylenequinones

Hypericin
Hypericum perforatum,

Hypericum erectum,
Hypericum perforatum L.

Bacillus cereus [267]

Escherichia coli [268–270]

Enterococcus faecalis [270]

Propionibacterium acnes [271]

Pseudomonas aeruginosa [270]

Staphylococcus aureus [268–270,272,273]

Staphylococcus
saprophyticus subsp.

bovis
[274]

Candida species
(Candida albicans,

Candida parapsilosis, and
Candida krusei)

[275]

Saccharomyces cerevisiae [276]

Pathogenic fungi
(Microsporum canis,

Trichophyton rubrum,
Fusarium oxysporum)
and spoilage yeasts

(Exophiala dermatitidis,
Candida albicans,
Kluyveromyces

marxianus, Pichia
fermentans,

Saccharomyces cerevisiae)

[277]

Fagopyrin Fagopyrum esculentum
Moench

Pathogenic fungi
(Microsporum canis,

Trichophyton rubrum,
Fusarium oxysporum)
and spoilage yeasts

(Exophiala dermatitidis,
Candida albicans,
Kluyveromyces

marxianus, Pichia
fermentans,

Saccharomyces cerevisiae)

[277]

Saccharomyces cerevisiae [276]

Fagopyrin F Tartary buckwheat
(Fagopyrum tataricum) Streptococcus mutans [278]

Furanocoumarins
8-methoxy-

psoralen

Species of the genus
Heracleum in the family

Apiaceae

Escherichia coli [279]

Staphylococcus aureus [279]

Salmonella typhimurium [280]

Saccharomyces cerevisiae [280]

Alkaloids Berberine
Mahonia aquifolium,

Berberis vulgaris
Escherichia coli [198–200]

Staphylococcus aureus [198–200]
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Table 3. Cont.

Chemical Class PS-Phytochemicals
Edible Plants

Containing the
PS-Phytochemicals 1

Tested
Microorganisms References

Chlorins Chlorin e6
Spinach, green

cabbage, dandelion

Escherichia coli [281]

Propionibacterium acnes [282]

Pseudomonas aeruginosa [281]

Staphylococcus aureus [281,283]

Staphylococcus aureus [282]

Streptococcus mutans [284]

Salmonella typhimurium [281]

Upper respiratory
opportunistic

pathogens (Moraxella
catarrhalis, Streptococcus

pneumoniae,
Haemophilus influenzae)

[285]

Flavins
Riboflavin

(vitamin B2)
Spinach, asparagus

Bacillus atrophaeus [286]

Escherichia coli [287,288]

Listeria monocytogenes [289,290]

Staphylococcus aureus [288]

Streptococcus mutans [291]

Streptococcus sanguinis [291]

Salmonella strains
(Salmonella typhimurium

and Salmonella
enteritidis)

[292]

Shewanella baltica [290]

Vibrio parahaemolyticus [290]

Candida albicans [293]
1 In some cases, Table 3 presents PSs found in edible plants, but for testing antimicrobial activity, PSs were either isolated from other sources
or used as commercial preparations.

4. Use of Natural Plant Antimicrobials for Food Disinfection

The main demands concerning food are freshness, naturalness, and minimal process-
ing. The concept of naturalness relates to healthy and unmodified food without chemical
preservatives. However, consuming raw fruits, vegetables, fruit juices, and sprouts may
cause foodborne outbreaks of illness [294].

