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Abstract: Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are
present in many foods consumed by animals. Moreover, they most often contaminate products of plant
and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible
for the production of mycotoxins. They release toxic compounds that, when properly accumulated,
can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver
detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely
difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern
methods of analysis allow the detection of the presence of mycotoxins and determine the level of
contamination with them, both in raw materials and in foods. Various food processes that can affect
mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most
feeding processes have a variable effect on mycotoxins, with those that use high temperatures having
the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but
they do not completely eliminate them. This article presents the risks associated with the presence of
mycotoxins in foods and the methods of their detection and prevention.

Keywords: aquaculture animals; companion animals; detection; farm animals; mycotoxin; prevention;
safety

1. Mycotoxins

Mycotoxins are defined as secondary metabolites of some fungi species. They are
present in agricultural commodities and are produced by certain fungi with adverse acute
and chronic effects such as genotoxicity and carcinogenicity on humans and animals [1,2].
The name “mycotoxin” is derived from the Greek word mycos (fungi) and Latin toxicum
(poison). They are most often produced by fungi of the genera Aspergillus, Penicillium,
Fusarium, and Alternaria [3] (Figure 1). Their synthesis depends largely on the internal
parameters of fungal strains (physiological, genetic, and biochemical) [4] but also external
factors such as temperature and humidity [5]. This means that the level of mold contamina-
tion depends, inter alia, on local weather conditions because high air humidity is conducive
to their formation. Most often, mycotoxins are a contamination of plant-based products
such as cereals, vegetables, dried fruit, nuts, coffee, cocoa, and tea. They can be present
even in wine and beer [6].

However, not only plant products can be a source of mycotoxins. This also applies to
raw materials and products of animal origin (e.g., milk, meat) [7–9]. Moreover, it is believed
that organic products are more likely to be contaminated with mycotoxins than conven-
tional products due to the non-use of synthetic fungicides in their cultivation. However, in
organic farming, cultivars resistant to toxin-producing fungi are selected for cultivation,
and in addition, the use of appropriate crop rotation prevents the formation of mycotoxins
in agricultural crops [10]. Organic milk also runs the risk of being more contaminated
than conventional milk. Studies [11] have shown that M1 aflatoxin contamination in some,
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but not all, organic milk samples were significantly higher than that of conventional milk,
although factors other than organic production may be involved.
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Figure 1. Fungi species and mycotoxins produced of world-wide importance. Adapted from [12,13].

Many mycotoxins have been characterized, but the most important in terms of food
safety are aflatoxins, deoxynivalenol, fumonisins, zearalenone, and ochratoxin A [14].
These basic forms of mycotoxins can be converted into products with altered chemical
structures with different properties, such as physicochemical, chemical, and biological.
Modified forms may arise in raw materials intended for food production and during
technological processes [15]. Modified mycotoxins can also be produced by fungi or as
part of an infected plant’s defense mechanism [4,16]. The interest in mycotoxins results
mainly from their physicochemical properties—high stability in changing environmental
conditions and high toxicity. Even a small number of mycotoxins in food can lead to serious
health consequences, especially because as low-molecular and thermostable substances
they are resistant to most technological processes, e.g., cooking, frying, baking, distillation,
and fermentation [17].

2. Prevention

The increasing availability of modern and efficient techniques greatly facilitates the
rapid expansion of data on the biology of mycotoxin-producing fungi [18]. Combining
datasets with advanced computational methods, including analysis of a range of genome
sequencing projects that are focused on fungal plant pathogens, has a positive impact on
the current state of knowledge available [19]. Thanks to this, it is possible to increase the
knowledge of scientists in the field of molecular processes that regulate the production of
mycotoxins [20,21]. There are studies to determine the relationship between water activity
(aw) and temperature on growth and mycotoxin synthesis under specific environmental
conditions, which induces scientists to associate appropriate conditions with the risk of
mycotoxin development [22]. The optimal environmental conditions for the development
of fungal species are not always suitable for the production of secondary metabolites [23,24].

Environmental conditions undeniably play an important role in the production of
mycotoxins [25]. The conditions in tropical and subtropical countries are particularly
important. They are hot and humid, promoting the spread of fungi that release my-
cotoxins, leading to unprecedented contamination of food and feed. There is little in-
formation about losses related to mycotoxin contamination in tropical and subtropical
countries [26], despite their prevalence in food products, due to the favorable conditions
for their development [26,27].

