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Abstract: There are many unknown abnormal working conditions in industrial production. It is
difficult to identify unknown abnormal working conditions because there are few relative sample
and experience in this field. To solve this problem, a new identification method combining two-step
clustering analysis and signed directed graph (TSCA-SDG) is proposed. Firstly, through correlation
analysis and R-type clustering analysis, the variables are effectively selected and extracted. Then, a
two-step clustering analysis was carried out on the selected variables to obtain the cluster results.
Through the establishment of the signed directed graph (SDG) model, the causes of abnormal working
conditions and their mutual influence are deduced from the mechanism. The application of the
TSCA-SDG method in the catalytic cracking process shows that this method has good performance
for abnormal condition identification.

Keywords: two-step clustering analysis; signed directed graph; catalytic cracking process; abnor-
mal identification

1. Introduction

As heavy and inferior crude oil becomes more and more popular, the fluidic catalytic
cracking (FCC) process, as one of the core processes in the light-weight processing of heavy
oil, has received more and more attention [1–3]. In China, the diesel and gasoline produced
by FCC units account for about 30% and 70% of the finished diesel and gasoline [4].
With the application of distributed control system (DCS), the control of FCC has been
computerized. At the same time, with the advent of big data era, the digitization and
intelligence of FCC process have been developed widely.

The FCC process has some flammable, explosive chemicals and high temperature,
high pressure conditions. The occurrence of accidents will cause serious casualties and
property losses, as well as irreversible environmental pollution. With the development of
computers, the industrial production process has become increasingly more automated,
where abnormal alarms are mostly handled by operators. Due to the lack of ability and
experience of operators, it is difficult to make correct judgments and take action quickly in
case of abnormal occurrence, which may cause more serious subsequent accidents. Accord-
ing to industry statistics, abnormal events caused by operators accounted for about 70% of
overall events [5]. Therefore, the current industrial production needs to introduce more
effective computer system-based program for fault detection and diagnosis. Fault diagnosis
technology has developed rapidly since the 1980s [6–8], which is generally divided into
knowledge-based, mechanism-based and data-based technologies [9]. Data-based fault
diagnosis technology does not have over reliance on rich expert experience and accurate
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analytical models because it makes full use of the large amount of data generated during
the operation of machinery and equipment. With the rapid development of industrial
big data and computer technology, data-based fault diagnosis technology is more and
more widely applied [10–13]. The DCS system also provides vitality to the application and
innovation of data-driven methods in a chemical process failure study [14].

The data-based fault diagnosis technology can be classified as qualitative and quanti-
tative methods, while the latter one can be further classified into two categories: statistical
and non-statistical [15–17]. Cluster analysis belongs to the statistical technology, which is a
typical unsupervised learning technology in the field of data mining and machine learning.
Cluster analysis techniques can be used to explore and discover hidden patterns in data.
The main division basis of cluster analysis method is the similarity relationship between the
sample points, which is an autonomous division of the data sample set. In the clustering
process, all the sample points in the same set are divided into several clusters, where the
similarity of sample points in the same cluster structure is kept as high as possible but
the similarity between different clusters is kept as low as possible. At present, the com-
monly used clustering algorithms include Two-Step Clustering (TSC) [18], K-means [19],
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [20], Gaussian
Mixture Clustering (GMC) [21], Hierarchical Agglomerative Clustering (HAC) [22] and so
on. DBSCAN can cluster dense datasets of any shape without unbiased results. However,
when the density of the sample set is uneven or the clustering distance is very different, the
clustering quality is poor. GMC can obtain elliptical clusters rather than circular ones with
the mean and standard deviation. HAC is a bottom-up clustering algorithm; the disadvan-
tage is that the computational complexity is too high and the efficiency is low. K-means
has the advantages of simplicity, high efficiency, short time and low space complexity for
large datasets. However, when the dataset is large, the result is prone to the local optimum.
Moreover, K-means needs to set the value of K in advance and is, therefore, very sensitive
to the selection of the K value [23]. TSC is a clustering method recently developed. It
occupies fewer memory resources and has a fast computing speed for large datasets. TSC
has an excellent clustering effect, so it is widely used in medical, nuclear engineering and
other fields. In the identification of working conditions of industrial big data, TSC can
accurately identify and cluster data of abnormal working condition. Although the above
cluster methods have received in-depth development, their analysis of specific industrial
mechanism is insufficient. Signed directed graph (SDG) is one of the labeling methods for
mechanism analysis.

