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Abstract: Pharmacokinetics (PK) is a branch of pharmacology present and of vital importance
for the research and development (R&D) of new drugs, post-market monitoring, and continued
optimizations in clinical contexts. Ultimately, pharmacokinetics can contribute to improving patients’
clinical outcomes, helping enhance the efficacy of treatments, and reducing possible adverse side
effects while also contributing to precision medicine. This article discusses the methods used to
predict and study human pharmacokinetics and their evolution to the current physiologically based
pharmacokinetic (PBPK) modeling and simulation methods. The importance of therapeutic drug
monitoring (TDM) and PBPK as valuable tools for Model-Informed Precision Dosing (MIPD) are
highlighted, with particular emphasis on antibiotic therapy since dosage adjustment of antibiotics can
be vital to ensure successful clinical outcomes and to prevent the spread of resistant bacterial strains.

Keywords: pharmacokinetics; PBPK modeling and simulation; therapeutic drug monitoring; model-
informed precision dosing; antibiotic therapy

1. Introduction–Pharmacokinetics

Pharmacokinetics is the branch of pharmacology that studies the route and fate of
substances administered to a living organism until their elimination (how the organism affects
the drug), while pharmacodynamics studies the biochemical and physiologic effects of drugs
(how a drug affects an organism) [1,2]. The International Union of Pure and Applied Chemistry
(IUPAC) defines PK as the “Process of the uptake of drugs by the body, the biotransformation they
undergo, the distribution of the drugs and their metabolites in the tissues, and the elimination of
the drugs and their metabolites from the body over a period of time.” [3]. The acronym ADME
encompasses the PK stages: absorption, distribution, metabolism, and excretion (Figure 1).
The acronym LADME introduces considerations regarding the liberation of the active
substance from the delivery system; ADMET or ADME-Tox add the toxicological aspect.

PK is a comprehensive area of pharmacology and an integral part of many fields,
with countless applications and inestimable value. It has an important role throughout
the research and development (R&D) process of new drugs, including during regulatory
review and approval and post-market monitoring and surveillance, which extends to PK’s
usefulness in helping design clinical trials and its vital significance in both clinical settings
and improving patient care and outcomes (Figure 2).

The R&D for new therapeutic agents is long, complex, difficult, and expensive, and a
multitude of procedures are required for a new drug to be approved and commercialized.
Only about 12 percent of drugs entering clinical trials are ultimately approved for introduc-
tion by the FDA, and recent studies estimate the development and approval of new drugs
take, on average, seven to nine years. The cost of introducing a new drug can range from
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1 billion USD to more than 2 billion USD [4–6]. This process can be divided into five stages,
depicted in Figure 3 [7].

Processes 2021, 9, x FOR PEER REVIEW 2 of 14 
 

 

The R&D for new therapeutic agents is long, complex, difficult, and expensive, and 
a multitude of procedures are required for a new drug to be approved and 
commercialized. Only about 12 percent of drugs entering clinical trials are ultimately 
approved for introduction by the FDA, and recent studies estimate the development and 
approval of new drugs take, on average, seven to nine years. The cost of introducing a 
new drug can range from 1 billion USD to more than 2 billion USD [4–6]. This process can 
be divided into five stages, depicted in Figure 3 [7]. 

 
Figure 1. Schematic summary of ADME properties. 

 
Figure 2. Diversity of applications of PK. 

During R&D of new therapeutic agents, some of the most important factors to 
consider and evaluate are related to LADME properties, including solubility, lipophilicity, 
permeability, modification, or degradation due to chemical stability and metabolism, 
transport, specificity, and targeting. Furthermore, bioactivity and toxicology are crucial 
PD aspects to assess. 