Since higher temperatures are more conducive to the growth of mold fungi, it is
important to constantly monitor climate changes. Climate change is expected to have a
meaningful impact on the safety of essential commodities related to the food industry. A
key element of this influence is contamination of crops by mold fungi and their secondary
metabolites. The impact of climate change on mycotoxigenic fungi requires investigating
the effects of the interaction between elevated CO2 levels, temperature rise, and drought
on the growth and mycotoxin production by key species of mold fungi found in grains and
nuts. Mycotoxin-producing fungi may acclimatize to climate change factors, which may
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exacerbate mycotoxin-induced diseases and aggravate the infection of basic raw materials,
e.g., cereals [28]. Currently, researchers are helping to identify regions where the maximum
impact in terms of mycotoxigenic fungus contamination and with primary crop toxins
may occur, however, this is hampered by the lack of reliable data on the impact of the
influencing factors of climate change [28].

This is extremely important due to the fact that cereal grains are one of the most
important sources of food for animals and humans. Due to the increase in the global
population, there is a growing need to increase yields and minimize the risk of losing
agricultural crops, mainly cereals. Generally, the harvested grains are stored for a certain
period of time to ensure continuity of supplies throughout the year. Therefore, during
storage, the economic losses caused by the deterioration of the quantity and quality of
the grain can become very significant. Loss of grain is usually caused by deterioration in
grain quality due to fungal contamination, which can occur both before harvest and during
storage. Harmful fungi can be classified by their dominance at various stages of growth
and harvesting of crops, influenced by environmental factors such as water activity (aw)
and ecophysiological requirements [28]. Optimum conditions for mycotoxin production
are shown in Table 1 [29].

Table 1. Optimum temperatures for mycotoxin production. Adapted from [29].

Mycotoxin Temperature (◦C) Water Activity (aw)

Aflatoxins 33 0.99
Ochratoxin 25–30 0.98
Fumonosin 15–30 0.9–0.995
Zearalenone 25 0.96

Deoxynivalenol 26–30 0.995

In the case of cereals, the essential species of mold fungus are of the genera Aspergillus
and Penicillium, which can produce secondary metabolites harmful to animals and humans.
The type and condition of the grain, environment, and biological factors may also influence
the occurrence and dominance of mycotoxigenic fungi in the stored grain. The main
environmental factors that affect cereal fungi and mycotoxins are temperature and aw [30].
Before harvest (Figure 2), hygrophilous fungi species dominate, and they usually disappear
after a few months of storage. After harvest, these fungi species are replaced by mesophilic
fungi species that persist during storage. Xerophilic fungi species are the dominant species
present under storage conditions when the water activity drops beyond the growth limits
for hydrophilic and mesophilic fungi species. The most xerotolerant group of fungi is the
genus Aspergillus, followed by the genus Penicillium [31].
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One of the most susceptible cereals to contamination with mold fungi and mycotoxins
is maize. In research [34], a comprehensive study was carried out throughout the maize
production cycle to detect when contamination by mycotoxin-producing fungi occurs and
how it relates to the presence of mycotoxins in stored maize. The results indicated that
Aspergillus flavus and Fusarium species are able to colonize earlier in the production cycle.
The presence of mycotoxins depends primarily on environmental conditions that favor
contamination with mold fungi [35].

In order to prevent the development of mycotoxins and their producing fungi, a
number of natural, chemical, physical, and biological methods are distinguished.

2.1. Natural Methods

Currently, natural methods of preventing mycotoxins are becoming more and more
popular. Therefore, the use of specific agronomic practices can play a key role in minimizing
levels of mycotoxin contamination by controlling mycotoxin biosynthesis as well as mold
contamination and growth during plant cultivation [36]. In the case of maize, which
is an essential grain used in the industry, specific agricultural practices are in place to
reduce the risk of mycotoxin contamination. Among them, the use of early sowing is
one of the best practices. There are studies that show that in order to reduce the risk of
fumonisin contamination there is a clear need for early sowing [37,38], and these are the
main mycotoxins commonly detected in maize grain in temperate climates. Delaying
the time of sowing corn kernels may increase the risk of contamination not only with
fumonisins but also with deoxynivalenol and aflatoxin [37,39].

Selecting the optimal sowing time for each region is likely to be the best technique for
controlling maize contamination with major mycotoxins. However, to date, approximately
400 different mycotoxins have been identified in many plants and products, several of
which have been identified in maize [40]. Some mycotoxins have been identified as
emerging [41] and have not yet received detailed scientific attention. The European Food
Safety Authority (EFSA) needs data on the occurrence of these metabolites in cereals to
assess the exposure risk of the European population and to perform a risk assessment [39].
There is also great interest in the effect of Good Agricultural Practices (GAPs), which are
commonly used in the control of fumonisin contamination in maize and in the control
of contamination by other mycotoxins that arise. In this way, it will be possible to create
field programs that will be able to minimize the overall risk of maize grains. As emerging
mycotoxins may be produced by other Fusarium species ecologically different to fumonisin
producers, as well as by other species of fungi, detailed knowledge of the environmental
and agronomic conditions favorable to their occurrence is essential [39].