SDG is a qualitative fault identification method, which has the advantages of simple
modeling and flexible reasoning. SDG is a good way to show the relationship between
complex system variables and reveal the propagation path of potential hazards and failures.
SDG has a wide range of applications and development. Yang et al. summarized the
background and development of the SDG method, and reviewed three modeling methods
of SDG and their application in the field of safety evaluation and fault diagnosis [24].
Gao et al. proposed a semi-quantitative validation method for a simulation model based
on SDG and qualitative trends, where qualitative trends were added to the SDG model
and the complete testing cases were produced by positive inference. The semiquantitative
validation was carried out by comparing the testing cases with outputs of the simulation
model in different scales [25]. Wu et al. determined candidate faults based on SDG
backward inference from the alarm parameters. According to the candidate faults, SDG
forward inference was applied to obtain candidate parameters and then identify real
faults [26]. Guo et al. proposed a general framework for the translation of multi-attribute
graphs. In order to discover and preserve the consistency of the generated nodes and
edges, a spectral graph regularization based on a non-parametric Laplacian graph was
designed [27].

This paper proposes a method for identifying unknown abnormal conditions in the
catalytic cracking process by combining the two-step clustering analysis with the SDG
model (TSCA-SDG). The TSCA-SDG method identifies abnormal working conditions
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through two-step clustering analysis, and analyzes the propagation path of abnormal
working conditions by the SDG model. The outline of this paper is organized as follows.
In Section 2, the framework of the TSCA-SDG method is introduced in detail, followed
by the principles of two-step clustering analysis and SDG. The excellent performance
of TSCA-SDG is proved by a case study in Section 3. Section 4 provides a summary
of this paper.

2. Proposed Method

The TSCA-SDG method consists of four parts: (1) data preprocessing; (2) feature
extraction and selection; (3) two-step clustering analysis; (4) SDG modeling. Its framework
is shown in Figure 1.
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Figure 1. The framework of the TSCA-SDG method.

In the data processing part, Z-Score standardization is performed on the data of the
control parameter and related variables to obtain data that remove the influence of magni-
tudes.

In the feature selection and extraction part, correlation analysis and R-type cluster
analysis are carried out on the preprocessed variables. By calculating the Pearson correla-
tion coefficient and the distance between variables, variables are selected and extracted to
effectively achieve the purpose of dimensionality reduction.

In the two-step clustering analysis part, the variables after screening are clustered
using the two-step clustering method. The optimal number of clusters is obtained through
the Schwarz Bayesian Information Criterion for quick and effective clustering.

In the SDG model part, the SDG model is connected to the DCS system to realize
process monitoring. For abnormal working condition data, the SDG model can accurately
describe the fault characteristics as a consistent path through bidirectional inference. The
abnormal type marked with characteristics can be output and displayed to the operator for
the warning of potential abnormal occurrence.
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2.1. Data Preprocessing

The dimensions of variables are different and their magnitudes vary greatly. For
comparison of these data together, the data are preprocessed first. Z Scores standard
deviation is used to eliminate the influence of dimension, where the mean value of the
transformed data is 0 and the standard deviation is 1, as shown in Equation (1):

x∗ij =


xij−xj

Sj
Sj 6= 0

0 Sj = 0

(
i = 1, 2, · · · , n
j = 1, 2, · · · , n

)
(1)

where xj is the mean of the data and Sj is the standard deviation of the data.

2.2. Feature Extraction and Selection

In the application of actual industrial big data, some closely related variables in
industrial production show low correlation due to time lag and other reasons. If only
the correlation analysis is considered, some variables that are correlated in practice may
be ignored. Combining expert experience, this paper proposes a feature extraction and
selection method that comprehensively considers correlation analysis and R-type clustering
analysis to effectively solve this problem.