In fact, poor PK properties, such as low bioavailability, were responsible for the 
failure of about 40% of lead compounds 30 years ago and remain one of the main motives 

PK

Clinical Pharmacology

Pharmaceutics

Drug Development

Toxicology

Approval, Regulation
and Post-Market Surveillance

Medicinal Chemistry

Drug-Drug Interactions

Population Studies

Figure 1. Schematic summary of ADME properties.

Processes 2021, 9, x FOR PEER REVIEW 2 of 14 
 

 

The R&D for new therapeutic agents is long, complex, difficult, and expensive, and 
a multitude of procedures are required for a new drug to be approved and 
commercialized. Only about 12 percent of drugs entering clinical trials are ultimately 
approved for introduction by the FDA, and recent studies estimate the development and 
approval of new drugs take, on average, seven to nine years. The cost of introducing a 
new drug can range from 1 billion USD to more than 2 billion USD [4–6]. This process can 
be divided into five stages, depicted in Figure 3 [7]. 

 
Figure 1. Schematic summary of ADME properties. 

 
Figure 2. Diversity of applications of PK. 

During R&D of new therapeutic agents, some of the most important factors to 
consider and evaluate are related to LADME properties, including solubility, lipophilicity, 
permeability, modification, or degradation due to chemical stability and metabolism, 
transport, specificity, and targeting. Furthermore, bioactivity and toxicology are crucial 
PD aspects to assess. 

In fact, poor PK properties, such as low bioavailability, were responsible for the 
failure of about 40% of lead compounds 30 years ago and remain one of the main motives 

PK

Clinical Pharmacology

Pharmaceutics

Drug Development

Toxicology

Approval, Regulation
and Post-Market Surveillance

Medicinal Chemistry

Drug-Drug Interactions

Population Studies

Figure 2. Diversity of applications of PK.

During R&D of new therapeutic agents, some of the most important factors to consider
and evaluate are related to LADME properties, including solubility, lipophilicity, perme-
ability, modification, or degradation due to chemical stability and metabolism, transport,
specificity, and targeting. Furthermore, bioactivity and toxicology are crucial PD aspects
to assess.

In fact, poor PK properties, such as low bioavailability, were responsible for the
failure of about 40% of lead compounds 30 years ago and remain one of the main motives
preventing the progression of new drug candidates to further stages [8]. Since then, with the
acknowledgement of ADME properties’ major impacts on clinical outcomes, technological
innovations, and in silico tools and software packages’ development, dramatic changes
and reductions of the time, human resources, and financial investment necessary to achieve
new advancements have been observed, both in the R&D process and clinical applications.
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Predicting many of the relevant physicochemical, pharmacological, and pharmacoki-
netic properties and the disposition attributes of drugs using in silico methods can rapidly
identify PK liabilities, such as poor bioavailability, high metabolism and clearance, the
potential for drug–food and drug–drug interactions (DDI), the need for dose adjustments,
and particular alterations in special populations. Identifying these PK liabilities has become
essential from the early stages of new drugs’ R&D to the clinical setting, and ensuring the
best outcome and minimal side effects for patients.

As such, there have been increased interest and investment in drug metabolism and
pharmacokinetics (DMPK) and PK/PD relationship studies, including in the development
of improved software packages. Most modern tools to model and simulate PK profiles can
accelerate drug discovery and help design clinical trials, analyze clinical data in all stages
of clinical evaluation, obtain regulatory approval, and conduct post-market monitoring
and surveillance to quickly identify adequate therapeutic solutions [9–13]. The importance
of TDM and PBPK as valuable tools for MIPD is evaluated, with particular emphasis on
antibiotic therapy, since dosage adjustment of this class of drugs is crucial to ensure the
treatment’s efficacy and the prevention of toxic effects.

2. Prediction of ADME Properties and PK Modeling and Simulation

Numerous methods have been explored to predict, study, and model human phar-
macokinetics. To predict ADME and other physicochemical properties, a multitude of
quantitative and mechanistic approaches can be applied. These include interspecies al-
lometric scaling [14], in vitro-to-in vivo extrapolations (IVIVE) [15], quantitative statisti-
cal methods such as quantitative structure-activity relationships (QSAR) or quantitative
structure-property relationships (QSPR) [16,17], principal component analysis (PCA), mul-
tivariate analysis (MVA) [18], and other in silico methods [19].