Strategies to prevent contamination of pre-harvest crop mycotoxins include, in addi-
tion to GAP, Good Manufacturing Practices (GMP), which ensure appropriate environmen-
tal factors, and favorable storage practices [42]. Generally, GAPs include [43,44]:

• implementation of a crop rotation program;
• use of registered insecticides, fungicides, and herbicides to control insect damage and

fungal infections;
• weed removal;
• proper seedbed treatment;
• soil analysis to determine the need to add fertilizers.

In addition, the use of biological control agents such as antagonistic fungi are an
important pre-harvest strategy to prevent mycotoxin contamination of cereals, grapes, and
apples [45]. In terms of favorable storage practices, temperature, humidity, and storage
humidity are key factors for mold growth and mycotoxin production [42,46].

According to [47], to prevent mycotoxin contamination, the five keys to mycotoxin
prevention and control in grains must be used:

1. Maintaining the vigor and health of plants—a strong and healthy plant is able to fight
pests and diseases, including fungi.
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2. Reduction of toxic fungal populations in growing plants and during storage—although
fungi are ubiquitous, some environments have a larger population than others, with a
consequential greater risk of mycotoxin contamination. Avoiding and limiting fungal
populations reduces the risk of mycotoxin contamination.

3. Rapidly reducing grain moisture content and avoiding rehydration—high grain
moisture levels in harvested grains and high ambient air humidity are critical factors
for fungal proliferation and mycotoxin contamination.

4. Protective husk/scales or pericarp—The outer seed/kernel structures, such as the
husk/pods and seed coat, provide the first line of defense against fungal contamination.

5. Purification and removal of high-risk components of mycotoxins (fungus/disease,
immature and damaged fractions, dirt, and debris). Mycotoxins are concentrated in
moldy, broken, insect-damaged, wrinkled, and immature grains and dirt/debris [47].

2.2. Chemical and Physical Methods

It has been shown that, after harvesting, secondary metabolites can be eliminated
by natural methods such as radiation therapy, thermal insulation, and low-temperature
plasma [48], as well as by chemical methods such as oxidation, hydrolysis, reduction and
absorption, and biological methods using biological agents [49]. However, chemical and
physical detoxification methods have many limitations; they cause loss of nutrients, are
time consuming and ineffective, and require expensive equipment. Physical mycotoxin
disposal practices include classifying, sorting, and disposing of obviously contaminated
parts [50]. Physical methods also include drying, washing, cleaning, sorting, grinding,
cooking, baking, irradiating, extrusion, microwave heating and peeling [46]. Chemical
methods include treating seeds with ammonia, application of chitosan, ozonation [51–53].

2.3. Biological Methods

Biological methods turn out to be more specialized, more effective, and more envi-
ronmentally friendly [54]. The methods of biological control of mycotoxin contamination
include, for example, the use of bacteria. Some of them have a binding capacity mycotoxin
in food or liquids [55]. Flavobacterium aurantiacum B-184 was shown to be the only bac-
terium, among over 1000 tested for possible aflatoxin degradation, capable of irreversibly
removing aflatoxin from solutions. Yeast also represents a biological strategy to combat
mycotoxins, as it produces antimicrobial compounds with beneficial effects on animals
and humans; on the other hand, they can grow rapidly on many media in bioreactors.
Another method is fermentation [56], which is a fairly inexpensive method of mycotoxin
disinfection and can be used both to improve food ingredients and to reduce or even
eliminate secondary metabolites [57].

2.4. Novel Methods

Novel detoxification strategies include the use of, inter alia, nanoparticles and plant
extracts [46].

Plants and their biologically active substances are considered to be safe and friendly
sources of substances that can be used to control fungi in food and feed [58]. They are
considered more affordable, and they also provide a synergistic approach as protective
measures against fungal/mycotoxin contamination and have the ability to stimulate the
pathways that trigger natural defense systems in plant tissues [59,60]. In addition, they
have antimicrobial, antioxidant, and anti-carcinogenic properties. They are also capable of
reducing the toxic and genotoxic effects of mycotoxins [61]. Recent studies are underway
on the possible use of herbal agents as biofungicides and nutraceuticals to inhibit fungal
growth and mycotoxin contamination in food and feed [62–64]. For example, the antifungal
and antimicotoxigenic effects of wild stevia extracts against A. flavus, A. ochraceus, A. niger,
and F. moniliforme have been demonstrated [65]. Moreover, essential oils have been found
to be effective in modulating the growth of mycotoxigenic fungi such as A. favus, A.
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oryzae, A. niger, Alternaria alternata, F. moniliforme, F. graminearum, Penicillium citrinum, and
P. viridicatum and related mycotoxins [61,65,66].