2.2.1. Correlation Analysis

For the relationship between variables, it is easy to think of the deterministic rela-
tionship between variables. Its characteristic is that when the value of one variable is
determined, the value of other variables is also completely determined. Different from the
deterministic relationship, there is an indeterminate relationship between variables. Its
characteristic is that after a variable value is given, the value of another variable can change
within a certain range. This non-deterministic relationship is called correlation. It must be
studied with the help of statistical methods, which is also called statistical correlation [28].

The Pearson correlation coefficient is used to analyze the correlation of variables,
as shown in Equation (2):

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(2)

where n is the sample size and xi and yi are the variable values of the two variables, respectively.

2.2.2. R-Type Clustering Method

The R-type clustering method separates variables with large differences and clusters
similar variables together. A few representative variables can be selected from similar
variables to participate in other analyses to achieve the purpose of reducing the number of
variables and dimensionality of variables.

The R-type clustering method used in this paper adopts agglomeration method. The
process of agglomerative clustering is as follows. First, each observed individual is divided
into a class. Then, the degree of closeness between all individuals is measured by the
between-groups linkage distance method, and the closet individuals are grouped into a
small class to form n − 1 classes. Next, the degree of closeness between the remaining
observed individuals and subclasses is measured again, and the current closest individuals
and subclasses are grouped into one class. The above process repeats until all the indi-
viduals are grouped together to form the largest group [29]. The flowchart of the R-type
clustering method is shown in Figure 2.
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The between-groups linkage distance is the average distance between an individual
and each individual in the subclass. The between-groups linkage distance method over-
comes the weakness that the nearest neighbor distance or the farthest neighbor distance is
easily affected by extreme values as it uses the information of all distances between indi-
viduals and subclasses. During the agglomerative clustering, as the clustering progresses,
the degree of closeness within the cluster gradually decreases. For n observed individuals,
they can be agglomerated into a large class through n − 1 steps.

2.3. TSCA Method

Cluster analysis is an important part of the data mining discipline. It finds meaningful
clusters from huge, seemingly chaotic data by mining the hidden patterns behind the
data. The clustering algorithm is an unsupervised algorithm because there is no need
to define the class in advance. Without taking the known classification information into
consideration, all classification information can be generated by the clustering algorithm.

The two-step clustering algorithm is also called the two-stage clustering algorithm.
The first stage is pre-clustering and the second stage is to use the clustering results of the
first stage to cluster again. In the pre-clustering stage, the theory of cluster tree growth in
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) algorithm [30] is
used to process the data points one by one. When processing data points, the clustering tree
continually adds and updates a set of split leaf nodes to form many small subclusters [31].
In the second stage of clustering, agglomerative clustering is used to merge and group the
preprocessed subclusters. With the Schwarz-Bayesian information criterion and the Akaike
information criterion, the optimal number of clusters is determined.
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The Euclidean distance function is used to calculate both the degree of dissimilarity
between two objects and the degree of closeness and similarity between data individuals,
as shown in Equation (3):

d(i, j) =
√(

xi1 − xj1
)2

+
(
xi2 − xj2

)2
+ · · ·+

(
xin − xjn

)2
=

√
n

∑
k=1

(
xik − xjk

)2
(3)

where k = (1,2,3, . . . . . . n) represents the internal characteristics of the data individual. In
the case of sufficient information, weighting values are assigned to each feature to obtain
the weighted Euclidean distance, as shown in Equation (4).

d(i, j) =
√

w1
(
xi1 − xj1

)2
+ w2

(
xi2 − xj2

)2
+ · · ·+ wn

(
xin − xjn

)2 (4)

For the two-step clustering method, the optimal number of classifications is judged
according to the Schwarz Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC). In the statistical analysis, the smaller the BIC and AIC values, the better
the clustering effect. However, in practice, the BIC change ratio and distance measurement
ratio should also be considered. The greater the BIC variation and distance measurement
ratio are, the better the clustering effect becomes.

