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Abstract: Although the gas phase combustion of metallic magnesium (Mg) has been extensively
studied, the vaporization and diffusive combustion behaviors of Mg have not been well characterized.
This paper proposes an investigation of the vaporization, diffusion, and combustion characteristics
of individual Mg microparticles in inert and oxidizing gases by a self-built experimental setup based
on laser-induced heating and microscopic high-speed cinematography. Characteristic parameters
like vaporization and diffusion coefficients, diffusion ratios, flame propagation rates, etc., were
obtained at high spatiotemporal resolutions (µm and tens of µs), and their differences in inert gases
(argon, nitrogen) and in oxidizing gases (air, pure oxygen) were comparatively analyzed. More
importantly, for the core–shell structure, during vaporization, a shock wave effect on the cracking of
the porous magnesium oxide thin film shell-covered Mg core was first experimentally revealed in
inert gases. In air, the combustion flame stood over the Mg microparticles, and the heterogeneous
combustion reaction was controlled by the diffusion rate of oxygen in air. While in pure O2, the
vapor-phase stand-off flame surrounded the Mg microparticles, and the reaction was dominated
by the diffusion rate of Mg vapor. The diffusion coefficients of the Mg vapor in oxidizing gases are
1~2 orders of magnitude higher than those in inert gases. However, the diffusive ratios of condensed
combustion residues in oxidizing gases are ~1/2 of those in inert gases. The morphology and the
constituent contents analysis showed that argon would not dissolve into liquid Mg, while nitrogen
would significantly dissolve into liquid Mg. In oxidizing gases of air or pure O2, Mg microparticles
in normal pressure completely burned due to laser-induced heating.

Keywords: solid propellants; metallic Mg; vaporization; diffusion; combustion

1. Introduction

The performance of Mg-based propellants largely depends on the combustion charac-
teristics of metallic Mg particles such as accumulation, ignition, and diffusion of combustion
products, etc. [1–3]. The combustion of metallic Mg in different atmospheres has been
extensively studied in the literature, which revealed that the combustion of metallic Mg is
a vapor-phase controlled process in oxidizing atmospheres [4–6]. Cassel et al. [7] experi-
mentally presented that the burn time of Mg microparticles in pure O2 was one tenth of
that in air, suggesting that the combustion of Mg in air was controlled by the diffusion
rate of oxygen component, whereas it controlled by the vaporization rate of Mg vapor in
pure O2. In high-temperature H2O [8–10] or CO/CO2 [11–16], despite millimeter-sized
or micron-sized Mg particles, they both underwent gas phase combustion, and the only
difference that existed was in terms of burn time. Gaseous combustion was related to the
pressure of oxidizing atmospheres [17,18].
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For the combustion of vapor-phase Mg, an estimate based on the rate constants [19]
showed that the reaction rate was insufficiently fast to prevent oxygen diffusion through
the vapor-phase stand-off flame to the particle surface. The heterogeneous reaction of
oxygen dissolution begins simultaneously with the vapor-phase combustion and later the
heterogeneous reaction becomes the primary combustion mechanism.

Although the gas phase combustion of Mg has been widely studied, the vaporiza-
tion and diffusive combustion behaviors of Mg have not been deeply understood. The
vaporization, diffusion, and combustion of Mg microparticles are interactive in order to
affect the comprehensive performance of Mg-based propellants. Thus, it is imperative to
characterize these behaviors. In this work, the vaporization, diffusive, and combustion pro-
cesses of individual micron-sized Mg particles in oxidizing atmospheres of air and pure O2
were directly observed by a self-designed experimental apparatus based on laser-induced
heating and microscopic high-speed cinematography. In comparison to the vaporization
and diffusion characteristics without oxidation, the experiments of heating individual
Mg microparticles in inert atmospheres of argon (Ar) and nitrogen (N2) were also carried
out. Characteristic parameters such as vaporization and diffusion coefficients, diffusion
ratios, flame propagation rates, etc., were obtained at high spatiotemporal resolutions (µm
and tens of µs), and their differences between in inert gases and in oxidizing gases were
comparatively analyzed. The combustion residues of individual Mg microparticles heated
in each atmosphere were collected to characterize the morphology and constituents using
a scanning electron microscope (SEM) and through energy dispersive spectroscopy (EDS)
mapping. These characteristic parameters were extracted through digit image processing
technology to demonstrate the vaporization, diffusion, and combustion characteristics and
to unveil the combustion mechanism.