In terms of mycotoxin reduction, novel approaches have shown that fumonisin con-
tamination can be reduced by detoxifying a microbial enzyme. In study [67], the bacterium
Serratia marcescens 329-2 was identified from maize with high activity towards the reduction
of FB1. A hydrolase and a transferase with increased expression in bacterial cells were also
found, which may indicate a potential for the development of FB1-reducing enzymes [67].
Results of these studies showed that the hydrolase and transferase enzymes, which can
cooperate in the degradation of fumonisin, showed high expression compared to their
levels in the control samples. These studies showed that Serratia marcescens 329-2 is a novel
bacterium with the potential to reduce FB1, and the production of FB1-reducing enzymes
should be further investigated [67].

Other studies—conducted towards the degradation of aflatoxin [68]—have shown
that microbial degradation is an effective and attractive method of eliminating aflatoxin
B1 (AFB1). In this study [68], Aspergillus niger RAF106 was able to efficiently degrade
AFB1. The ability of intracellular enzymes or proteins with excellent thermotolerance
to degrade AFB1 to metabolites with low or no mutagenicity was verified. In addition,
genomic sequence analysis showed that the fungus was considered safe due to the lack
of virulence genes and gene clusters for mycotoxin synthesis. These results indicate that
A. niger RAF106 and its intracellular enzymes or proteins have promising potential for
commercial use in food and feed processing and in the industry for the detoxification of
AFB1 [68].

3. Detection

The detection of mycotoxins is extremely important due to their toxicity [69]. Maxi-
mum permissible levels of mycotoxins are regulated worldwide by relevant legal acts [70],
and the monitoring of their presence in certain goods is obligatory to ensure food safety and
to protect the health of potential consumers [70,71]. Analytical methods for the detection
of secondary metabolites of mold fungi include immunochemical techniques [72], which
are mainly used for routine inspections and rapid on-site detection, and chromatography-
based techniques that provide sensitive, accurate, and selective determinations of known
species of mycotoxins [70].

Methods of detecting mycotoxins are very important due to the enormous health risk
that mycotoxins pose. However, real-time detection has a high background and a low
signal-to-noise ratio, so it is difficult to meet fast, accurate, and convenient food quality
control requirements. In the study [73], a quantitative fluorescence image analysis based
on microspheres encoded in multicolor nanocrystals (UCN) for the detection of ochratoxin
A and zearalenone was constructed. The results showed that this novel detection platform
provides feasible and reliable measurements of the fluorescence image by this method.
Researchers predict that this UCN coding strategy will be useful for quickly, accurately,
and conveniently testing many food contaminants to ensure food safety [73].

In the study [74], a new aptamer microarray method on the TiO2-porous silicon (PSi)
surface was developed to simultaneously screen multiplex secondary metabolites. The
newly developed method shows good recovery rates and specificity. This method could
provide a simple, sensitive, and cost-effective platform for the simultaneous screening of
multiplex mycotoxins and could easily be extended to another aptamer-based protocol.

In addition to classical enzyme immunoassays (ELISA), in recent years, biosensors
for the analysis of mycotoxins in food have been developed, which are characterized by
simplicity, reproducibility, accuracy, fast analysis, and low cost. Nanomaterials have been
incorporated into biosensors to obtain better analytical performance and reduce production
costs [75]. One of the best-studied nanomaterials are gold nanoparticles (AuNPs), which
can be used as an immobilization carrier, signal enhancer, mediator, and mimetic enzyme
marker [75].
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Technological progress is conducive to the development of sensitive methods for
the detection of specific mycotoxins. This is the case with detection of AFM1 in milk. In
study [76], a monospecific polyclonal antibody (IgGMS-M1) was produced that bound to
AFM1 with high avidity. In the next step, the antibody was coupled with the invertase
enzyme obtained from the yeast Saccharomyces cerevisiae. After incubating the invertase-
conjugated anti-AFM1 antibody with the milk containing AFM1, the amount of glucose
produced was measured with a glucometer and correlated with the amount of AFM1
present in the milk. The obtained results showed that the test was very sensitive and could
be easily adapted as a portable instrument for AFM1 measurements on site, outside the
laboratory [76,77].

The research [78] developed a screening method for the analysis of mycotoxins in
spices and cereal products using ultra-high performance liquid chromatography coupled
with tandem mass spectrometry (UHPLC-MS / MS). It has been found that the developed
method is a good solution for use in screening tests and routine analyses to monitor the
mycotoxin content in food in accordance with European regulations. However, further
research is needed to increase the number of mycotoxins analyzed and the group of goods
analyzed with the same method [78].