2.4. SDG Model

SDG is a qualitative analysis graph that expresses the interaction between process
variables. The directed arc between nodes is helpful to reveal the propagation relationship
between variables. The nodes in the model can be physical variables such as pressure and
temperature in the system, or operating variables such as valves and controllers. The status
values of the nodes are “+”, “0”, or “−”, indicating that its value is greater than the upper
threshold, normal state and lower threshold, respectively. If the changing trends of two
nodes are the same, that is, the increase of the previous node leads to the increase of the
next node, the two nodes are connected by solid arrows. If the trends of two nodes are
opposite, that is, the increase of the previous node leads to the decrease of the next node,
the two nodes are connected by dotted arrows. A simple SDG model structure is shown
in Figure 3. The states of M, N and P are “+”, “+” and “·” respectively. The relationship
between M and N is represented by a solid arrow, while the relationship between N and P
is represented by a dashed arrow, meaning that an increase in M will lead to an increase in
N and then a decrease in P [32].
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The sample of SDG model γ = (G_0, ϕ) is a function of node state value ψ : A0 → {+, 0,−}
. ψ(nk)(nk ∈ N0) is the symbol of node nk, as shown in Equations (5)–(7) [24]:

ψ(nk) = 0 , i f
∣∣Xnk − Xnk

∣∣< εnk , (5)

ψ(nk) = +, i f Xnk − Xnk ≥ εnk , (6)

ψ(nk) = −, i f Xnk − Xnk ≤ εnk . (7)
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where Xnk represents the actual value of the variable corresponding to the node, Xnk

represents the normal value of the variable corresponding to the node and εnk represents
the threshold value of the node nk in the normal state.

3. Industrial Applications

To evaluate the effectiveness of TSCA-SDG, an industrial application is carried out on
a catalytic cracking unit for the identification of a reaction temperature anomaly.

3.1. Process Description

The petrochemical catalytic cracking process technology is developed from the thermal
cracking process, which can effectively improve the processing depth of crude oil and
product quality. It is the core technology for modern refineries to improve heavy distillates
and residual oil property. In recent years, due to the shortage of global petroleum resources,
the use of petrochemical catalytic cracking technology has become an inevitable trend
for petroleum refining companies due to the intensive, energy-saving and environmental
protection purposes.

FCC is an important benefit-creating device in the oil refining sector, which can
flexibly adjust the product structure. The reaction regeneration system is the core of the
catalytic cracking unit, consisting of a reaction part and a regeneration part. The reaction
temperature is the main control parameter of the FCC unit, which is an important means to
adjust the reaction depth. Increasing the reaction temperature will increase the conversion
rate, while the yield and quality of the product will also change. The yield of dry gas and
liquid hydrocarbons increase as the reaction temperature rises. However, within different
ranges, the range of change is different. The yield of gasoline and diesel has a maximum
value with the increase of the reaction temperature. However, after a high value, due to
the re-cracking of the products formed by the cracking, a further increase in the reaction
temperature will reduce the yield of gasoline and diesel products. Therefore, it is necessary
to select an appropriate reaction temperature according to different production schemes.

The process structure of catalytic cracking is complex and its operating environment is
harsh, leading to some abnormal working conditions and many unplanned shutdowns. In
this paper, the catalytic cracking unit of a petrochemical enterprise is taken as an example
for unknown abnormal condition identification. According to the two-year historical data
of 347,520 observations in the operation, the abnormal working conditions of the reaction
temperature are identified. There are 1700 variables in the whole device, and the data
collection cycle is once every three minutes. The collection time for different parts of the
process is the same. Abnormal condition identification has far-reaching significance for the
long-term stable operation of the device and the improvement of economic benefits.

The flowchart of the catalytic cracking unit is shown in Figure 4. The process consists
of three main parts: the reaction regeneration system, the fractionation system and the
absorption stabilization system. The reaction regeneration system mainly includes reactor
R-101 and regenerator R-102. The fresh oil is mixed with the refining slurry after heat
exchange into the lift tube reactor reaction, where FEED1 indicates the vapor extraction
steam. The reaction products enter the fractionation system, including feedstock buffer
tank D-101, fractionation tower T-101 and diesel vapor extraction tower T-102. Reaction oil
and gas enter the fractionation tower from the bottom to the top of the tower. The product
at the top of the tower is rich gas and crude gasoline, while the product at the bottom of the
tower is oil slurry. OUT1 indicates the side line product light diesel. The absorption and
stabilization system mainly consists of absorption tower T-103, reabsorption tower T-106,
desorption tower T-104 and stabilization tower T-105. The rich gas and crude gasoline
from the fractionation system are separated into liquefied gas OUT2, stabilized gasoline
OUT3 and dry gas OUT4 by absorption stabilization, while the rich absorbed oil OUT5 is
returned to the fractionation tower.
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3.2. Data Preprocessing

There are 1700 variables in the whole process of catalytic cracking. However, too many
variables will greatly increase the difficulty of unnecessary data analysis. This paper only
considered variables related to the reaction temperature. Through communication with
field experts, combined with actual work experience, process knowledge and mechanism
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analysis, 17 variables were selected. After these 17 variables were standardized by Z Scores
standard deviation, the impact of different dimensions was eliminated. The mean value of
the converted data is 0, and the standard deviation is 1.

