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Abstract: Human survival depends on the sustainable development of agriculture. This study
constructs a data-driven evaluation and optimization method of agricultural sustainable develop-
ment capacity, aiming to better cope with challenges such as environmental pollution and excessive
consumption of resources and energy, as well as improve agricultural economic level. Further, an eval-
uation index system was constructed based on comprehensive consideration of energy and resources
utilization, environmental pollution, and agricultural economy. After simplifying and integrating the
data, a data envelopment analysis model was constructed to quantitatively evaluate the capability for
agricultural sustainable development and its changing trend. Moreover, its influencing factors were
analyzed from the perspective of input, which provides accurate countermeasures for improving
agricultural sustainable development ability, resource utilization efficiency, and process optimization.
This study shows the realization process of the aforementioned method for the agricultural devel-
opment of six cities in northern Anhui from 2010 to 2019. Our results suggest that the sustainable
development ability of northern Anhui is weak, but overall, has a good development trend. Based on
our results, some countermeasures were proposed to control production scale reasonably, reduce
environmental load, and improve resource efficiency, which provides a reference for policymakers to
guide and standardize the development of regional agriculture.

Keywords: data driven; agricultural sustainable development capability; economic and environmen-
tal index system; resource efficiency; agricultural process optimization

1. Introduction

Agriculture economy is the foundation of not only national economy but also human
existence. Additionally, the sustainable development of agriculture is the foundation for the
sustainable development of the whole society. In recent years, the problem of sustainable
development of agriculture has become the primary focus in global discussions. According
to the Food Crisis Report released by the World Food Program, the number of people facing
food crisis worldwide in 2019 was 135 million. ‘Food and Agriculture in 2020’ issued by the
Food and Agriculture Organization of the United Nations (FAO) points out that 3.2 billion
people worldwide will face water shortages in 2020. Most countries are promoting the
coordinated development of agricultural production and ecology. The intention is to
focus on the development and innovation of digital agriculture [1,2], promote the optimal
allocation of agricultural resources [3], accelerate the optimization of agricultural industrial
structures [4], improve the efficiency and competitiveness of agricultural production and
promote its sustainable development. Nevertheless, the increase in world population [5],
shortage of water resources [6,7], and environmental pollution [8,9], are creating new
challenges for the sustainable development of world agriculture [10]. Therefore, it is
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necessary to promote a sustainable agricultural model [11], build evaluation indicators
based on these challenges, and objectively measure the capacity of regional sustainable
agricultural development by using data to optimize its capability.

Agriculture is very important for any country; many scholars have carried out re-
search and discussion on the sustainable development of agriculture. First, the theory
of agricultural sustainable development was studied. Research on the theory of agricul-
tural sustainable development is primarily based on Daly’s four standards of sustainable
development goals [12], environmental Kuznets curves [13,14], emergy theory and anal-
ysis methods [15], and other theories. In 1988, the US Congress passed the “Low-input
and Sustainable Agriculture (LISA)” program, which is based on improving ecological
benefits and protecting the ecological environment, setting diversified agricultural devel-
opment goals, and increasing the intensity and scope of agricultural subsidies [16]. The
“17 sustainable development goals (SDGs) to transform our world” report of the United
Nations Department of Economic and Social Affairs highlighted the need for countries to
take action to achieve sustainable management and efficient use of natural resources by
2030 [17]. “Sustainable agriculture” is a major change in the course of world agricultural
development [18]. Most agriculturalists have reached a consensus that the theoretical study
of sustainable agriculture is essential to realize the sustainability of the biosphere and its
population growth [19]. Sustainable agricultural development depends on the efficient use
of resources and risk management strategies [20]; hence, we need to focus on better use
of natural and human resources [21]. Second, the evaluation and measure of sustainable
agricultural development were studied. To evaluate the sustainable development ability
of agriculture, it is necessary to build an evaluation index system [22]. The evaluation
indicators are based on focused investigation and regional differences, and hence, are
thoroughly different. Index systems have been constructed using several indicators, in-
cluding fuel use and agricultural waste [23]; crop growth and soil quality change [24,25];
assets [26]; utilization of water resources [27]; level of farmers’ mutual cooperation [28];
regional population, resources, and social economy [29]; and productivity, profitability,
and soil health [30]. Furthermore, scholars have explored different methods for evaluating
regional capacity for sustainable development of agriculture, including the carbon foot-
print method of agricultural production [31,32], reference evapotranspiration index [33],
direct impact model of agricultural production [34], emergy analysis [35], logarithmic
mean divisor index decomposition method [36], and life cycle assessment method [37].
Finally, the optimization and countermeasures of agricultural sustainable development
ability were studied. Sustainable development of agriculture is driven by many factors.
Many scholars have carried out relevant research and put forward solutions from vari-
ous angles. For instance, Poveda et al. proposed that crops and other organisms coexist
harmoniously [38,39], Lemaire et al. proposed to improve the content of soil chemical ele-
ments [40], Ashraf et al. proposed to increase scientific and technological innovation, and
improve agricultural production technology [41], Zhou et al. demonstrated that sustainable
agricultural development can be achieved by controlling production scale and developing
intensive agriculture [42,43], and Wings et al. put forward suggestions to promote sustain-
able agricultural development from the angle of controlling environmental pollution and
reducing environmental load [44,45]. Academic circles have provided many directions for
countermeasures and suggestions, but the development of agriculture has great regional
differences. Hence, it is necessary to put forward countermeasures and suggestions in line
with the actual situation, while also considering the regional characteristics.