4. Impact on Animal Health

Contamination of animal food with mycotoxins is still common, despite great efforts
to prevent it. Animal feed can be contaminated with low levels of several mycotoxins
simultaneously, especially those produced by fungi of the genera Aspergillus and Fusarium
species (aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, and fumonisin B1) [79,80].

Diseases caused by secondary metabolites are called mycotoxicoses [81]. The degree
of toxicity that these compounds exert on the animal’s body depends primarily on the type
of mycotoxin, amount, duration of exposure, overall health of the animal, sex, age, race,
and other factors [82–85].

Mycotoxins are one of the main pollutants in the diet of animals, and their presence
may harm the health of not only farm animals but also companion animals [86,87]. Intensive
rearing of poultry and pigs may pose a risk to animal health and production due to the high
consumption of grains and oilseeds, which are more likely to contain mycotoxins [87,88].

Mycotoxins affect various organ systems. These include the digestive system, the liver,
and the immune system. Additionally, they generally reduce productivity. The presence
of even one type of mycotoxin can be harmful to animals, and the presence of more than
one type can be more toxic due to their synergism. The toxic effects of mycotoxins lead to
oxidative stress (OS) and the formation of free radicals [89,90]. The increased number of
free radicals as a result of the malfunctioning of the antioxidant system leads to damage to
the structure of DNA, proteins, and lipids [91].

In order to prevent mycotoxicosis in farm animals, the European Commission (EC)
has issued regulations on additives for use in animal nutrition [92]. The category of
technological feed additives defines a new group of feed additives as “substances to
reduce the contamination of feed by mycotoxins: substances that can inhibit or reduce the
absorption, promote the excretion of mycotoxins or modify the way they act” [92]. The
ubiquity of mycotoxins in feed and its ingredients is of great concern, as they represent
a major risk factor for both animal performance and human health. One of the strategies
to reduce the presence of mycotoxins in feed is the introduction of mineral adsorbents
into the feed. They are a feed additive used to prevent the formation of lumps—they
are an anti-caking agent. At the same time, their task is to bind and reduce the level of
mycotoxins [93]. The safety of these measures is a matter of dispute. Studies on the use
of mineral adsorbents are either contradictory or lack some degree of accuracy in their
assessments. These agents have the ability to enter the body through a variety of routes,
including inhalation, ingestion, and skin penetration [94]. It has also been suggested that
accessory minerals such as metal oxides, including TiO2 and ZnO, which are contained
in clays, may be responsible for induced toxicity in various cell lines. The degree of
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toxicity depends on the size, shape, surface properties, and chemical composition of the
adsorbent [95].

It has been shown that both natural and modified adsorbents can induce cytotoxic
effects such as decreased cell viability, oxidative stress, apoptosis, and DNA damage. They
also have the ability to bind micronutrients and vitamins present in feed, which leads to
reduced digestibility, immunosuppression, and low productivity of livestock. These agents
can also interact with veterinary drugs, leading to a reduction or increase in drug absorption
and to potential treatment failure and higher levels of antibiotic residues in food of animal
origin. Mineral adsorbents may also contain various amounts of auxiliary minerals, heavy
metals (lead, copper, cadmium), dioxins, and trace elements, the presence of which leads to
negative health consequences [81]. The remaining selected dietary supplements preventing
mycotoxins are presented in Table 2.

Table 2. Food additives for the diet against mycotoxins. Based on [96–101].

Item Activity/Mechanism

Antioxidants both
natural (vitamins, provitamins, carotenoids, chlorophyll and its
derivatives, phenolics, and selenium) and synthetic (butylated

hydroxyanisole and butylated hydroxytoluene)

Prevention of damage to cell membranes

Selenium (Se) Limitation of the toxic activity of mycotoxins in vitro and
in vivo, prevention against the carcinogenic effect of aflatoxins

Polyunsaturated fatty acids (PUFA), concerns mainly: Reduction of immunoglobulin A induced nephropathy

Eicosapentaenoic acid (EPA) Inhibition of deoxynivalenol induced development of IgA
nephropathy

Docosahexaenoic acid (DHA) Attenuation of the deoxynivalenol-induced pro-inflammatory
response

EPA and DHA Reduction of deoxynivalenol-induced interleukin-6 production,
alleviating kidney inflammation

As mentioned earlier, grains and their by-products are generally the main ingredients
of feed. Food processing influences the concentration of secondary metabolites of mold
fungi. The impact of mycotoxins is variable and depends on their chemical structure,
quantity, and exposure time. This is a very important problem in the processing of cereals,
due to the fact that the presence of mycotoxins has both health and economic effects. The
presence of mold fungi in the pet food and feed affects its palatability and nutritional value.
What is more, it creates the risk of poisoning [102].