Early preclinical and clinical PK studies were merely descriptive, verifying concen-
trations in blood/plasma (Cp) over time, tracing the Cp profile, and determining the time
necessary to reach the peak concentration (Tmax).

Currently, quantitative PK parameters requiring mathematical formulas can be evalu-
ated, including volume of distribution, clearance (CL), elimination rate constants (Ke), and
mean residence time (MRT), among many others. Many commercial platforms and software
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packages are available and user-friendly, making PK modeling and simulation more acces-
sible without requiring extensive mathematical, modeling, or programming experience.

There are three main modeling and simulation approaches: (a) “top-down”, which
refers to models built on observed data (from general to specific); (b) “bottom-up” models,
which require an in-depth mechanistic description of human physiology (from specific to
general); and (c) “middle-out”, which combines both strategies [20,21].

PK models are often used to describe the plasma or relevant tissue–drug concentra-
tion through time and are built using compartments as “building blocks” with increasing
complexity, from noncompartmental models and models with two or three compartments
(Figure 4), to more intricate models, such as whole-body or physiologically based pharma-
cokinetic (PBPK) models and population PK models [22,23].
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2.1. Noncompartmental PK Analysis (NCA)

The most elementary PK information can be provided by NCA and relies on simple
algebraic equations to analyze peak concentration and elimination half-life and estimate
PK parameters. As NCA does not rely on compartments, there are no physiological
assumptions or parameterizations required. The organism is considered as one single
homogenous compartment. As such, NCA is a much faster and cost-efficient method.
Despite the numerous advantages of compartmental models, NCA, generally applied
to first-order (linear) models, is typically favored for characterizing PK within a single
study, including during the steps to make dose escalation decisions. This method is also
convenient for the characterization of new drug products, helping guide development at
various stages [24,25].
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2.2. Compartmental Models

Different body organs and tissues can be defined by compartmental models, kinetically
interconnected [26]. Typically, a central compartment representing plasma is linked to one
or two peripheral compartments via rate constants. Although more complex than NCA,
these models allow for more variability since certain assumptions are made to build and
parameterize the PK model. Though these models generally do not hold any physiological
meaning, they can provide important PK descriptors such as clearance and volume of
distribution and, thus, effective drug half-life or “residence” time.

2.3. Physiologically Based Pharmacokinetic Models (PBPK)

Using similar mathematical frameworks and a series of differential equations, PBPK
models have more compartments, parameterized with physiological knowledge of specific
organs or tissues and flow rates connecting the system. These dynamic models can predict
most PK attributes and the concentration-time profile after drug administration. PBPK
models can be used for a wide variety of purposes and applications and present numer-
ous advantages compared to other methods since PBPK models account for sequential
metabolism and permeability limited processes [27–31]. After obtaining data from multiple
sources (for example, from physicochemical or biochemical experiments and in vitro or
in vivo pharmacological or toxicological assays), PBPK models can be used collectively to
analyze and integrate this information. Of particular clinical interest, these integrative sys-
tems can predict drug and metabolites’ concentrations in different body sites/organs. Thus,
PBPK models can assist dosage optimization and adjustment and explore different routes
of administration, predicting drug exposure. Furthermore, these models can integrate the
physiological data of preclinical species, help with allometric scaling, and be parametrized
for specific individuals or populations (for example, by biological sex; children, adults, the
elderly; non-pregnant and pregnant women; and patients with cirrhosis).