Although numerous studies have been conducted on the sustainable development
ability of regional agriculture, the following deficiencies remain: (1) Numerous factors
are involved in agricultural development, including the utilization of cultivated land,
agricultural machinery power, and other resources, as well as the relevant indicators of
environmental pollution. Establishing a scientific evaluation index system for sustainable
development is the theoretical basis for objectively judging the ability for sustainable
development of agriculture. (2) The evaluation of agricultural sustainable development
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ability is a complex system, which needs to consider the relationship between input and
output. Further, though it should be ensured that the current output meets the demand,
it should also be ensured that the output does not hinder future development due to
over-exploitation and waste. Therefore, based on the above factors, it is urgent to construct
an evaluation method for measuring the ability for sustainable development of agriculture
and summarizing the changing trend of the ability for sustainable development. (3) At
present, the main research direction of scholars is to investigate whether a certain factor can
effectively improve the sustainable development ability of agriculture. However, there are
many factors that affect the sustainable development of agriculture. Therefore, it is neces-
sary to construct a data-driven mechanism to improve the sustainable development ability
of agriculture, accurately reveal the main factors that affect the sustainable development
ability of agriculture, and then put forward effective countermeasures and suggestions for
improving the ability for the sustainable development of agriculture.

To address the challenges discussed and fill the existing knowledge gaps, better cope
with environmental pollution and excessive consumption of resources and energy, improve
the agricultural economy levels, and promote its sustainable development, this study
proposed an evaluation and optimization method for regional agricultural sustainable
development capacity based on the work by Liu et al. [46,47]. The present study has both
theoretical and practical significance. The theoretical significance is as follows: This paper
studies the measurement, evaluation, and optimization of the capability for the develop-
ment of sustainable agriculture from a data-driven perspective. First, the phenomenon
of yield growth and income increase at the expense of resources and the environment
was elucidated by using the theory of sustainable agricultural developments. The related
indicators of agricultural water and electricity utilization, and the related indicators of
agricultural pollution, such as livestock manure and agricultural wastewater, were taken
as input indicators. Moreover, the agricultural output value and the income of employees
representing the living standard were taken as output indicators. Thus, a more scientific
and objective comprehensive evaluation system was constructed. Second, an evaluation
model of agricultural sustainable development ability was constructed to realize the mutual
comparison and quantitative evaluation of the ability for the sustainable development of
agriculture; at the same time enabling the evaluation of the change in trend of the ability
for sustainable development. Thirdly, a data-driven mechanism for improving the ability
for sustainable development of agriculture was constructed, and the main influencing
factors of agricultural sustainable development ability were accurately found, providing
a decision-making basis for improving agricultural sustainable development ability. The
practical significance is as follows: First, this article can help governments and researchers
to master the methods for evaluating the ability for agricultural development and chang-
ing trends comprehensively, objectively, and quantitatively. Second, through data-driven
analysis, identify the key factors affecting the ability for sustainable development, and
identify directions for improving agricultural development and enhancing agricultural
competitiveness in the future.

The next section introduces the methods used, including data collection, mathematical
modeling, and data analysis. Following this, the application process of the above methods
uses northern Anhui as an example, and evaluates the sustainable agricultural development
ability, pure technical and scale efficiency, and scale return of six cities in northern Anhui,
and puts forward optimization countermeasures and management enlightenment.

2. Materials and Methods
2.1. Method Flow

This paper establishes a data-driven method to measure, evaluate, and optimize
the capability for sustainable development of agriculture. In terms of data collection,
the evaluation index system is constructed by taking the agricultural resource utilization
index and environmental pollution index as input indices, and farmers’ income and total
output of agriculture, forestry, animal husbandry, and fishery as output indices. In the data
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processing, the data standardization method and entropy weight method are used to further
process and integrate the data. A data envelopment analysis model with constant return to
scale and a data envelopment analysis model with variable return to scale are constructed.
The quantitative evaluation of the ability for agricultural sustainable development and
changing trend was realized. Based on the evaluation results, the main factors influencing
the ability of agricultural sustainable development were analyzed, and then the targeted
methods to improve the ability for agricultural sustainable development were put forward.
The method flow is shown in Figure 1.

Figure 1. Method flow.

2.2. Data Collection

The design of the index system needs to be completed under the guidance of relevant
theories of sustainable agricultural development [48]. The indices in this paper include two
types, input and output, and can fully reflect the characteristics of several major elements
of the agricultural sustainable development system, such as resources, environment, and
economy. The selected output variables are agricultural output value and farmers’ income,
while the input variables are resource utilization and environmental pollution. The selected
sample data is the panel data of six cities in northern Anhui during 2010–2019. The
sorted and analyzed data can be applied to the comparative evaluation of the ability for
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sustainable agricultural development of different cities in the same period and can also
be applied to the change trend evaluation of agricultural sustainable development ability
of the same city in different periods, mainly from the Anhui Statistical Yearbook, China
Statistical Yearbook, and China Agricultural Statistical Yearbook from 2010 to 2019. The
data collection indicators are listed in Table 1.