3.3. Feature Extraction and Selection of the Reaction Temperature

The 17 variables are shown in Table 1. Table 1 also lists the Pearson correlation
coefficients between these variables and the reaction temperature.

Table 1. Main variables related to the reaction temperature (T1).

Variables Symbol Description The Pearson Correlation
Coefficient Value with T1

T1 Reaction temperature 1.000

T2 Preheating temperature of the raw
materials 0.925

V1 Valve position of the regenerated
catalyst slide valve 0.654

F1 Feed quantity 0.944
F2 Slurry oil entering the reactor 0.870

F3 Recycle oil entering the reactor
(back under the tower) 0.931

F4 Recycle oil entering the reactor
(back on the tower) 0.295

F5 Riser slurry refining line 0.481
F6 Quench water entering the riser −0.576
F7 Quench oil entering the riser 0.082
F8 Pre-lift dry air volume 0.075
L1 Settler level 0.986
A1 Flue gas oxygen content 0.162
V2 Valve position of the recycle slide valve 0.133

P1 The pressure drop of the regenerated
catalyst slide valve 0.874

P2 Dilute phase pressure of the reactor 0.984

P3 Dilute phase pressure of the
regenerator 0.986

The variables are clustered by R-type, and the distance between clusters is between-
groups linkage distance. The clustering results are shown in Figure 5.
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Through the results of the correlation analysis in Table 1 and the results of the R-type
clustering between variables in Figure 5, the correlation between each variable and the
reaction temperature is intuitively reflected. From the ordinate in Figure 5, the order
of clustering among variables is given. It can also be seen from the abscissa that these
variables are grouped into several classes when given different distances. There are 11
highly correlated variables after feature selection and extraction, as shown in Table 2. After
feature selection and extraction, the data are effectively reduced in dimensionality.

Table 2. Variables after feature selection and extraction.

Variables Symbol Description The Pearson Correlation
Coefficient Value with T1

T1 Reaction temperature 1.000

T2 Preheating temperature of the raw
materials 0.925

V1 Valve position of the regenerated
catalyst slide valve 0.654

F1 Feed quantity 0.944
F2 Slurry oil entering the reactor 0.870

F3 Recycle oil entering the reactor
(back under the tower) 0.931

F6 Quench water entering the riser −0.576
L1 Settler level 0.986

P1 The pressure drop of the regenerated
catalyst slide valve 0.874

P2 Dilute phase pressure of the reactor 0.984

P3 Dilute phase pressure of the
regenerator 0.986

3.4. Two-Step Cluster Analysis

The 11 variables obtained were clustered by the two-step clustering method. The BIC
automatic clustering results and the AIC automatic clustering results are shown in Tables 3
and 4, respectively. In the rows where the number of clusters in Tables 3 and 4 is 2, the position
circled in red box shows that the BIC and AIC values are greatly reduced, and the mutation
rate is the smallest and the distance measurement ratio is the largest. The clustering result with
good clustering quality is obtained, so the number of clusters is determined to be 2.

Table 3. BIC automatic clustering results.

The Number of
Clusters

Schwarz
Bayesian

Information
Criterion (BIC)

BIC Variation BIC Change
Ratio

Distance
Measurement

Ratio

1 2,649,982.779

2
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Table 4. AIC automatic clustering results.