Sager et al. conducted a systematic review of publications between 2008 and May 2014
related to PBPK models [29]. Searching the PubMed database for papers that included the
terms “PBPK” and “physiologically based pharmacokinetic model”, a total of 366 articles
were analyzed regarding the models’ development and applications. These publications
have been steadily increasing, from 9 papers in 2008 to 94 in 2014. The most common
applications were drug–drug interaction (DDI) studies (28%), interindividual variability
and general clinical pharmacokinetics predictions (23%), absorption kinetics (12%), and
age-related changes in pharmacokinetics (10%). For FDA regulatory filings, models were
primarily used for DDI predictions (60%), pediatrics (21%), and absorption predictions (6%).

2.4. Population PK

While individual PK studies are the best approach when rapid processing of PK
parameters is needed or when complete individual PK profiles are to be defined, population
PK (PopPK) analysis and modeling approaches are of value to study variability in drug
concentrations within a population of patients receiving clinically relevant doses of a
drug of interest. This method requires concentration–time data from multiple individuals
and can incorporate covariate information such as age, sex, weight, race, renal/hepatic
function, and data about concomitant medications that can lead to DDIs. PopPK aims
to identify the most impacting covariates, meaning the measurable pathophysiologic
factors that influence the dose–concentration relationship the most and their extent. User-
friendly PopPK software has been developed to support all stages of drug development
and surveillance because assessing the sources of PK variability can be essential for drug
safety and efficacy, and appropriate dosages can be selected for a given population or
subgroup with information granted by PopPK models [32,33]. However, in physiological
and pathological conditions, the limitations of PBPK modeling can be associated with
comprehensive data about the physiological, biochemical, and physicochemical processes.
These data are not available from only one source, and information gaps may exist.
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3. PK Prediction in Silico Tools

As previously mentioned, there has been increasing interest and investment in phar-
macokinetic studies, including the development of tools and software for predicting PK
attributes and modeling and simulating profiles. Some of the available software used
for PK studies are GastroPlus™ and Monolix® by Simulations Plus, Inc. (Lancaster, CA,
USA), Simcyp®, NONMEM (ICON plc), Phoenix® WinNonlin® and Phoenix® NLME™ by
Certara (UK Limited, Sheffield, UK), and PK-Sim® (OSP, Open Systems Pharmacology).

Whereas some of these software packages are generic tools to compute complex mathe-
matical equations and perform compartmental analysis, others, such as GastroPlus™, were
specifically designed for PK studies, particularly physiologically based pharmacokinetics
(PBPK) and physiologically based biopharmaceutics modeling (PBBM). GastroPlus™’s
features and capabilities allow the prediction of drug absorption and disposition, and
the simulation of absorption, pharmacokinetics, and pharmacodynamics in humans and
many preclinical species, thanks to preinstalled physiological parameters for numerous
tissues (such as tissue weights and volumes, perfusion rates, and compartments’ pH) and
an integrated advanced compartmental and transit (ACAT™) model (Figure 5). Thus,
GastroPlus™ supports model-based drug development and PK assessments in all phases
of drug discovery, translational research, and clinical development. This not only improves
decision-making throughout clinical drug development but also enables the design and
optimization of dosing regimens and formulations, increasing the chances of the drug reach-
ing its target with the desired concentration and maintaining drug plasma concentration
within the therapeutic window [27,29,34–37].
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Calculations and simulations rely on the numerical integration of differential equa-
tions that coordinate a set of well-characterized physical events that occur and interconnect
as a result of diverse physicochemical and biologic phenomena. Many of the currently
available software have increasingly intuitive and modern graphical user interfaces and
are relatively easy for someone with a background in ADME to learn and use, enabling
smooth, rapid transitions from setting up inputs to evaluating results. High-quality and
amply customizable PBPK models can thus be easily developed. Simulation studies can be
initiated based on a drug’s structure and a small set of physicochemical data to predict the
most important parameters in pharmacokinetics (PK), such as the maximum concentra-
tion (Cmax) reached in plasma and the liver, time necessary to reach such concentrations
(Tmax), half-life (t1/2), fraction absorbed (Fa) and bioavailability (F), and area under the
curve (AUC).
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Additionally, some of these software programs, including GastroPlus™, not only
calculate PK attributes but also draw a graphical representation of concentration over time
profiles for quicker interpretation of simulation results and are able to perform parameter
sensitivity analysis (PSA) to measure the impact of fluctuations in input parameters and
population PK studies.