Conventional methods of microbial inactivation and food decontamination include
thermal processing, sanitization, water washing, drying, freezing, refrigeration, irradiation,
modified atmosphere packaging (MAP), and the addition of antimicrobial agents, disinfec-
tants, or salts. Irradiation, heat, high pressure, magnetic or electrical fields, and ultrasound
are microbial inactivation methods that do not induce microbial resistance [16,57,294,295].
Water washing and sanitization reduce bacterial load with limited success, and disinfec-
tants might cause genotoxicity and carcinogenicity. In addition, thermal processing reduces
the level of some bioactive compounds such as anthocyanin pigment, carotenoids, and
vitamin C, which can be found in several fruits. Therefore, nonthermal technologies, such
as dense-phase carbon dioxide (DPCD), high hydrostatic pressure (HHP), ultraviolet or
ozone processing, pulsed electric fields (PEF), and ultrasound, have been studied and
analyzed, with promising results.
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Each technique was developed for different phases, pigments, geometries, and goals
(for instance, for control of microorganisms and inactivation of pathogens on the surface
of solid foods vs. the total interior volume of liquids). The DPCD technique is generally
used for liquid foods, since the pressure involved damages the tissues of fruits. In PEF,
high intensity and long processing affect the nutritional quality of foods. For surface
decontamination of food, both UV-C and ozone treatments can be used; however, they
are limited to topical applications only. Moreover, a high dosage of ozone processing
alters the sensory quality of the food. Although HHP is a size- and geometry-independent
treatment, it needs water or sufficient humidity content within the sample in order to avoid
structural and/or textural changes. Chemical preservatives such as sugar, acids, and salts
(sodium benzoate, potassium sorbate, nitrites, and nitrates) are used commercially in fruits,
dairy products, confections, meats and meat products, etc. [294,295]. However, growing
evidence of the harmful effects and health risks of these chemical preservatives leaves no
other option but to find new methods that will reduce their amounts in foods. The optimal
alternative is to substitute appropriate additives that have no adverse effects. To achieve
these goals, good candidates are natural antimicrobial compounds such as bacteriocins,
chitosan-fermented ingredients, and plant antimicrobials, especially plant extracts and
plant-isolated compounds exhibiting a broad-spectrum activity.

The antimicrobial and antioxidant properties of plant extracts are attributed to sec-
ondary metabolites such as phenylpropanoids, terpenes, flavonoids, and anthocyanins.
Since plants are easily attacked by insects, fungi, and bacteria, they develop an efficient
defense system against pathogens by producing secondary metabolites, such as phenols,
oxygen-substituted derivatives, terpenoids, quinines, tannins, and antimicrobial peptides
(AMPs). The most promising biopreservative plant products are essential oils, plant AMPs,
and plant extracts in either pure or crude form [294].

5. Essential Oils

Liquid essential oils can be derived from several plant parts: flowers, buds, leaves,
fruits, twigs, bark, seed, wood, and roots. In the food industry, essential oils serve as
flavoring agents; however, their antimicrobial and antioxidant traits make them the best
candidates for food preservation. Their chemical structure and active functional groups
change with the types of plants, season, harvesting time, and methods of extraction. The
main active groups of essential oil compounds that are correlated with antimicrobial
properties are terpenes, terpenoids, phenylpropenes, and other chemical groups [294].

To date, the mechanism of operation is not clearly defined. There is no proof of a
mechanism driven by chemically active functional groups, but only a general assumption of
the oil penetrating the bacterial cell membrane due to its lipophilic nature, thus disrupting
cell function. It was suggested that oil compounds, possessing a phenolic functional
group, change the permeability of the bacteria cell membrane and hinder the generation
of ATP. Moreover, low concentrations of essential oil inhibit enzymes that are involved in
energy production, and in high concentrations it precipitates the protein. Since essential
oil is hydrophobic, it is more effective against Gram-positive than Gram-negative bacteria;
this is probably attributable to the difference in their cell structure, especially the cell
envelope [294].