2. Materials and Experimental Details
2.1. Materials

Mg microparticles were prepared using the melt atomization technique and were
characterized by multiple methodologies such as SEM, X-ray diffraction (XRD), X-ray
photoelectron spectroscopy (XPS), and EDS. These results have been presented in our
previous work [20], demonstrating that Mg microparticles are uniform and spherical, with
a purity of approximately 100%. There is a thin but not compact oxide layer on the surface.
In the current work, the size distribution of the Mg microparticles is shown in Figure 1,
and ranged from ~45 to 75 µm.
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2.2. Experimental Setup

Figure 2 shows the schematic of the experimental apparatus. A beam launched from
a laser was reflected through two totally reflecting mirrors and was transmitted through
the dichroic to the objective. This laser (New Industries Optoelectronics Tech. Co. Ltd.,
Changchun, China) is a continuous wave Nd: YVO4 near-infrared with a wavelength of
1064 nm, TEM00 mode, beam divergence of 1.5 mrad (full angle), and variable output
power of 0~600 mW. The dichroic was used to completely reflect the beam of 1064 nm to
the objective and allowed the visible light from the illumination to transmit to the high-
speed camera. The objective (20×, NA 0.40) was utilized to focus the beam to heat the Mg
microparticles.
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Figure 2. Schematic of experimental apparatus.

Individual Mg microparticles dispersed in the combustion chamber were magnified by
the same objective and were imaged by a high-speed camera (Phantom Micro E310, Vision
Research Inc., Wayne, NJ, USA). A matching field lens and a notch filter were installed in
front of a high-speed camera to eliminate the influence of the laser beam. A LED lamp and
a condenser were used to supply uniformly transmitted bright field illumination so that
the high-speed camera could take clear images. The laser and high-speed camera were
triggered by a synchronizer.

The combustor consisted of a self-designed 3D printed combustion chamber body,
an observation window, and seals. The upper and lower sides were transparent glass
slides (observation windows), and the sealing ring was installed to ensure the airtightness
of the circular combustion chamber. The gas inlet and outlet were set at the two ends
of the combustion chamber. A mass flow controller was installed at the left side of the
combustion chamber, connecting to the gas cylinder and the inlet of the combustion
chamber to accurately control the intake volume of desired gas. The atmosphere could be
exchanged by connecting different gas cylinders.

2.3. Experimental Procedure

In the experiments, the Mg powders were dried in an oven at 120 ◦C for about
1 h. Then, they were fetched to cool to room temperature. An optical fiber was used to
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adhere the Mg microparticles by the electrostatic adsorption between the optical fiber
and Mg microparticles. Then, individual Mg microparticles were solely dispersed on the
bottom wall of combustor, with a slight oscillation of the optical fiber. A sealing ring
and a lid of transparent glass slide were installed on the combustion chamber. A desired
atmosphere entered and purged the combustor for ~30 min to remove any residual gas. As
the combustor was filled with the desired gas, the intake valve was closed. The temperature
and pressure of desired atmosphere in the combustor was kept at room temperature
(~25 ◦C) and at atmospheric pressure (0.1 MPa).

An individual Mg microparticle appeared in the field of vision of the high-speed
camera after moving a 3-axis translation platform. Moreover, it was certain that there were
no other microparticles around the microparticle that could be observed. This was to avoid
interaction among the microparticles affecting the observation of combustion phenomenon
and the judgement of the combustion process. At that time, the laser and high-speed
camera were simultaneously trigged to heat the individual Mg microparticle and to record
its burning process.