As previously stated, the scope of applications of PK goes well beyond its central role
in the R&D process. In fact, pharmacokinetics is valuable in countless pharmacological
evaluations, whether for academic purposes, drug development and clinical research, or
in clinical medicine for therapeutic drug monitoring and individualized dosing towards
precision medicine.

4. Therapeutic Drug Monitoring (TDM)

Even after the myriad studies and optimizations required to approve a drug with a
determined therapeutic application and recommended dosing regimens (label and guide-
lines), not all drugs will perform as a “one-size-fits-all”. Due to certain pharmacological
characteristics of some drugs and drug classes, their dosing regimens will need to be
adjusted and customized for each patient [39,40], which can be accomplished through
therapeutic drug monitoring (TDM).

This branch of clinical chemistry and clinical pharmacology specializes in measuring
circulating drug concentrations to adjust dosing regimens to reach a defined target exposure
associated with optimal efficacy and minimal toxicity [41,42]. TDM can be traced back to
the late 1960s and the efforts of clinicians to improve patient care and clinical outcome [42].
The cases that required dosage individualization have been extensively reviewed, and
TDM is now indicated and recommended for critically ill patients undergoing sufficiently
long treatment to justify dosage adjustment efforts and for drugs that have the following
pharmacological properties [43]:

1. Poorly predictable PK and significant interpatient variability, resulting in a wide
range of concentration levels between patients after standard dosage administration;

2. Narrow therapeutic window that, combined with interpatient variability, poses a high
risk of misdoing. The standard dosage could be subtherapeutic for some patients,
but the use of very high standard doses in all patients to ensure overall efficacy is
forbidden due to the risk of toxicity [44];

3. Consistent concentration exposure and response and/or toxicity (PD) relationships;
moreover, effects following changes in drug exposure should be reversible, enabling
the definition of a range of concentrations associated with optimal efficacy and
minimal toxicity;

4. Lack of readily assessable PD markers and quick response to dosage changes;
5. Acceptable PK stability, considering within-patient PK variability over time (inter-

occasion variability) and assay and/or model-related errors [45].

TDM has proven favorable and recommended for hundreds of therapeutic agents,
including anticancer drugs [46], anti-infectives [47], antiretrovirals [48], biologic therapeutic
agents [49], and psychotropic agents [50]. Traditionally, clinicians would analyze the
results from the TDM and empirically modify a patient’s dosage to approximate circulating
concentrations to the identified target therapeutic window. Advantages of this approach
include its simple interpretation of the TDM data and undemanding implementation
because the adjustment can generally be made based on a mathematical “rule of three”,
changing either dose or dosing interval (Dettli rules [51]). Some conventional therapeutic
ranges have been extended to nomograms that can assist in the adjustment decision.

Notwithstanding its simplicity and usefulness, traditional TDM holds some limita-
tions. The blood samples to determine drug concentration can only be collected after
steady-state is reached, typically meaning dosage will only be adjusted 3–4 days after the
beginning of treatment. While this is a suitable time span for many drugs, in the case of
infections and antibiotic treatment the PK/PD target should be promptly achieved. More-
over, some antibiotics exhibit nonlinear PK and are concentration- and/or time-dependent.
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In such cases, dosage adjustment cannot be based on the “rule of three”. Another weakness
of this approach is likewise related to sampling because a single sample determination
(as Cpeak or Ctrough) is frequently an insufficient indicator of drug exposure. Additionally,
the timing of both dose administration and sample collection is a critical factor to ensure
accurate interpretation of results and appropriate adjustments [43].