Table 1. Evaluation index system of agricultural sustainable development ability.

Indicator Type Level I Index Secondary Index Indicator
Attribute

Output
indicators

Economics
Per capita net income of farmers (RMB) (0.3936) +

Gross output value of agriculture, forestry, animal husbandry and
fishery (10,000 yuan) (0.6064) +

Input index

Energy and
resources utilization

Number of employees in agriculture, forestry, animal husbandry
and fishery (10,000) (0.1740) -

Agricultural land area (thousand hectares) (0.2297) -

Total power of agricultural machinery (10,000 kW) (0.1434) -

Electricity consumption for agriculture (100 million kWh) (0.1249) -

Agricultural fuel consumption (ton) (0.1942) -

Agricultural water consumption (100 million cubic meters) (0.1338) -

Environmental pollution

Pesticide consumption (ton) (0.1916) -

Chemical fertilizer consumption (ton) (0.1670) -

Usage of agricultural plastic film (ton) (0.2315) -

Livestock manure discharge (kg) (0.2119) -

Agricultural wastewater discharge (ton) (0.1980) -

There are many indices in the comprehensive evaluation index system for sustainable
agricultural development. To obtain comprehensive and objective data envelopment
analysis (DEA) evaluation results, it is necessary to further generate DEA input and output
comprehensive indices based on scientifically establishing the evaluation index system.

2.3. Data Processing
2.3.1. Data Standardization Method

Common data standardization methods involve Max-min standardization and z-score
standardization. In this study, the Max-min standardization method is used to standardize
the original index values; the specific calculation steps are as follows: First, an initial data
matrix is constructed, with t years, s cities, and n indices, forming an original data matrix:

X =
{

xλij
}
(1 ≤ λ ≤ t; 1 ≤ i ≤ s; 1 ≤ j ≤ n), in which, xλij is the original data of the

index j of the i city in the λ year.
The Max-min data standardization method can be calculated by the following

two equations:
zλij =

(
xλij − xjmin

)
/
(

xjmax − xjmin
)

(1)

zλij =
(

xjmax − xλij
)
/
(
xjmax − xjmin

)
(2)

zλij represents standardized data, xjmin represents the minimum value of the original
data of index j, and xjmax represents the maximum value of the original data of index j. In
the formula, zλij ∈ [0, 1] and is dimensionless. Equation (1) can be used for positive output
index and reverse input index, and Equation (2) can be used for reverse output index and
positive input index. In the evaluation index system of this study, the output indicators
are all positive indicators, and the input indicators are all reverse indicators (see Table 1).
The standardized calculation adopts Equation (1), and the processed matrix is written as
Z =

{
zλij
}

.
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2.3.2. Index Synthesis and Weight Determination Method

Commonly used methods for comprehensive index generation include principal com-
ponent analysis, the Delphi method, the analytic hierarchy process, and the entropy weight
method, which can profoundly reflect the utility value of the index information entropy
value. The index weight value given by the entropy weight method has high credibility,
which is suitable for the research of sustainable development of the DEA method [49].
In this paper, entropy weight method is used to generate DEA input and output com-
prehensive indicators, including “agricultural output value and income” comprehensive
indicators, “resource utilization” comprehensive indicators and “environmental pollution”
comprehensive indicators. The specific generation steps are as follows:

To ensure that the logarithm is meaningful, data zλij is shifted based on the calculation
result of 2.3.1 by one unit, and we call that yλij = zλij + 1.

Let the information entropy value of each index be hj, then hj = −K ∑t
λ=1 ∑s

i=1
(

PλijlnPλij
)
,

where Pλij = yλij/ ∑t
λ=1 ∑s

i=1 yλij and K = 1/ln(t× s).
Let the weight value of each index be wj, then wj = ej/ ∑m

j=1 ej, where ej = 1− hj, and
m is the number of secondary indices under the corresponding primary index. Obviously,
∑m

j=1 wj = 1 and 0 ≤ wj ≤ 1.

2.4. Data Modeling

Data envelopment analysis (DEA) is an efficiency evaluation method proposed by
Charnes, a famous American logistics scientist in 1978 [50]. It has become a common and
important analysis tool, and research means in the fields of management science, system
engineering, decision analysis, and evaluation technology. Moreover, there are many
types of data envelopment analysis models, which can be divided into input-oriented
data envelopment analysis models and output-oriented data envelopment analysis model
according to the input- and output-oriented classification. According to the classification
of returns to scale, it can be divided into the constant data envelopment analysis model of
returns to scale, and scale variable data envelopment analysis model.