4.1. Farm Animals

Due to the consumption of feed containing mainly cereals, poultry and pigs are at the
highest risk of ingesting mycotoxins. In the case of horses, it was reported that the long-
term feeding of feed with even acceptable levels of mycotoxins significantly decreased the
content of testosterone and increased the content of estradiol in the blood of stallions [103].

In general, monogastric and younger animals are more sensitive to mycotoxins than
ruminants and older animals [104]. The toxic effects of mycotoxins vary depending on their
chemical structure, concentration, exposure time, species, sex, age, and sensitivity of the
infected animal. It has been shown that the consumption of mycotoxins may deteriorate the
health condition and reduce the productivity of animals. Diseases caused by mycotoxins
reduce animal production. In addition, they generate greater morbidity and mortality [104].
Chronic exposure to low concentrations of secondary metabolites of mold fungi may cause
production losses and increase the risk and incidence of other diseases [104].

In addition to its effects on animal health, some mycotoxins may be excreted in milk,
causing food safety problems and a risk to human health. For example, it has been shown
that aflatoxin is transferred into the milk of lactating cattle with serious problems. Among
AFs, AFB1 is the prevalent and most toxic. In the liver, it is transformed into AFM1, which
is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has
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been shown to be the cause of both acute and chronic toxicoses. The presence of AFM1
in milk and dairy products represents a worldwide concern since even small amounts
of this metabolite may be of importance as long-term exposure is concerned [105]. This
is very important for human health around the world because aflatoxin is classified as a
carcinogen, and children, the main consumers of milk, are more susceptible to its harmful
effects [106].

Minor transfer of fumonisin, zearalenone, ochratoxin A, and deoxynivalenol has been
reported, but the health effects of these are unknown. Transfer studies and studies of
mycotoxins in milk have not been widely conducted, except in the aflatoxin M1 studies.
Ruminants have been shown to be generally less exposed to the adverse effects of my-
cotoxins because the rumen microflora partially breaks them down. When ingested by
ruminants, some of the ingested aflatoxin B1 is broken down in the rumen. As early as
1984, Kiessling et al. [107] suggested that the type of rumen microflora will determine the
level of degradation and is dependent on species, age, sex, and race. Upadhaya et al. [108]
also reported that aflatoxin B1 was degraded by 14% in cattle compared to 25% in goats,
with the type of feed also determining the level of degradation.

The presence of mycotoxins in goat’s and cow’s milk may be due to poor handling
and storage practices, but grazed goats are more likely to take mycotoxins when feeding in
human waste landfills, where mold and mycotoxin contamination are common. In [109]
study, AFM1 was the dominant aflatoxin detected in milk samples. Interestingly, all cow’s
milk samples were contaminated with AFM1, while in the case of goat’s milk it was 49%.

Pigs are one of the most sensitive species to mycotoxins. Female pigs are particularly
susceptible to deoxynivalenol and zearalenone [110]. Zearalenone has been shown to nega-
tively affect the reproductive function of pigs [111]. The estrogenic effects of zearalenone
on gilts or sows include, but are not limited to, uterine edema, ovarian cyst formation,
increased follicle maturation, and an increase in stillborn fetuses. They also showed de-
generation of the embryonic epithelium and altered sperm formation in boars, as a result
of the action of zearalenone. Reproductive disorders (e.g., ovarian and uterine atrophy,
ovarian degeneration, and endometrial gland dysfunction) have also been reported when
sows have been exposed to feed contaminated with T-2 toxin from the trichothecene group.
Symptoms of prenatal T-2 poisoning have also been observed in suckling piglets (e.g.,
endometrial glandular dysfunction, gastrointestinal edema, and hematopoiesis leading to
death) [111,112].

It has been shown that pigs that were chronically exposed to a fodder contaminated
with deoxynivalenol showed increased expression of interleukin 8 and glutathione per-
oxidase. Deoxynivalenol leads to disturbances in mRNA translation, which affects cell
proliferation and immune response, and it reduces the food intake and growth of pigs.
Importantly, the presence of deoxynivalenol also impairs gut health by reducing the prolif-
eration of enterocytes and the intestinal surface, resulting in impaired weight gain [113].

In the case of poultry, the negative effects of mycotoxins result in a decrease in feed
consumption, insufficient feed conversion, and a decrease in the growth rate of broiler
chickens in the production cycle [114].