Different studies have demonstrated the effectiveness of essential oils in both fresh-cut
fruit and juices (Table 4). Moreover, essential oil obtained from pink pepper (native to
Brazil, Paraguay, and Argentina) exhibited antimicrobial and antioxidant action in cheese,
with only 2% concentration [294]. Basil essential oil added to beef burger reduced the
growth of Staphylococcus aureus from 3 log10 CFU/g to 2 log10 CFU/g at 4 ◦C after 24 h [294].
Treatments with both clove oil and cumin oil enhanced the shelf life of red meat at 2 ◦C
for ~15 days, and reduced the bacterial concentration by ~3.78 log10, compared to control
measurements. The combination of thyme essential oil added at 0.4, 0.8, and 1.2%, and
nisin at 500 or 1000 IU/g, exhibited stronger antimicrobial activity than their individual
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usage, decreasing a Listeria monocytogenes population to below 2 log10 CFU/g in minced
fish during storage at 4 ◦C for 12 days [294].

Table 4. Plant antimicrobials for food disinfection and conservation.

Antimicrobial Type Plant Antimicrobials Plant Source 1 Target Microorganism Food Reference

Essential oil

Bay leaf essential oil Laurus nobilis,
Lauraceae Coliforms Tuscan sausage [296]

Clove oil Syzygium aromaticum
Listeria monocytogenes Minced fish [297]

Native microflora Meat [298]

Cuminum (cumin) seed
essential oil Cuminum cyminum Spoilage moulds Wheat and chickpea

samples [299]

Oregano essential oil Origanum elongatum Salmonela enteritidis Minced sheep meat [300]

Origanum elongatum
essential oil Origanum elongatum Lactic acid bacteria, yeasts

and molds Pomegranate juice [301]

Thyme or marjoram
essential oils

Thymus vulgaris and
Origanum majorana Escherichia coli Minced pork [302]

Thyme essential oil Thymus vulgaris

Escherichia coli Minced beef [303]

Vancomycin-resistant
Enterococci and E. coli Feta soft cheese [304]

Vancomycin-resistant
Enterococci and Escherichia

coli
Minced beef meat [304]

Zataria multiflora Boiss
essential oil Zataria multiflora Listeria monocytogenes Buffalo patties [305]

Antimicrobial
peptides (AMPs)

Defensin KT43C Cowpea seeds
Fusarium culmorum,

Penicillium expansum, and
Aspergillus niger

Dough [306]

Snakin Potato tubers

Listeria monocytogenes and
Listeria ivanovii Potato [307]

spoilage yeast;
Zygosaccharomyces bailii Beverages [308]

Thionins Triticum aestivum
(wheat)

Listeria monocytogenes and
Listeria ivanovii Wheat [309]

Plant extract

Black seed cumin Cuminum cyminum Escherichia coli and
Enterococci spp. Meat [310]

Clove Syzygium aromaticum Escherichia coli and
Enterococci spp. Meat [310]

Curcumin
Turmeric

(Curcuma longa L.)
Aspergillus flavus Maize kernels [311]

Escherichia coli, Salmonella,
and Listeria monocytogenes Hami-melons [312]

Grape seeds Grape seeds Listeria monocytogenes Buffalo patties [305]

Raisin Raisin (species
Hovenia dulcis) Mold Wheat [313]

1 In some cases, Table 4 presents PSs found in edible plants, but for testing antimicrobial activity, PSs were either isolated from other sources
or used as commercial preparations.

Another synergetic effect was proven in the combination of Zataria multiflora Boiss
essential oil and grapeseed extract in concentrations of 0.1% and 0.2%, respectively, which
showed antioxidant activity and effective growth control of Listeria monocytogenes in raw
buffalo patty. Another study showed that sage and thyme oils exhibited strong antimicro-
bial activity against vancomycin-resistant Enterococci and E. coli in minced beef meat [294].

6. Antimicrobial Peptides

AMPs are a part of a plant’s secondary metabolite defense system. They are widely
distributed in plants, plant parts, and the immune system; they participate in enzymatic net-
works engaged in metabolism as nutrients and storage molecules [294]. AMPs are the first
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line of defense against invading pathogens, as biologically active peptides with antimicro-
bial, antioxidant, antithrombotic, antihypertensive, and immunomodulatory properties.