The Number of
Clusters

Akaike
Information

Criterion (AIC)
AIC Variation AIC Change

Ratio

Distance
Measurement

Ratio

1 3,372,404.115

2
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The results of two-step clustering are shown in Table 5. The cluster classes in the two-
step clustering results are the first and second classes. The numerical characteristics of 
class 2 fluctuate in the normal range. Class 2 is, thus, the normal working condition, with 
321,856 observations clustered into this class. Compared with the normal value, the nu-
merical characteristics of class 1 have a large fluctuation range. Class 1 is, thus, the abnor-
mal working condition, with 25,664 observations. After cluster analysis, there are data on 
25,664 abnormal working conditions. 

Table 5. The cluster size of each class of the two-step clustering result. 

Clustering Name Cluster Size The Number of Observations 
Class 1 7.38% 25,664 
Class 2 92.62% 321,856 

The standardized data of the 11 variables and their two-step clustering results are 
shown in Figure 6. It can be clearly seen that the two-step clustering has obtained good 
clustering results. Observation with large fluctuations caused by meter damage, meter 
calibration, shutdown of the device, etc., are grouped into abnormal working condition 
class 1. 
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The results of two-step clustering are shown in Table 5. The cluster classes in the
two-step clustering results are the first and second classes. The numerical characteristics
of class 2 fluctuate in the normal range. Class 2 is, thus, the normal working condition,
with 321,856 observations clustered into this class. Compared with the normal value, the
numerical characteristics of class 1 have a large fluctuation range. Class 1 is, thus, the
abnormal working condition, with 25,664 observations. After cluster analysis, there are
data on 25,664 abnormal working conditions.

Table 5. The cluster size of each class of the two-step clustering result.

Clustering Name Cluster Size The Number of
Observations

Class 1 7.38% 25,664
Class 2 92.62% 321,856

The standardized data of the 11 variables and their two-step clustering results are
shown in Figure 6. It can be clearly seen that the two-step clustering has obtained good
clustering results. Observation with large fluctuations caused by meter damage, meter cali-
bration, shutdown of the device, etc., are grouped into abnormal working condition class 1.

3.5. Comparison with K-Means Clustering Method

The K-means clustering algorithm uses distance as the evaluation index of similar-
ity. The closer the two data points are, the greater the similarity becomes. Clusters are
composed of close data points. The ultimate goal of clustering is to obtain compact and
independent clusters.

The K-means clustering algorithm is an iterative solution clustering analysis algorithm.
The calculation steps of the clustering algorithm are shown in Figure 7.
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In order to facilitate the comparison of clustering results with different clustering
methods, the value of K in K-means clustering is set to 2. The K-means clustering results
are shown in Table 6.
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Table 6. The cluster size of each class of the K-means clustering result.

Clustering Name Cluster Size The Number of
Observations

Class 1 7.08% 24,607
Class 2 92.92% 322,913

The cluster classes in the K-means clustering results are the first and second classes. Class
2 is the normal working condition, with 322,913 observations clustered into this class. Class 1
is the abnormal working condition, with 24,607 observations. The comparison between the
two-step clustering results and the K-means clustering results is shown in Figure 8.
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In Figure 8, the reaction temperature circled in red fluctuates greatly. The two-step
clustering method effectively identifies and classifies them as an abnormal condition, while
the K-means clustering method does not identify them effectively. It can, thus, be clearly
seen that the two-step clustering method used in this paper is better than the K-means
clustering method.

3.6. Establishment of the SDG Model

In actual engineering applications, it is difficult to obtain algebraic equations and
differential equations between parameters for large and complex devices and equipment,
so the SDG built based on expert experience knowledge is more effective. The use of
expert experience alone to establish SDG models has certain limitations, maybe resulting
in the inability of system. At the same time, the establishment of SDG model using
mathematical analysis alone cannot specifically analyze the relationship between the
variables. In this paper, through correlation analysis and R-type clustering analysis, feature
selection and extraction are effectively carried out, which has played a key role in reducing
the dimensionality of the data variables. By calculating the Pearson correlation coefficient
between variables, it effectively and intuitively reflects the correlation between variables.
Through the effective combination of expert experience and mathematical analysis, the SDG
model of the reaction temperature is well established. The Pearson correlation coefficients
among the variables are shown in Table 7.
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Table 7. Pearson correlation coefficients among the variables.