Poultry have been shown to be more tolerant to ZEN toxicity. Reported levels of ZEN
in poultry feed may not have acute effects on poultry health and performance in isolation,
however, chronic exposure may have effects on fertility. In poultry, high levels of DON
have been found to affect growth rate and feed efficiency and to increase susceptibility
to infectious diseases, such as necrotizing enterocolitis. Moreover, levels below the EU
guideline level may negatively affect metabolic, immune, and physiological aspects in these
farm animals [115]. Research [116] confirms the fact that feed intake is lower in hens that
consume feed contaminated with mycotoxins. In these studies, the hens that consumed the
mycotoxins had lower resistance and sap thickness. There were also fluctuations in liver
enzyme levels in individuals consuming mycotoxins, and the cumulative effect increased
the activity of alanine aminotransferase. The conclusion is that, overall, the consumption of
mycotoxins deteriorated the performance and quality of hen eggs. However, the negative
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effects caused by the action of mycotoxins can be minimized by the use of S. cerevisiae lysate
and organic acids in the diet [116]. Study results [117] suggest that local mycotoxin binding
ameliorates the toxicopathological effects of AFB1 in terms of mortality, feed consumption,
body weight, and visceral organ changes. The results of these studies showed that AFB1
poisoning leads to weight loss and that feed consumption is dose dependent. The use of
a topical mycotoxin binder can be an economical solution to the problem of aflatoxicosis,
making poultry production more profitable.

4.2. Aquaculture Animals

The ingredients of fish feed are mainly fish meal, wheat, soy products, and corn.
Research [118] shows that fish are at high risk of toxin contamination if low-quality feed
ingredients are selected for feed production. Moreover, when several mycotoxins are
present in the feed, the effect may be synergistic. Depending on the species, individual
sensitivity, and age, mycotoxins may cause different symptoms in fish. It has also been
shown that cold-water fish are more sensitive to the effects of mycotoxins compared to
warm-water fish species [119]. In fish, when poisoned with aflatoxins, retarded growth,
liver damage, immunosuppression, and pale gills may occur [120,121]. The presence of
zearalenone in fish feed results in immunotoxic, genotoxic, hepatotoxic, and cytotoxic
effects. Moreover, it causes damage to kidney tissue [122]. Deoxynivalenol affects growth
retardation and reduces feed consumption. Ochratoxin A causes deformation of fish, delays
growth, and increases embryo creaminess, which is related to the increased production of
oxidative stress [123]. Therefore, it is important to monitor the safety of fish feed, and if
mycotoxins are found in a given feed, they should be withdrawn from the market.

4.3. Companion Animals

In the case of companion animals, as early as 1952 the consumption of moldy food
was linked to cases of hepatitis in dogs. The causative agent of liver disorders has been
identified as aflatoxin B1 [111]. A significant problem for the health of companion animals
is deoxynivalenol, present in maize even after its processing, which is why it is included
in feeds, the main component of which are cereals [124]. Due to variable toxic reactions
to mycotoxins, limits on the maximum safe levels of mycotoxins have been established
in the European Union [125]. In cats, the trichothecene T-2 mycotoxin has been shown
to cause hypovolemia and death. Small amounts of T-2 in cats have been shown to
lower white blood cell counts [111]. As with other species, the kidneys are the major
target organ of ochratoxin A in dogs and cats. Symptoms of poisoning with this toxin
in dogs include anorexia, excessive thirst, polyuria, restlessness, weakness, and death.
Post-mortem examination revealed degeneration of the epithelium (proximal tubules),
muco-hemorrhagic enteritis (caecum, colon, and rectum), and necrosis of lymphoid tissues
(spleen, tonsils, thymus, and peripheral lymph nodes) [111].

Due to intense globalization, pet food can be commercialized all over the world, and
the issue of dry dog food safety has become a subject of widespread international concern.
The study [126] assessed the safety of cheap and expensive dry feed and the exposure
of dogs to mycotoxins through naturally contaminated feed. Although the food samples
were often contaminated with aflatoxins, fumonisins, and zearalenone, the estimated daily
intake values were low, even with the low-cost foods. However, it cannot be ruled out
that some feed samples may have a negative effect on the health and performance of
the animals, taking into account the mono-diet feeding of commercial feed, low levels of
contamination with multiple mycotoxins, and interactions between mycotoxins. Other
studies that aimed to analyze the presence of the most common mycotoxins in commercial
dry dog food have shown that all common mycotoxins can be found in the samples.
In addition, only one sample was found free from mycotoxin contamination. All other
samples were contaminated with at least three different types of mycotoxins. In addition, it
is worth noting that the concentration of aflatoxin B1 in all samples exceeded the maximum
limits established by the European Union [127]. Moreover, studies [128] showed mycotoxin
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contamination in 99% of pet food samples, where the most commonly detected mycotoxins
were those produced by fungi of the genus Fusarium. All positive samples showed the
coexistence of mycotoxins with up to 16 analytes present per sample. Retrospective
screening initially identified fungal metabolites such as cyclopiazonic acid, paspalitrem A,
fusaric acid, and macrosporin, which are the most frequently detected analytes.