In air and pure O2, the resolution of the high-speed camera was set to 640 × 480,
and the frame rate was 10,000 fps. However, in Ar and N2, since there were larger dif-
fusive zones of vapor-phase Mg, the resolution of the high-speed camera needed to be
1280 × 800, and the frame rate was 3200 fps.

In each case, the combustion chamber body was replaced with a new one, and the
combustion residues were collected to characterize the morphology and constituent contents.

2.4. Image and Data Processing

The vaporization of Mg microparticles and diffusion of gaseous Mg in inert and
oxidizing atmospheres were recorded by high-speed camera. The representative snapshots
of the vaporization and diffusion were then extracted. These images were cropped, filtered
and binarized using self-programming software. Finally, the binarizated images were used
to measure the area, perimeter, and diameter of individual Mg microparticles by calibration.
Figure 3a represents the original image. After binarization, the corresponding binarizated
image could be seen in Figure 3b.
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For the combustion characteristics of the Mg microparticles, their propagation dis-
placement and flame sizes can be measured by contrasting the images. The propagation
velocity and diffusion ratio can be calculated based on the measured sizes and the time.

3. Results and Discussion
3.1. Vaporization and Diffusion

In Figure 4, under the same operation conditions, the vaporization of the Mg mi-
croparticles and diffusion of gaseous Mg in inert and oxidizing atmospheres demonstrated
different characteristics. Regardless of whether they were in inert gases or in oxidizing
gases, as the Mg microparticles were heated by the laser, the Mg melted and then vaporized.
In Ar or N2, the Mg vapor homogeneously diffused and gradually condensed. While in air
or pure O2, gaseous Mg diffused heterogeneously and then quickly ignited and underwent
gas phase combustion.
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In inert gases, the temperature rise of the Mg microparticles follows the energy
conversation equation:

π

6
ρpCpd3

p
dTp

dt
=

.
QL +

.
Qloss (1)

where ρp, Cp, and dp are the density, specific heat, and diameter of the Mg microparticle,

respectively.
.

QL and
.

Qloss are the laser heating power and the heat loss containing the
convection, the conduction, and the thermal radiation heat losses to the chamber wall,
respectively.

In oxidizing gases, the heterogeneous oxidation reaction has to be considered in the
energy conversation equation; thus, the temperature rise of Mg microparticles is as follows:

π

6
ρpCpd3

p
dTp

dt
=

.
QL +

.
QHSR +

.
Qloss (2)

.
QHSR is the released heat of heterogeneous oxidation reaction.
By contrastively analyzing Equations (1) and (2), it is easily testified that due to the

exothermic reaction, the temperature rise rate of Mg microparticles in oxidizing gases is
higher than that in inert gases.

Figure 5 illustrates that the diffusion rate of Mg vapor varied with the heating time in
different atmospheres. The diffusion rate of Mg vapor in Ar was significantly larger than
that in N2. The diffusion rate of Mg vapor in air increased at the early stage and then kept
nearly constant, whereas the diffusion rate of the Mg vapor in O2 decreased.

According to Fick’s second law, the concentration of Mg vapor for one-dimensional
diffusion can be expressed as [21]:

∂C
∂t

=
∂

∂x
(D

∂C
∂x

) (3)

where D is the diffusion coefficient. Assuming the diffusion coefficient is constant, Equation (3)
can be simplified as:

∂C
∂t

= D
∂2C
∂x2 (4)
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In this work, the diffusion coefficient is defined as D = Adiff/t, in which Adiff and t is the
diffusive area and time, respectively. By linearly fitting the parameters shown in Figure 5,
the slope of the diffusion curve is the diffusion coefficient. the diffusion coefficients in Ar,
N2, air, and O2 at 0.1 MPa are ~3.5 × 10−7 m2/s, 1.4 × 10−7 m2/s, 3.9 × 10−6 m2/s, and
−2.4 × 10−5 m2/s, respectively. The diffusion coefficients of Mg vapor in oxidizing gases
are 1~2 orders of magnitude higher than those in inert gases.