In this study, the data envelopment analysis model with constant return to scale (this
method was proposed by Charnes, Cooper, and Rhodes, hence it is commonly known as
the CCR model [50]) and data envelopment analysis model with variable return to scale
(this method was proposed by Banker, Charnes, and Cooper, hence it is commonly known
as the BCC model [51]) were selected from the input perspective to obtain comprehensive
technical efficiency, pure technical efficiency, scale efficiency, and return to scale. The
comprehensive technical efficiency obtained by the DEA model can reflect the degree to
which the production process of a decision-making unit (DMU) reaches the highest level.
Under the condition that the output remains unchanged, the comprehensive technical
efficiency is measured by the degree of input minimization. This is in line with the idea of
reducing resources and pollution, and ensuring stable output advocated by sustainable
development. Therefore, it is appropriate to use the DEA method to quantitatively study
sustainable development, and the comprehensive technical efficiency value can reflect the
overall level of agricultural sustainable development capability [52,53].

2.4.1. Constant Return to Scale Model

It is assumed that there are n decision-making units DMUi (i = 1, 2, · · · , n) in the
evaluation process, and the n decision-making units meet the homogeneity hypothesis and
are all comparable. Each decision-making unit has t input elements and obtains s outputs;
therefore, the input and output vectors are:

Xi = (x1i, x2i, · · · xti)
T > 0, i = 1, 2, · · · nYi = (y1i, y2i, · · · ysi)

T > 0, i = 1, 2, · · · n

xji represents the input amount of the jth input of the ith DMU, where xji > 0, and yji
represents the output amount of the jth output of the ith DMU, where yji > 0.
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To unify and synthesize all decision-making units, it is necessary to assign values to
each input and output so that the weight vectors of the input and output are:

v = (v1, v2, · · · vt)
Tu = (u1, u2, · · · us)

T

where vj represents the weight of the jth input and ur represents the weight of the rth

output. The efficiency evaluation index of each DMUj is defined as: ki =
∑s

r=1 uryri

∑t
j=1 vjxji

.

According to the above analysis, the CCR model for efficiency evaluation of DMUi0 is
(note X0 = Xi0 , Y0 = Yi0 ):

MAXki0 =
∑s

r=1 uryri0

∑t
j=1 vjxji0

s.t.


∑s

r=1 uryri

∑t
j=1 vjxji

≤ 1, i = 1, 2, · · · n

v = (v1, v2, · · · vt)
T ≥ 0

u = (u1, u2, · · · us)
T ≥ 0

The Charnes-Cooper transformation can be used to transform it into the following
equivalent linear model:

maxµTY0
s.t. ωTXi − µTYi ≥ 0, i = 1, 2, . . . , n

ωTX0 = 1
ω ≥ 0, µ ≥ 0

(3)

According to the linear dual theory, the dual programming model of Equation (3) is
obtained as follows: 

minθ

∑n
i=1 Xiλi ≤ θX0

∑n
i=1 Yiλi ≥ Y0

λi ≥ 0, i = 1, 2, . . . , n

(4)

In Equation (4), θ is the parameter to be estimated, the optimal solution θ∗ is the
efficiency value of DMU, and 0 ≤ θ∗ ≤ 1. When θ∗ = 1, it shows that DMU is on the
front of efficiency, and there is no possibility of equal ratio reduction of various inputs,
so it is DEA effective. When θ∗ < 1, DEA is invalid, and input and output can be further
optimized to improve efficiency; the higher θ∗ is, the higher the efficiency value is, and the
overall level of ability for sustainable development is higher in this study.

2.4.2. Variable Return to Scale Model

The CCR model contains the following premise: the return to scale is unchanged. This
model can only measure “comprehensive technical efficiency.” When the CCR model DEA
is effective, this decision unit is technically effective and scale effective. However, to further
explore the problems of “pure technical efficiency” and “scale efficiency,” the BCC model
needs to be introduced. When the return to scale is assumed to be variable, it is called the
BBC model, that is, the constraint condition ∑n

i=1 λ = 1 is introduced into Equation (4),
and the expression of BCC model is obtained as follows:

minθ

∑n
i=1 Xiλi ≤ θX0

∑n
i=1 Yiλi ≥ Y0
∑n

i=1 λ = 1
λi ≥ 0, i = 1, 2, . . . , n

(5)

The optimal solution of Equation (5) is θ∗, 0 ≤ θ∗ ≤ 1.
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Comparing the CCR model with the BCC model, the efficiency obtained by the
two models has different meanings in economics. Comprehensive technical efficiency
(TE) is obtained using the CCR model, and pure technical efficiency (PTE) is obtained
by the BCC model. They satisfy the relationship: comprehensive technical efficiency
(TE) = pure technical efficiency (PTE)* scale efficiency (SE). By solving Equations (4) and (5)
simultaneously, comprehensive TE, PTE, and SE can be obtained.

In this paper, comprehensive technical efficiency (TE) refers to the sustainable develop-
ment ability of the evaluated decision-making unit (DMU), which is a compound quantity.

In this study, pure technical efficiency (PTE) refers to the ability of the DMU to obtain
output under a given agricultural input. When pure technical efficiency is effective, given
the existing output, the agricultural system only needs to consume the least amount of
resources, that is, the input–output efficiency of the system is in the best state.

SE refers to the degree to which the DMU deviates from the return to scale when
the return to scale decreases or increases. In other words, when the DMU is under the
condition of constant return to scale, it is scale-effective; otherwise, it is scale-ineffective.