F1 F6 F2 F3 P1 P2 P3 T1 T2 V1 L1

F1 1.000 −0.542 0.825 0.913 0.787 0.938 0.938 0.944 0.899 0.651 0.930
F6 −0.542 1.000 −0.590 −0.455 −0.514 −0.543 −0.544 −0.576 −0.603 −0.387 −0.549
F2 0.825 −0.590 1.000 0.756 0.707 0.850 0.853 0.870 0.800 0.543 0.871
F3 0.913 −0.455 0.756 1.000 0.807 0.938 0.938 0.931 0.901 0.565 0.927
P1 0.787 −0.514 0.707 0.807 1.000 0.879 0.888 0.874 0.830 0.641 0.840
P2 0.938 −0.543 0.850 0.938 0.879 1.000 0.998 0.984 0.909 0.677 0.971
P3 0.938 −0.544 0.853 0.938 0.888 0.998 1.000 0.986 0.909 0.673 0.974
T1 0.944 −0.576 0.870 0.931 0.874 0.984 0.986 1.000 0.925 0.654 0.986
T2 0.899 −0.603 0.800 0.901 0.830 0.909 0.909 0.925 1.000 0.623 0.899
V1 0.651 −0.387 0.543 0.565 0.641 0.677 0.673 0.654 0.623 1.000 0.622
L1 0.930 −0.549 0.871 0.927 0.840 0.971 0.974 0.986 0.899 0.622 1.000

The relationship among the nodes of the reaction temperature related variables is ana-
lyzed with mechanism and process data. As shown in Figure 9, the listed influence relation-
ships are combined into a complete SDG model. All nodes are connected by dotted arrows
and solid arrows to indicate the negative and positive correlations between the nodes.
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3.7. Abnormal Identification

In the SDG model, bidirectional inference is used to find the consistent paths and all
possible cause nodes. First, the states of all nodes are detected and abnormal nodes that
exceed the threshold are found. The transient states of the abnormal nodes are shown in
Table 8. Then related nodes are reversely searched from the alarm node T1. Five compatible
paths with different cause nodes are obtained as follows:

• T1←L1←P3←P2←P1←V1
• T1←L1←P3←T2
• T1←L1←P3←P2←F2←F1
• T1←L1←P3←P2←F3←F1
• T1←F6

Table 8. States of abnormal nodes.

F1 F6 F2 F3 P1 P2 P3 T1 T2 V1 L1

+ − + + + + + + + + +
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The first path is from V1 to T1, and the correlation of each node is positive. The increase
of the valve position of the regenerated catalyst slide valve will increase the reaction
temperature. The second path from T2 to T1 shows the influence of T2 on T1. The
increase in the preheating temperature of the raw materials will also increase the reaction
temperature. For the third and fourth paths, the increase of F1 increases F2 and F3, and
then T1. In the fifth path, F6 has a negative correlation with T1, of which the increase
will lead to the decrease of T1. The SDG model under abnormal conditions is shown in
Figure 10. In short, the abnormality of nodes V1, F1, T2 and F6 will cause the fluctuation of
reaction temperature T1.
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4. Conclusions

A new TSCA-SDG method is proposed to detect and identify the unknown abnormal
working conditions in the catalytic cracking process. Through correlation analysis and
R-type clustering analysis, 11 variables are selected, such as feed quantity, preheating
temperature of the raw materials and valve position of the regenerated catalyst slide valve.
The two-step cluster analysis is performed on 347,520 observations of 11 variables, and
the clustering results are obtained as two classes, one for normal working conditions and
the other for abnormal operating conditions. The K-means clustering method is used for
further verification of the two-step clustering method. SDG model accurately describes
the characteristics of abnormal working conditions through the information propagation
path between nodes with alarm thresholds. Through the organic combination of cluster
analysis with SDG, data dimensionality reduction and feature selection and extraction are
effectively carried out. Then, abnormal working conditions are quickly identified. From
the perspective of mechanism analysis, the identification of unknown abnormal working
conditions in catalytic cracking is better and more accurate than experience only. At present,
there is much research on the identification of known working conditions, while there is lit-
tle research on the identification of unknown working conditions, although this is urgently
needed because there are a lot of abnormal working conditions in industrial production.
The TSCA-SDG method proposed in this paper solves this problem meaningfully. The
quality of the clustering algorithm will limit the identification of abnormal conditions, so
its further development will promote more in-depth research.
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