Due to their amphophilic nature and the presence of positively charged residues,
they can penetrate bacterial membranes and alter their permeability. There are two types
of AMPs: peptides produced without the involvement of ribosomes (bacitracins and
glycopeptides), and peptides synthesized via the ribosomal pathway. The latter peptides
participate in the immune defense system of the organism’s body. To extract and save
crucial information about AMPs, an online antimicrobial peptide database was opened
in 2003, with more than 2600 different peptides identified to date. The antifungal activity
of AMPs is based on their attack on the fungal cell wall, especially a chitin component
that hinders its synthesis and changes the membrane permeability. AMPs also exhibit
antiviral activity, in which they bind the glycosaminoglycan moiety of the cell membrane
and prevent interaction between the virus and the cell. Bacterial antimicrobial peptides,
such as bacteriocins, have been used in food preservation for many years [294].

7. Plant Extracts

Since ancient times, spices and herbs have been used not only as flavoring agents
but also as preservatives. These plant extracts include leaves such as mint and rosemary,
flowers such as cloves (containing eugenol, which is associated with antibacterial activity),
bulbs such as garlic and onion, and fruits such as cumin and red chili.

Antimicrobial activity in plant extracts is determined by their phytochemicals. Phe-
nolics, phenolic acids, quinones, saponins, flavonoids, tannins, coumarins, terpenoids,
and alkaloids are the major classes of chemical constituents that affect the antimicrobial
and antioxidant activity, as well as the flavor of the plant. The hydroxyl group of the
phenolic compounds interrupts the functionality of bacterial cell membranes and shifts
the electrons, reducing the proton-motive force and inhibiting ATP synthesis, causing cell
death. Cinnamaldehyde inhibits bacteria cell-wall synthesis, impairing cell membrane
function and affecting the synthesis of nucleic acids. The antioxidant activity of extracts
from many plants, such as rosemary, oregano, thyme, sage, marjoram, basil, coriander, and
pimento, is attributed to their phenolic component. Phenolic compounds of black pepper
damage bacterial membranes and increase antimicrobial activity. Selection of a proper
solvent for extraction from plants is crucial for preserving their antioxidant properties [294].

8. Limitations in Plant Antimicrobials as Food Preservatives

The US FDA and the European Commission approved some essential oils as food
preservatives. The main obstacle encountered in their use is irreproducibility of a standard
quality. Essential oils have different qualitative and quantitative fluctuations in their
chemical composition, which influence their biological activity [294]. In addition, their
strong aromas or flavors alter the organoleptic properties of foods and might reduce
the appeal of some food products. Although there are several in vitro studies of the
antimicrobial activity of plants, they are barely relevant to the application of essential oils
for food preservation, since in most cases the results of in vitro antimicrobial activity of
plant extracts differed from those observed in food. In the latter, the low activity was due
to the use of crude extracts, instead of pure compounds which possess higher potency.
Crude extract comprises flavonoids in a glycosidic form, which hinders their effectiveness
against microorganisms. The presence of an extracting solvent also creates an obstacle for
using plant extracts in food. Thus, the use of antimicrobial peptides derived from plants in
food is still at its early stage. More research is needed in order to confirm their potential as
food preservatives [294].

9. Ultrasonic Activation

Recently, new technology was proposed for control and inactivation or eradication
of microorganisms. This technology, based on treatment by low-frequency, high-power
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ultrasound (US), is considered to be very promising, since it is a nonthermal technology
and does not induce microbial resistance.