Return to scale refers to a state in which the agricultural production of the decision-
making unit (DMU) is in. When the input is expanded n times, the output expands with
the expansion of the input. The CCR model based on Section 2.4.1 can obtain the optimal
solution λ∗. If the SE = 1, it means that when the agricultural input is expanded by N times,
the output index is also expanded N times, which is called the return to scale unchanged. If
the SE is less than 1, and ∑ λ∗ < 1 in any optimal solution, it means that when the input is
expanded n times and the output is expanded by more than n times, it is called increasing
returns to scale. Currently, it is necessary to consider increasing the scale of agricultural
input. If SE is less than 1, and ∑ λ∗ > 1 in any optimal solution, it means that a given
input is expanded by n times, and the expansion of output is less than n times, which is
called diminishing returns to scale. At this time, we should consider reducing the scale of
agricultural inputs.

3. Case Study

Using the above research methods, we considered agriculture in northern Anhui for
our case study. According to the calculation results, this paper discusses the agricultural
production efficiency, SE, and sustainable development ability in northern Anhui. Conse-
quently, we propose countermeasures for sustainable agricultural development in northern
Anhui and summarize the management enlightenment.

3.1. Introduction of Northern Anhui Agricultural Region

North Anhui is located in the north of Anhui, China, bordering Jiangsu in the east,
southern Anhui in the south, Henan in the west, and Shandong in the north. The terrain
is mainly plains, including the vast Huaibei Plain. Northern Anhui is an important tradi-
tional grain-producing area in China. Cities in northern Anhui include: Bengbu, Bozhou,
Fuyang, Huaibei, Suzhou, and Huainan, and their locations are shown in Figure 2. It is of
great significance to study the capacity for the development of sustainable agriculture in
cities in northern Anhui, summarize the laws of agricultural development and the experi-
ence of agricultural development in advantageous areas, and identify the shortcomings
of agricultural development in areas with weak agricultural production, to effectively
allocate agricultural development resources and promote the improvement of capacity for
agricultural sustainable development in northern Anhui.
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Figure 2. Schematic diagram of administrative divisions in northern Anhui.

3.2. Results
3.2.1. Data Processing Results

According to the method described in Section 2.3, the data of six cities in northern
Anhui from 2010 to 2019 were standardized, and the corresponding weights were calculated
(see Table 1 for the calculation results of weights). The values of the three comprehensive
indices of agricultural output value, income, resource utilization, and environmental
pollution were obtained (Appendix A).

3.2.2. Calculation Results of Comprehensive Technical Efficiency

The output data (Table A1) and input data (Tables A2 and A3) were imported into
MaxDEA8 software, and the CCR model was used to evaluate the comprehensive TE of six
cities from 2010 to 2019 (comprehensive TE reflects the ability for sustainable development
of agriculture in each city), and the specific values are shown in Table 2.

Table 2. Calculation results of comprehensive technical efficiency.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 0.66487 0.67570 0.61865 0.78379 0.75457 0.60097
2011 0.69883 0.72028 0.67313 0.81184 0.78430 0.64150
2012 0.72069 0.73546 0.69327 0.83171 0.81736 0.66674
2013 0.75732 0.75400 0.73071 0.84946 0.82310 0.69835
2014 0.77953 0.76724 0.75769 0.87806 0.84716 0.70450
2015 0.79270 0.78317 0.76529 0.89640 0.75433 0.71956
2016 0.81808 0.81258 0.78700 0.89359 0.77685 0.72562
2017 0.84297 0.83347 0.81413 0.94543 0.80176 0.74927
2018 0.87993 0.86219 0.81426 0.96830 0.84356 0.76071
2019 0.93238 0.91365 0.85392 1.00000 0.88459 0.80648

Mean value 0.78873 0.78577 0.75081 0.88586 0.80876 0.70737

According to the calculation results in Table 2, the corresponding line chart is drawn
to reflect the changing trends and characteristics concerning the capacity for sustainable
development of each city from 2010 to 2019, as shown in Figure 3. Based on the average
value of the capacity for sustainable development of the six cities from 2010 to 2019 in
Table 2, the radar chart is drawn to reflect the overall level of the capacity for sustainable
development of each city, as shown in Figure 4.
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During the timeframe of 2010–2019, except for Huainan, the overall agricultural
sustainable development capacity of six cities in northern Anhui showed a steady upward
trend, but lower than the previous level observed in the period 2015–2018. During this
period, the capacity for agricultural sustainable development gradually improved and
recovered to a level exceeding that from 2014 to 2019. This study specifically discusses the
causes of the fluctuations in Section 3.3. In comparing the six cities, Huaibei City has the
best sustainable development ability (0.886), while Suzhou City has the weakest sustainable
development ability, which is only 0.707.