3.2. Shock Wave Effect on the Cracking of Porous Oxide Shell during Vaporization in Inert Gases

The structure of Mg microparticles is a core–shell type, similar to metallic aluminum.
However, since the Pilling–Bedworth ratio is less than 1, the magnesium oxide film surface
is not compact but is instead porous [22]. As the temperatures of Mg microparticles are
enhanced to melting temperature and gasification temperature points, Mg microparticles
melt and vaporize. The densities of solid and liquid Mg decrease almost linearly with the
rise of temperature. However, the density of Mg suddenly drops during the solid–liquid
phase transition. The density difference between solid Mg and liquid Mg at the melting
temperature point (~921 K) reaches 4.89% [23]. This results in a significant change in the
volume of the Mg core. As the liquid Mg temperature is continuously enhanced until the
boiling point (~1380 K) [24], the liquid Mg vaporizes. At that moment, the oxide film (MgO)
does not reach the melting temperature point (~3125 K) [6]. This means that the internal
pressure sharply increases between the core and shell, which will lead to the cracking of
the porous oxide film [25].

Figure 6 experimentally demonstrates a shock wave effect on the cracking of the
porous magnesium oxide film during vaporization in the gases of Ar and N2. Owing to
the release of loaded internal pressure, the Mg vapor homogeneously diffused towards
ambient gas. It is worthy to note that the shock wave effect did not occur in the gases of air
or O2. It is possible that the oxygen atoms and magnesium cations interactively diffuse
through the porous oxide thin film during melting and vaporization. The pathway in the
porous oxide thin film promoted the reaction and inhibited the formation of shock pressure.
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Additionally, as the thickness of the oxide film is its beyond critical value, the shock wave
effect can be easily found.
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The propagation displacement of shock wave is shown in Figure 7. Despite in Ar or in
N2, the shock wave propagated exponentially, and the propagation displacement can be
expressed as:

Ds = D0 + ae−kt (5)

where Ds is the propagation displacement of the front of the shock wave, and t is the
propagation time. D0, a, and k are the coefficients.
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In each atmosphere, the phenomena of multiple individual Mg microparticles with
different diameters (dp) were repeatedly recorded, and the coefficients in Equation (5) and
the correlation coefficients (R) for fitting are listed into Table 1. The coefficient k in Ar
is smaller than that in N2, which suggests that the loaded internal pressure due to the
phase transition in N2 was higher than that in Ar. In the early propagation stage, if the
data in Figure 7 were fitted by a linear function, the propagation velocity of the shock
wave in Ar ranged from 0.158~0.175 m/s, which is much lower than that in N2, which
ranged from 0.266~0.322 m/s. The data in Table 1 show that at under the same operation
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conditions, the propagation velocity had a weak correlation with the initial diameter of the
Mg microparticle.

Table 1. The fitting coefficients and correlation coefficients in Equation (5).

Atmosphere Parameter Value

Ar

dp (µm) 52.9 54.7 56.1 58.3 59.9
D0 (mm) 0.149 0.161 0.152 0.155 0.162

a −0.151 −0.163 −0.153 −0.155 −0.160
k 1.723 1.641 1.823 1.936 1.543
R 1.00 1.00 1.00 1.00 1.00

N2

dp (µm) 52.9 53.8 55.1 56.1 59.7
D0 (mm) 0.131 0.136 0.139 0.145 0.153

a −0.129 −0.134 −0.136 −0.144 −0.152
k 2.833 2.762 3.029 3.283 3.208
R 1.00 0.99 0.99 1.00 1.00