Consequently, dosage adjustments based on traditional TDM are considered a passive
procedure because therapeutic ranges are often wide, and due to the interpatient variability
and other factors described above, PK/PD targets and successful clinical outcomes may
not be achieved. Thus, improvements to this practice are needed.

4.1. Target Concentration Intervention (TCI)

Taking advantage of the increasing computational power and advances in computer
sciences, TCI has been introduced as a more adequate approach. The main goal of TCI
is to reach the target therapeutic concentration by administering the appropriate dose to
each patient. This approach is based on both individual PK data and PD observations that
are analyzed to predict the dose required to achieve the target. Moreover, TCI improves
clinical outcomes while being cost-effective. Computer-assisted solutions for interpreting
TDM results in a clinical setting are now available, and mathematical models have been
developed to further inform clinicians’ decisions [52,53].

4.2. Model-Informed Precision Dosing (MIPD)

MIPD has emerged as an integrative approach to precision medicine and is consid-
ered the next milestone in medical progress after evidence-based medicine [54]. These
mathematical models are built with the input from observational population PK studies
to interpret the measured drug concentration and predict personalized dosing beyond a
specific approach or technique. When in significant numbers, these studies assemble data
on drugs’ average PK parameters and identify the most impacting covariates or individual
factors contributing to inter and intraindividual variability. The latter can be accounted for
using both parametric and nonparametric approaches [55,56]. The main difference is that
in nonparametric approaches, support points are estimated from the clinical data, while
parametric approaches use a defined distribution of PK parameters.

The most recurrently recognized covariates include age, body weight, biological sex,
and serum creatinine (which are needed to evaluate renal function). Genetic aspects, co-
morbidities, the patient’s clinical status (such as disease status, renal/hepatic function,
biological markers, and treatment tolerance), and comedications also influence PK at-
tributes [57]. These variables and their impact on PK profiles can also be evaluated using
PBPK modeling tools because these models can be customized to represent a wide variety
of patients’ physiological and pathological characteristics [58–60].

Bayesian inference is also a powerful approach to individualizing dosing regimens
and is of undeniable value for TDM and MIPD. This approach is well-befitting in clinical
settings where few drug concentrations measured in blood samples are available, making
it a valuable tool in the effective implementation of therapeutic drug monitoring [43,61–63].
The main components of the Bayesian approach are prior distribution, likelihood principle,
posterior probabilities, decision rules, and predictive probability. Patients’ measurements
are compared with population percentiles and a priori percentiles expected for patients
with similar individual characteristics (covariates). Following this, the dosage can be
adjusted after Bayesian inference deduction of a posteriori percentiles from the preceding
analyses and the patient’s observation.

5. Infections and Antibiotic Therapy

Infections are a serious health threat. They are caused by infectious agents (also
called pathogens) such as viruses and microorganisms like bacteria, fungi, parasites, and
arthropods. The immune system can fight many infections, but specific medication is often
needed, especially since some of these agents are becoming increasingly aggressive. Addi-
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tionally, severe consequences can arise from the infectious agents reaching the bloodstream
and spreading to other locations and from sepsis, a life-threatening condition where tissues
and organs are gravely affected by the own body’s response to infection. This project
focused on the anti-infective class of antibiotics.

The first antibiotic was penicillin, discovered by Alexander Fleming in 1928. Since
then, and more predominantly after the 1940s, antibiotics have revolutionized the treatment
of patients with severe bacterial infections, significantly reducing morbidity and mortality.
However, these drugs have been overused and are currently one of the most widely, and
often injudiciously, prescribed and used therapeutic drugs worldwide, which has led to a
bacterial selection of resistant strains.