3.2.3. Calculation Results of Pure Technical Efficiency and Scale Efficiency

The input and output data were imported into MaxDEA8 software, and the BCC
model was used to evaluate the PTE of the six cities from 2010 to 2019. See Table 3 for
details. Furthermore, using the numerical relationship in Section 2.4.2 (Comprehensive
Technical Efficiency (TE) = Pure Technical Efficiency (PTE)* Scale Efficiency (SE)), the
corresponding scale efficiency value can be calculated, see Table 4 for details.
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Table 3. Calculation results of pure technical efficiency.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 0.76402 0.76719 0.64406 1.00000 0.95033 0.62765
2011 0.75522 0.75946 0.68192 0.99954 0.95236 0.64694
2012 0.74733 0.74905 0.71359 0.99562 0.94893 0.68479
2013 0.76405 0.75795 0.76911 0.99574 0.93787 0.72902
2014 0.79223 0.77954 0.80135 0.99879 0.93312 0.73680
2015 0.81723 0.80130 0.81736 0.99759 0.78871 0.76034
2016 0.84866 0.84085 0.85274 0.97880 0.79145 0.77140
2017 0.88319 0.86959 0.89768 1.00000 0.80427 0.80230
2018 0.92965 0.90371 0.91120 1.00000 0.85369 0.82023
2019 1.00000 0.97271 1.00000 1.00000 0.90771 0.89623

Mean value 0.83016 0.82014 0.80890 0.99661 0.88684 0.74757

Table 4. Calculation results of scale efficiency.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 0.87022 0.88074 0.96054 0.78379 0.79401 0.95749
2011 0.92533 0.94842 0.98712 0.81221 0.82353 0.99159
2012 0.96435 0.98184 0.97152 0.83537 0.86135 0.97363
2013 0.99119 0.99479 0.95007 0.85309 0.87762 0.95792
2014 0.98397 0.98421 0.94552 0.87912 0.90788 0.95616
2015 0.96998 0.97737 0.93630 0.89856 0.95641 0.94636
2016 0.96396 0.96638 0.92291 0.91294 0.98155 0.94065
2017 0.95445 0.95846 0.90693 0.94543 0.99688 0.93391
2018 0.94651 0.95406 0.89361 0.96830 0.98813 0.92743
2019 0.93238 0.93928 0.85392 1.00000 0.97453 0.89986

According to the calculation results in Tables 3 and 4, a line chart is drawn to reflect the
changing trend of PTE and SE of each city from 2010 to 2019, as shown in Figures 5 and 6.
Except for Huaibei, the change trend of PTE in other cities is similar to that of comprehen-
sive TE, which is basically in a state of steady improvement (in Huainan, the efficiency
declined in 2015, and the trend was similar to the comprehensive TE).
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3.2.4. Calculation Result of Return to Scale

The input and output data are imported into MaxDEA8 software, and the calculation
results of returns to scale can be obtained, as shown in Table 5. In the table, DRS indicates
decreasing returns to scale, “-” indicates constant returns to scale, and IRS indicates
increasing returns to scale.

Table 5. Calculation results of return to scale.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 IRS IRS IRS IRS IRS IRS
2011 IRS IRS DRS IRS IRS DRS
2012 IRS IRS DRS IRS IRS DRS
2013 DRS DRS DRS IRS IRS DRS
2014 DRS DRS DRS IRS IRS DRS
2015 DRS DRS DRS IRS IRS DRS
2016 DRS DRS DRS IRS IRS DRS
2017 DRS DRS DRS IRS DRS DRS
2018 DRS DRS DRS IRS DRS DRS
2019 DRS DRS DRS - DRS DRS

It can be seen from Table 5 that only Huaibei achieved the same return to scale
in 2019, while other DMUs were in a state of decreasing or increasing return to scale,
which indicates that the production scale is not in the best state. Notably, only when the
production scale and production technology are in the optimal state can the agricultural
production efficiency be the highest, and the ability for sustainable development be the best.

3.3. Discussion
3.3.1. Dynamic Discussion on the Ability for Agricultural Sustainable Development in
Northern Anhui

It can be seen from Figure 3 that the overall capacity for sustainable development of
each city shows a trend of continuous improvement, which indicates that each city is paying
more and more attention to the sustainable development of agriculture, continuously
adjusting the industrial structure, improving the technical level of agricultural production,
and continuously reducing the input of environment and resources and improving the
output. Among cities from 2010 to 2019, only Huaibei, in 2019, has an evaluation result of 1,
which is DEA effective; in other years, the cities did not achieve DEA efficiency, suggesting
that the agricultural sustainable development capacity of cities in northern Anhui was still
weak as a whole, and there was still room for further optimization.
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The PTE of Huaibei was essentially maintained above 0.99 from 2010 to 2019, which
indicates that its production status has consistently remained high, but it was only in
2019 that DEA efficiency was achieved, primarily because the production scale was not
in the best state (see Figure 6). Due to the continuous improvement of SE, the capacity
for sustainable development of Huaibei is continuously improving. In 2019, Huaibei
has both an effective scale and effective technology; as such, it has good capacity for
sustainable development. Comparing Figures 3, 5 and 6, the main reason for the decline
of comprehensive TE in Huainan is the decline of PTE, which shows several resources
and environmental inputs that fail to attain the proper output. By further reviewing the
initial survey data, we found that the total power of agricultural machinery, agricultural
electricity consumption, agricultural fuel consumption, pesticide consumption, fertilizer
consumption and agricultural plastic film consumption in Huainan have all increased
significantly during the period 2015–2018, and the total output value of agriculture, forestry,
animal husbandry and fishery has increased relatively little. After consulting relevant
data, we found that Huainan carried out agricultural construction and development of the
collapsed land over 2013–2014. Because the water quality, atmosphere, and vegetation in the
collapsed area suffered serious damage, the risk of natural disasters was high [54,55], and
farming convenience was poor, which was not conducive to the sustainable development
of agriculture, such that the production efficiency decreased significantly. According
to the changing trend of other cities, the SE is essentially above 0.85 (Figure 6). The
change in scale is not significant, and the change trend of PTE (Figure 5) is similar to
that of comprehensive TE (Figure 3). This shows that the main factor affecting the ability
for sustainable development of Suzhou, Fuyang, Bengbu, and Bozhou is PTE. With the
continuous improvement of production technology and the enhancement of environmental
protection awareness, sustainable development ability is constantly increasing.