For dogs, the tremorgenic mycotoxin penitrem A is also a threat. Penitrem A is
mainly produced by fungal species belonging to the genus Penicillium as a secondary
metabolite in moldy food and feed. Dogs can be exposed to penitrem A when they ingest
rotten food scraps or fruit that has fallen from trees. Penitrem A is a lipophilic toxin that
penetrates the blood-brain barrier, reaches neuroreceptors, and damages the mechanisms of
neurotransmitter release in the central and peripheral nervous system. Typical symptoms
of penitrem A poisoning are continuous or periodic tremors which, depending on the dose
absorbed, may be transient, persistent, or fatal. Currently, no information is available on
the biotransformation and toxicokinetics of penitrem A in dogs [129]. There is a known
case of a dog that vomited after eating walnuts that had been lying on the ground for 5
months. The dog then developed tremors, ataxia, increased salivation, and hyperalgesia.
A walnut shell was visible in the vomit. Due to the sudden onset of tremors, the lack
of exposure to other toxins causing seizures, and the evidence of nut consumption, the
initial diagnosis was tremorgenic mycotoxicosis. The dog was treated symptomatically and
recovered completely. Tremorgenic mycotoxins were detected within walnuts collected
from the dog’s environment [130].

Another risk is patulin (PAT). It is mainly produced by Penicillium and Aspergillus and
is found in apples, pears, grapes, sweet peppers, and carrots [131,132]. PAT is toxic to both
humans and animals, even in small doses [133]. After entering the body, PAT concentrates
in well-supplied organs, such as the liver and kidneys. Its toxicity manifests itself mainly
in reaction with compounds such as glutathione and thioglycolate [133].

Rodents have been used for many years for modeling the effects of mycotoxins on
humans, especially with regard to the carcinogenic potential of aflatoxin. Unlike rats,
mice are generally resistant to the hepatocarcinogenic effects of aflatoxin B1 [134]. In
rats, aflatoxins lead to the formation of lung tumors and liver tumors [135]. The negative
effect of trichothecenes on rats has been known for decades, and, as a result, the rat
has been widely used as a model for testing the toxicity of trichothecenes [111]. Long-
term oral administration of T-2 toxin has been shown to reduce feed consumption in a
dose-dependent manner and lead to gastric ulcers, thymic depression, decreased nutrient
and lipid absorption, and decreased metabolism, leading to symptoms such as elevated
levels of triglycerides, free cholesterol, total phospholipids, and phosphatidylcholine [136].
Symptoms of acute T-2 toxicity in rats include lethargy, decreased feed consumption,
decreased body temperature, a three-fold increase in white blood cells and lymphocytes,
hypertension, and finally tachycardia preceding hypotension and death [111].

Currently, in the nutrition of animals, especially dogs, there is a growing tendency
of interest in food made from insects. Insects seem to be a suitable alternative to live-
stock production. However, they can grow on a variety of media that may be naturally
contaminated with mycotoxins. Research on the safety of insects as feed ingredients is
mandatory for the feed industry. Studies have been conducted [137] assessing the uptake
and/or excretion of mycotoxins in two different insect species, Alphitobius diaperinus and
Hermetia illucens, grown on naturally contaminated wheat and/or corn (deoxynivalenol,
fumonisin B1, fumonisin B2, and zearalenone). It was shown that Hermetia illucens larvae
did not contain mycotoxins, while small amounts of deoxynivalenol and fumonisin B1
were detected in Alphitobius diaperinus larvae. In addition, it was shown that the larvae of
both species metabolized mycotoxins in unknown forms, accumulating them in the body
or excreting them with feces. The results indicated that more research is needed in this
direction due to the future use of insects as food [138].
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5. Conclusions

The numerous examples in the literature illustrate that the mycotoxins are compounds
that we are unable to completely eliminate from the environment. They have a detrimental
effect on the health of animals, which is also a threat to humans. This is due to the fact that
mycotoxins have the ability to accumulate in the tissues of animals or may pass into milk,
which poses a risk of their consumption by humans. Their presence leads to economic
losses, and it causes negative health effects in animals and, in extreme cases, leads to their
death. Despite the known methods (natural, chemical, physical, biological) of prevention,
the topic of threats related to their presence is still topical. In the long term, their levels
should still be monitored, and the presence of molds that produce them should be detected
as early as possible. Maximum permissible levels of mycotoxins are regulated worldwide
by relevant legal acts, and the monitoring of their presence in certain goods is obligatory to
ensure food safety and to protect the health of potential consumers.
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