3.3. Diffusive Combustion of Mg Vapor

In oxidizing gases, the combustion of the Mg microparticles is classically referred to
as vapor-phase burning. In this work, although the Mg microparticles underwent diffusive
gas phase combustion, the burning behavior in pure O2 was significantly different from
that in air, as shown in Figure 8. It can be obviously observed that the combustion flame
in air stood over the Mg microparticle, and the flame area was further smaller than the
diffusion zone of Mg vapor. This suggests that the heterogeneous combustion reaction
is controlled by the diffusion rate of oxygen in air. In pure O2, the vapor-phase stand-off
flame surrounded the Mg microparticle, and the heterogeneous combustion reaction is
controlled by the diffusion rate of Mg vapor. In the literature [19], an estimate showed that
the reaction rate in air is insufficiently fast to prevent oxygen gas diffusion through the
vapor-phase stand-off flame to the Mg particle surface.
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In the O2 atmosphere, the combustion was more intense than that in air, and the gasi-
fication time was extremely short and almost occurred at the same time as the combustion,
indicating that the oxygen content greatly affected the burning rate of Mg vapor [3,26,27].
During combustion in air, the flame is relatively homogeneous. By using the data pro-
cessing technique shown in Section 2.4, the outer contour of the flame in Figure 8 could
be obtained. The number of pixels in the contour were calculated, and the flame radius
was obtained and is shown in Figure 9. From the pictures shown in Figure 9, it can be
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obviously observed that the produced magnesium oxide covered the partial flame. The
distances between the flame front and center (called as flame radius) were measured and
are illustrated in Figure 9. After ignition, the flame front quickly propagated, then remained
stable, and finally gradually drew back. In the two cases, the propagation rates were ~11.2
and 16.5 mm/s, respectively, which are one order of magnitude lower than the diffusion
rate of the shock wave in Section 3.2. In comparison to the flame in air, the flame in pure
O2 is thicker and more heterogeneous.
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3.4. Analysis of Combustion Residues

In four groups of atmospheres, the combustion residues were collected and charac-
terized by SEM and EDS mapping techniques. Figure 10 shows the morphology of the
combustion residues of Mg microparticles. In Ar or N2, the distribution of the condensed
combustion residues was slightly circular in shape, suggesting that Mg vapor homoge-
neously diffused towards the ambient gases. In air or O2, the residues nonuniformly
distributed at the bottom wall of the combustion chamber. This means that the diffu-
sive combustion was heterogeneous and that combustion particulate matters randomly
migrated with the diffusive gases.

To further recognize the diffusive ranges of Mg vapor in inert and oxidizing atmo-
spheres, the zones covered by condensed combustion residues were measured by an optical
microscope. A coefficient called the diffusion ratio (β) is defined as:

β =
Ares

Aini
(6)

where Ares and Aini are the area of condensed combustion residues and the initial area of
an individual microparticle, respectively.
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Figure 11 shows the diffusion ratios of Mg microparticles burned in four types of
gases. In Ar or N2, the diffusion ratios were 4~6, while in air or O2, they were 2~3. A lower
diffusion ratio in oxidizing gases suggests that the combustion reaction consumes the Mg
vapor and O2, thus hindering long-distance diffusion.

The constituent contents in the combustion residues of individual Mg microparticles
were obtained by EDS analysis. The pictures of the mapping results in inert and oxidizing
atmospheres are shown in Figure 12, and the weight and atomic percentages are listed
in Table 2. It was found that in Ar, the content of Ar in the residues was tiny, suggesting
that Ar atoms scarcely dissolved into the liquid Mg. While when the Mg microparticles
were heated in N2, the N atom content reached 25.54%, which could be attributed to the
dissolution of the N atom into the liquid Mg. It is possible that the reaction between Mg
vapor and N2 was trigged, i.e., 3Mg (g) + N2 (g) → Mg3N2 (s) [28]. In air, the weight
percentage of Mg in residues was 69.97%, that of O element is 27.73%, and those of the
elements N and C are tiny. The theoretical mass percentage ratio of Mg: O in MgO is 0.6; in
this case, the mass ratio of Mg: O was ~0.6. This indicates that Mg element almost reacted
with oxygen completely, and a reaction between Mg and CO2 possibly occurred in air, i.e.,
2Mg (g) + CO2 (g)→ 2MgO (s) + C (s) [11]. In pure O2, the mass percentage ratio of the
Mg and O in the residues was also equal to that in air and the theoretical value. Therefore,
in oxidizing gases of air or pure O2, Mg microparticles in normal pressure can completely
burnout by laser-induced heating.