3.3.2. Static Discussion on the Ability for Agricultural Sustainable Development in
Northern Anhui

According to the calculation results of average comprehensive TE (Figure 4), Huaibei
has the highest capability for sustainable development; contrastingly, Suzhou has the
weakest capability for sustainable development, which illustrates that the capability for
sustainable development of agriculture is not directly proportional to the production scale.
By comparing the input and output data of the two cities in 2019, the comprehensive
indices for Huaibei are 1.07016, 1.02135, and 1.35712 for resource utilization, environmental
pollution, and agricultural output value and income from 2010 to 2019, respectively. The
values of these indices for Suzhou are 1.70867, 1.70332, and 1.74752 for resource utilization,
environmental pollution, and agricultural output value and income from 2010 to 2019,
respectively. It is not difficult to find that Huaibei has obtained relatively large output with
relatively few resources and environmental inputs, which further confirms and intuitively
reflects that Huaibei has strong capability for sustainable development, whereas Suzhou’s
capability for sustainable development needs to be urgently improved.

Table 3 shows that the PTE of Bengbu, Fuyang, and Huaibei reached the optimal state
in 2019. According to the calculation results of returns to scale (see Table 5), Bengbu and
Fuyang are in a state of decreasing scale. According to the specific conditions of cities,
it is necessary to reduce the input of various resources, appropriately reduce the scale
of agricultural production, and realize the sustainable development of agriculture. The
pure technical and scale efficiencies of other cities are ineffective, and the SE is declining;
we should improve agricultural production technology, reduce environmental pollution
emissions, appropriately reduce the scale of agricultural input, and so on, to improve the
sustainable development ability of agriculture.

3.4. Policy Recommendations

Based on the results of the evaluation and discussion, the following suggestions are put
forward to improve the sustainable development ability of agriculture in northern Anhui:
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(1) Some areas in northern Anhui still need to improve their production efficiency,
and a reasonable input–output ratio is an inevitable requirement for the sustainable de-
velopment of agriculture in northern Anhui. Hence, we should increase investment in
agricultural science and technology, establish an agricultural innovation system in Anhui
Province, realize the transformation from traditional agriculture to science and technology
agriculture and digital agriculture, pay attention to improvements in technical and man-
agement levels, and provide sufficient technical support for the sustainable development
of agriculture. (2) Encourage the development of water-saving agriculture and ecological
agriculture, strictly limit the scale and layout of industries that waste resources and cause
serious pollution, increase the financial and tax support for sustainable development, es-
tablish and improve the reward mechanism for sustainable development, and normalize
and standardize the reward work for sustainable development. (3) The low comprehensive
efficiency in most areas of northern Anhui is affected by SE. Therefore, the agricultural
planting structure and agricultural industrial layout should be optimized reasonably, and
unnecessary input of agricultural labor, capital, and land should be reduced. Hence, it
is necessary to actively develop high-quality agriculture and characteristic agriculture
to transform the agricultural planting structure to the direction of excellent quality and
benefit; to ensure food security and food production capacity, efficient cash crops should
be vigorously developed.

3.5. Management Implications

To achieve sustainable development, the agricultural production system must be
sustainable in terms of resources, environment, and economy. This requires the realization
of three important goals: increasing grain output and farmers’ income, rationally utilizing
resources and protecting the environment. From the perspective of agricultural production
activities, we should try our best to improve agricultural output and farmers’ income
level, and the smaller the input for resources and environment, the better. In other words,
the higher the utilization efficiency of resources and environment, the better. Compared
with the existing literature [12,45], this study has the following advantages: First, the
evaluation index system is more scientific and comprehensive, which can fully reflect the
consumption of resources and energy, environmental pollution, and agricultural economic
development level, providing a theoretical foundation for objectively judging the ability
of agricultural sustainable development. Second, this study constructs the evaluation
model and quantitatively evaluates the regional agricultural sustainable development
ability, realizes the comparison between cities, and effectively evaluates the sustainable
development trend. Finally, through data analysis, we can accurately determine the key
factors affecting the regional sustainable development ability, and provide decision-making
support for the government and agricultural researchers dealing with environmental
pollution and resource shortage. Altogether, the model has important practical significance
in the early warning and control of sustainable development. Combined with the above
research and conclusions, we obtain the following management enlightenment:

(1) Sustainable development of agriculture is a complex and dynamic system. With
the development of the times and the changes of people’s needs, the theory of sustainable
development is also changing. Therefore, it is necessary to continuously optimize and
improve the evaluation index system according to the change of sustainable development
theory, to better reflect the sustainable development ability of agriculture. To better cope
with environmental pollution and global problems such as excessive consumption of
resources, and improve the agricultural economy level, a comprehensive index system
is herewith constructed, which considers factors such as livestock manure, agricultural
wastewater and fertilizer consumption, as well as land, manpower, and energy utilization.
(2) Improving the sustainable development ability of agriculture is the inevitable pursuit
for enhancing agricultural competitiveness, ensuring social stability, and improving farm-
ers’ living standards. It is necessary to use mathematical model to evaluate ability for
sustainable development. (3) The level of regional agricultural sustainable development is
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an important symbol of a regional sustainable development level, and many government
officials and scholars are actively proposing various countermeasures to promote agricul-
tural development; achieved by fully using the data-driven method, we can determine the
problems and defects in agricultural development objectively and simply.

4. Conclusions

At present, agriculture is faced with multiple pressures related to resources and the
environment at a global scale, which severely hinders sustainable development. Therefore,
in order to better respond to the above challenges, fill in the gaps in research, and realize
the high-quality development of agriculture and scientific evaluation of the sustainable
development, in this study a data-driven method to measure, evaluate, and optimize
sustainable agricultural development capability was proposed. The main conclusions are
as follows:

(1) The evaluation index system of agricultural sustainable development ability was
constructed from the perspectives of inputs and outputs, where the utilization of various
resources in the agricultural production process and environmental pollution caused by
agriculture are inputs, and the agricultural output value and farmers’ income level are
outputs. (2) A model to evaluate the sustainable development ability of regional agriculture
was constructed. (3) A data-driven mechanism was constructed to improve the sustainable
development of agriculture. According to the analysis results of the samples, this paper puts
forward some countermeasures from the angle of reasonable control of production scale
and reduction of environmental load and provides a reference for government departments
to guide and standardize the better development of regional agriculture.

This study provides a good reference for the sustainable development of regional
agriculture. In addition to assessing the ability for sustainable development and chang-
ing trend, our study also explains the ability of a region or sector to attain sustainable
development, while simultaneously assessing the degree of this ability. Furthermore, our
study provides a basis for early warning and regulation of sustainable development, and
theoretical and methodological support for the improvement and optimization of agricul-
tural sustainable development capability. In future research, other regions can be added to
realize the evaluation and optimization of agricultural sustainable development capability
for a larger area.
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Appendix A

Table A1. Data processing results of agricultural output value and income from 2010 to 2019.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 1.17236 1.18724 1.29013 1.04366 1.05809 1.28541
2011 1.24792 1.28336 1.39877 1.08268 1.09826 1.38389
2012 1.30176 1.33110 1.45440 1.11455 1.15037 1.44650
2013 1.39170 1.37727 1.54203 1.13897 1.18283 1.50829
2014 1.40953 1.42080 1.56255 1.17491 1.22569 1.51569
2015 1.46024 1.45101 1.60652 1.20181 1.29475 1.55871
2016 1.51543 1.50329 1.67671 1.23288 1.33068 1.58535
2017 1.56595 1.54416 1.72970 1.26680 1.36911 1.61848
2018 1.61161 1.56811 1.76380 1.30218 1.40426 1.65209
2019 1.70210 1.65634 1.88109 1.35712 1.46404 1.74752

Table A2. Data processing results of resource utilization from 2010 to 2019.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 1.40272 1.54727 1.64444 1.05000 1.10574 1.68664
2011 1.40814 1.55387 1.63861 1.05162 1.10421 1.70112
2012 1.42434 1.55908 1.65430 1.05672 1.10982 1.71078
2013 1.47134 1.55725 1.66408 1.05731 1.20166 1.70310
2014 1.42583 1.58116 1.62619 1.05514 1.21835 1.69651
2015 1.45259 1.60459 1.65535 1.05721 1.39739 1.70816
2016 1.47325 1.49940 1.68000 1.18390 1.46773 1.72285
2017 1.49051 1.59754 1.67535 1.05660 1.46779 1.70333
2018 1.48741 1.62302 1.70811 1.06045 1.42838 1.71256
2019 1.46141 1.64387 1.73709 1.07016 1.41749 1.70867

Table A3. Processing results of environmental pollution data from 2010 to 2019.

Bengbu Bozhou Fuyang Huaibei Huainan Suzhou

2010 1.32704 1.32234 1.63770 1.00870 1.06215 1.69301
2011 1.34654 1.34091 1.66753 1.03513 1.06751 1.72617
2012 1.36727 1.36211 1.70922 1.03513 1.07531 1.75336
2013 1.38300 1.37469 1.74324 1.03720 1.08150 1.76981
2014 1.38041 1.39367 1.77997 1.04495 1.08886 1.79605
2015 1.39474 1.39435 1.78310 1.04069 1.29176 1.80313
2016 1.39412 1.39231 1.79218 1.03834 1.28912 1.79408
2017 1.39806 1.39432 1.79417 1.03060 1.28514 1.76347
2018 1.37838 1.36876 1.73422 1.02697 1.25283 1.70912
2019 1.37389 1.36436 1.74189 1.02135 1.24557 1.70332
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