As mentioned before, total volume depth phase performance (beyond the solid surface)
is very crucial for foodborne pathogenic treatments; therefore, US is a more broad-scale
method for activation of sensitizers than PDT with its very limited deep-phase penetration
ability. Moreover, US may promote more uniform dispersion of a sensitizer in the growth
medium. Generally, US is the transmittance of physical pressure (in longitudinal and
transverse waves) through a medium at frequencies of more than 20 kHz, which is above
the human hearing range [16,314]. US is already extensively applied in medicine and
biology; it is now reaching the field of waterborne and foodborne disease prevention. The
US technology enables deep penetration into biological tissues while retaining the treated
food’s nutrient quality. This is in addition to other advantages: environmentally friendly,
low-energy consumption; reduced chemical and physical hazards; shorter processing time;
safe and convenient operation; relatively low cost and easy focus. In liquids, its mode
of action against microbes involves intracellular cavitation and microstreaming around
growing and collapsing cavitation bubbles, with speeds and shear rates producing shock
waves and microjets (resulting from the bubble collapse), together with ROS formation in
situ during the interaction between ultrasound, sonosensitizer, and molecular oxygen; all
of which results in bacterial cell death.

However, US treatment alone, without the use of a sensitizer, requires higher intensity
and might be dependent on the oxygen environment. Thus, activation of a natural sensitizer
by US under normal oxygen conditions seems to be the most promising solution. This
technique, called sonodynamic therapy, uses low-intensity ultrasound.

The factors that affect the efficacy of US on microbial decontamination are the US
amplitude, exposure duration, treatment temperature, traits of the food, and the volume
being processed [16,314–316]. In a recent study by Bhavya (2019), the influence of US on 50
and 100 µM curcumin-mediated PDT treated by blue light (70 J cm−2) against E. coli and
S. aureus in freshly squeezed orange juice was investigated and analyzed [183].

The effect of US as a pretreatment in the presence and absence of PS, and in combi-
nation of PS with blue light, was also studied. It was observed that the effect of US on
the inactivation of E. coli was dependent on the US intensity. The E. coli concentration
was reduced by 3.02 ± 0.52 log10 CFU mL−1 when treated with US alone at 50 W cm−2.
However, in the case of S. aureus, the US alone did not cause any significant inactivation
of bacteria. It was suggested that these results were due to the structural difference be-
tween E. coli and S. aureus bacteria. US treatment in the presence of PS did not show any
significant change in the E. coli concentration, but it did cause a significant decrease in
the S. aureus concentration, compared to the US treatment alone (at 50 W cm−2). The
results confirmed that the S. aureus bacteria were eradicated due to sonodynamic inac-
tivation. The combined treatment of PS, US, and blue light showed a reduction in the
E. coli concentration by 4.26 ± 0.32 log10 CFU mL−1, while S. aureus was only reduced by
2.35 ± 0.16 log10 CFU mL−1. This result showed a synergetic effect on the inactivation of
the tested bacteria. Another study investigated sonodynamic action using curcumin on
foodborne bacteria B. cereus and E. coli [315]. The sonodynamic antibacterial activity of
curcumin on B. cereus was observed when the concentration of curcumin was 0.5 µM, and a
concentration of 2.0 µM achieved a profound 5.6 log10 CFU mL−1 reduction of bacterial con-
centration. However, in the case of E. coli, the sonodynamic action of curcumin caused an
antibacterial effect at a concentration of 20 µM, whereas when bacteria were treated by cur-
cumin alone at 40 µM, the cell concentration was reduced by 2 log10 CFU mL−1 only. These
results showed that curcumin at low concentrations exhibited sonodynamic antibacterial
effects on B. cereus, while in the case of E. coli a higher concentration of curcumin and longer
sonication time were needed to inhibit the cell growth. Gram-positive B. cereus was more
sensitive to the curcumin sonodynamic treatment than the Gram-negative E. coli, probably
because of a dense double outer membrane on the Gram-negative bacteria which inter-
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feres with the curcumin penetration into cells and mediates higher resistance of bacteria
to disinfectants.

The mechanism of ROS generation under acoustic cavitation is not fully understood.
The main hypothesis suggests that the energy release is due to the collapsing microbubbles,
which lead to the sonolysis of water and/or sensitizer molecules. In this way, the resulting
radicals react with oxygen to form ROS [16]. As in the case of classical photodynamic
therapy, sonoluminescence may cause either the type I process, leading to the formation of
secondary radicals, or the type II process, in which mainly singlet oxygen eradicates the
pathogenic cells. US can damage not only Gram-positive and Gram-negative bacteria, but
also yeasts, fungi, algae, and even viruses.