Nowadays, antibiotic resistance is one of the biggest public health concerns and is a
major problem in both hospital environments and outpatient situations. A report by the
World Health Organization (WHO) revealed antibiotic resistance is a “serious threat (that)
is no longer a prediction for the future, it is happening right now in every region of the world and
has the potential to affect anyone, of any age, in any country. Antibiotic resistance–when bacteria
change so antibiotics no longer work in people who need them to treat infections–is now a major
threat to public health.” [64,65].

Antibiotic resistance is a major factor supporting the importance of monitoring and
optimizing antibiotics use and the implementation of antibiotic stewardship programs
(ASP). The Centers for Disease Control and Prevention (CDC) identified seven core ele-
ments of antibiotic stewardship in 2014 and recommend that all hospitals have an ASP
(Figure 6) [66]. Tracking (monitoring process measures), reporting information on antibiotic
use and resistance, and educating clinicians and health care providers are three of these
core elements. Optimizing the use of antibiotics leads to the maximization of therapeutic
success and will extend the clinical lifespan of currently available antimicrobial agents by
limiting the emergence of resistance [67,68].
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Antibiotics and the Need for TDM and Dosage Adjustment

As discussed earlier, monitoring patients and adjusting their dosing regimens can
be vital to ensure their successful clinical outcome, with minimized side effects. It has
been extensively demonstrated that this is crucial in the case of antibiotics, with confirmed
beneficial results [69–74].

Typically, patients’ health and welfare are supervised by a team of medical profes-
sionals, and biological samples, mainly blood, are collected and biochemically analyzed
regularly. Therapeutic drug monitoring (TDM) evaluates drug concentrations and other
biochemical markers (among which, in the case of many antibiotics that are renally excreted,
creatinine is of key importance to assess renal function) to ensure the appropriate dose is
administered to patients by continuously recommending dosing adjustments to optimize
clinical outcomes without developing severe side effects.

The most frequently monitored antibiotics in inpatients are aminoglycosides (such
as amikacin, gentamicin, and tobramycin) and glycopeptide vancomycin, which can be
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explained by their narrow therapeutic indexes and potential to cause adverse effects,
namely nephrotoxicity, particularly in prolonged treatments [75–77]. These antibiotics are
widely used to treat severe infections caused by Gram-negative (aminoglycosides) and
Gram-positive (vancomycin) bacteria.

Though historically, TDM was mostly implemented to prevent toxic adverse effects,
mainly for glycopeptides and aminoglycosides, the assessment of trough and peak concen-
trations is considered diagnostically and therapeutically important and strongly recom-
mended for patients using the aforementioned antibiotics. Since the treatment of serious
infections can imply the administration of high doses of antibiotics, an accumulation of
these drugs in plasma is recurrent, often leading to toxic effects, and the value of TDM of
these antibiotics has been demonstrated [73,74,78–86]. Although TDM has been recom-
mended for these antibiotics, it is still not a routine clinical practice for reasons still not
systematically reviewed. Not only does this process entails costs, but it is also a massive
challenge, particularly for intensive care units, since these patients often present altered PK
and significant inter- and intra-individual pharmacokinetic (PK) variability [87].

In silico modeling tools, including PBPK, have proven extended value and can pro-
vide additional knowledge to assist clinicians in the process of adjusting therapeutic
regimens [88–90]. Despite the lack of uniformization, with growing data becoming avail-
able, these models can be further refined and contribute to TDM and dosage adjustment
processes, evolving towards personalized medicine.

6. Final Remarks

The importance of pharmacokinetics was highlighted and some of its applications
explored, from basic research and drugs’ R&D, to optimization of patients’ clinical outcomes
in hospital settings and the advancements towards precision medicine. Various methods to
predict drug disposition were reviewed, with an emphasis on PBPK.

Approaches such as PBPK, TDM, TCI, and MIPD, which were mentioned in this paper,
have extensively demonstrated value and can provide knowledge to assist clinicians in
the process of adjusting therapeutic regimens. For cases such as antibiotic therapy, these
personalized interventions can be of vital importance.
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