Processes 2021, 9, 2057 11 of 14

Processes 2021, 9, x FOR PEER REVIEW 12 of 15 
 

 

O in the residues was also equal to that in air and the theoretical value. Therefore, in oxi-
dizing gases of air or pure O2, Mg microparticles in normal pressure can completely burn-
out by laser-induced heating. 

 
Figure 11. Diffusion ratios of Mg microparticles burned in inert and oxidizing atmospheres. 

Table 2. The content of elements in combustion residues of individual Mg microparticles. 

Atmosphere Element Weight % Atomic % 

Ar 
Mg 99.74 99.84 
Ar 0.26 0.16 

N2 
Mg 83.50 74.46 
N 16.50 25.54 

Air 

Mg 69.97 60.06 
O 27.73 36.17 
N 0.85 1.27 
C 1.44 2.50 

O2 
Mg 71.60 62.40 
O 28.40 37.60 

Figure 11. Diffusion ratios of Mg microparticles burned in inert and oxidizing atmospheres.

Table 2. The content of elements in combustion residues of individual Mg microparticles.

Atmosphere Element Weight % Atomic %

Ar
Mg 99.74 99.84
Ar 0.26 0.16

N2
Mg 83.50 74.46
N 16.50 25.54

Air

Mg 69.97 60.06
O 27.73 36.17
N 0.85 1.27
C 1.44 2.50

O2
Mg 71.60 62.40
O 28.40 37.60
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4. Conclusions

In this work, the vaporization, diffusion, and combustion of individual Mg micropar-
ticles in inert and oxidizing atmospheres were characterized and compared in detail. Some
conclusions can be obtained from the experimental results:

(1) The vaporization and diffusion in inert gases are homogeneous, and the diffusion
rate of Mg vapor in Ar is significantly larger than that in N2. In oxidizing gases,
owing to the heat release of heterogeneous oxidation reaction, the diffusion of Mg
vapor is heterogeneous, and their diffusion coefficients are one or two orders of
magnitude higher than those in inert gases. The higher the oxygen content is, the
larger the diffusion rate becomes. In inert atmospheres, during laser-induced heating
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in the Mg microparticles with a porous oxide film, when the film thickness is beyond
critical value, there is a shock wave effect that results in the cracking of the oxide film
shell-covered Mg core due to the release of loaded internal pressure.

(2) Regardless of air or O2 atmosphere, Mg microparticles both burn in a diffusive,
vapor-phase mode of combustion The combustion flame in air stands over the Mg
microparticle, and the flame area is even smaller than the diffusion zone of the Mg
vapor. In pure O2, the vapor-phase stand-off flame surrounds the Mg microparticles.
The heterogeneous combustion reaction is controlled by the diffusion rate of oxygen
in air, and it is controlled by the diffusion rate of the Mg vapor in the O2.

(3) From the images from the optical microscope and SEM, the diffusive ratios of con-
densed combustion residues at normal pressure in inert gases are 4~6, higher than
those (2~3) in oxidizing gases. The constituent content analysis based on EDS map-
ping shows that argon does not dissolve into the liquid Mg, while nitrogen dissolves
it significantly. In oxidizing gases of air or pure O2, Mg microparticles that underwent
laser-induced heating at normal pressure completely burned.
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