Unfortunately, all the key factors for bacteria eradication, such as sonication frequency,
intensity, and pulse cycle, might not be effective in vivo, due to the different susceptibility
levels of prokaryotes and eukaryotes to ultrasonic energy. Unlike eukaryotic cells, bacteria
respond to the maximum (peak) ultrasound intensity, and not to the total amount of trans-
mitted energy (more precisely, the average cumulative ultrasound intensity). Therefore,
it is necessary to choose the suitable parameters when using ultrasound energy, selecting
a peak high enough and average intensity low enough to maximize bacterial damage
without damaging surrounding cells and tissues [16].

The effect of ultrasound activation on foodborne pathogenic eradication still requires
further in-depth study.

10. Conclusions

In many cases, studies on antimicrobial effects of edible plants do not focus on the
identification of antimicrobial phytochemicals and their modes of action. Among these
phytochemicals, polyphenols are the most potent antimicrobial compounds, especially
phenolic acids and flavonoids. In some cases, various plant metabolites tend to have
synergic or antagonistic effects against both Gram-positive and Gram-negative bacteria.
The data presented in this review support the idea that the antimicrobial activity of the
plant compounds is the result of a combination of several mechanisms.

Edible plants offer a promising therapeutic potential, especially in the case of antimi-
crobial compounds such as PSs. Future research priorities should include the identification
of PSs and a better understanding of the mechanisms of the phytochemical activity of the
plants. Being potent antimicrobial agents, PSs can serve as effective food preservatives. Fur-
ther studies are necessary to improve antibiotic efficiency of PSs and other phytochemicals.
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145. Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and Antioxidant Activity of Extracts from
Rose Fruits (Rosa rugosa). Molecules 2020, 25, 1365. [CrossRef]

146. Akroum, S. [Anti-microbial activity of Rosmarinus officinalis and Zingiber officinale extracts on the species of the genus Candida
and on Streptococcus pneumonia]. Ann. Pharm. Fr. 2021, 79, 62–69. [CrossRef]

147. Wei, Q.; Bhasme, P.; Wang, Z.; Wang, L.; Wang, S.; Zeng, Y.; Wang, Y.; Ma, L.Z.; Li, Y. Chinese medicinal herb extract inhibits
PQS-mediated quorum sensing system in Pseudomonas aeruginosa. J. Ethnopharmacol. 2020, 248, 112272. [CrossRef]

148. Zhang, X.; Guo, Y.; Guo, L.; Jiang, H.; Ji, Q. In Vitro Evaluation of Antioxidant and Antimicrobial Activities of Melaleuca alternifolia
Essential Oil. Biomed Res. Int. 2018, 2018, 2396109. [CrossRef]

149. de Carvalho Bernardo, W.L.; Boriollo, M.F.G.; Tonon, C.C.; da Silva, J.J.; Cruz, F.M.; Martins, A.L.; Höfling, J.F.; Spolidorio, D.M.P.
Antimicrobial effects of silver nanoparticles and extracts of Syzygium cumini flowers and seeds: Periodontal, cariogenic and
opportunistic pathogens. Arch. Oral Biol. 2021, 125, 105101. [CrossRef]

150. Gopu, V.; Kothandapani, S.; Shetty, P.H. Quorum quenching activity of Syzygium cumini (L.) Skeels and its anthocyanin malvidin
against Klebsiella pneumoniae. Microb. Pathog. 2015, 79, 61–69. [CrossRef]

151. Sirdaarta, J.; Matthews, B.; Cock, I.E. Kakadu plum fruit extracts inhibit growth of the bacterial triggers of rheumatoid arthritis:
Identification of stilbene and tannin components. J. Funct. Foods 2015, 17, 610–620. [CrossRef]
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