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Abstract: The present paper reports experiments on microwave heating of a carbonate oil-containing
rock sample in the presence and absence of an iron-magnetite-based nanocatalyst. It has been shown
that the used catalyst improves the processes of destructive hydrogenation of resins and asphaltenes
compounds in the oil. The chemical reactions analysis demonstrated a decrease in asphaltenes content
and in their molecular weight, which increases the filtration capacity of the oil fluid in the reservoir
rock porous medium. Moreover, the content of non-extractable organic matter in the rock sample
after experiments and after oil extraction was determined. It has been found that the absence of the
catalyst causes the least increase in the content of non-extractable organic matter in the rock. This
fact is related to the intensive processes of resinous-asphaltene compounds destruction especially at
the level of peripheral groups which are the most condensed fraction, and hence leads to a decrease
in their solubility in the organic medium and eases their adsorption on the mineral skeleton surface.

Keywords: microwave radiation; heavy oil; catalyst; magnetite; aquathermolysis; oil content;
gas composition

1. Introduction

The last decade have witnessed an increase in heavy oil production utilizing thermal
enhanced oil recovery methods as an energy efficiency techniques especially in the presence
of fundamentally new class of reagents such as in-situ catalysts of aquathermolysis [1–6].
Many previous works and field experiments have demonstrated the effectiveness of such
reagents [7–10]. Other works, suggest another way of improving the efficiency of in-situ
aquathermolysis catalysts by exposing the reservoir to microwave radiation. In other
words, the distributed catalyst particles within the formation may stimulate the reservoir
coverage in the presence of microwave radiations [6,11].

Heavy oils reserves in the Russian Federation are estimated to range from 6 to 7 billion
tons among which 55% are unconventional. In fact, heavy oils contain, in addition to
resins and asphaltenes, a lot of heteroatoms such sulfur. Russian heavy and extra heavy
oil fields are located in the Perm region, Tatarstan, Bashkiria and Udmurtia and their
largest fields are presented by Van-Yeganskoe, Severo-Komsomolskoe, Usinskoe, Russkoe,
Gremikhinskoe fields and others. It is worthy to note that more than 2/3 of these heavy
oil reserves are located at depths of up to 2000 m and the significant parts are located
in dense carbonate rocks [12]. In terms of geological age, about 74% of these reserves
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belong to the Paleozoic era. Nonetheless, the Mesozoic deposits are characterized by the
highest values of oil viscosity meanwhile the lowest viscosity values are observed in the
Proterozoic deposits. Moreover, the maximum values of viscosity are characteristic of the
transition from one geological era to another. This may be the result of the influence of
transgressions and regressions of the world ocean [13].

What we know about iron compounds is largely based on their wide use for catalytic
aims whether in a heterogeneous or homogeneous form. Thus, in alkylation reactions,
iron compounds (oxides, spinals, zeolites, and molecular sieves) are highly active and
can outperform catalysts based on Al+3. A radical cation mechanism of benzylation with
the intermediate formation of Fe2+ has been proposed for iron chloride supported on
aluminum oxide in the works conducted by Salavati et al. [14].

In recent years, there has considerable interest in catalysts based on γ-Fe2O3 nanopar-
ticles supported on silicas of various structures using a solution of iron acetylacetonate
in toluene. These compounds proved to be effective catalysts for a number of chlorolefin
conversions, including isomerization of allyl chlorolefins, alkylation of benzene with allyl
chloride and benzyl chloride [15,16]. In terms of activity and stability, they are in all cases
superior to catalysts based on α-Fe2O3 prepared from the more common precursor, iron
nitrate. For example, in benzylation, the most active samples turned out to be samples on
an activated silica gel matrix with a high 18% iron content, which simultaneously contain
γ-Fe2O3 and Fe3O4 nanoparticles with a size of 2–3 nm [17]. Other uses of iron oxides
include their wide use as catalysts in the Fischer-Tropsch synthesis, dehydrogenation,
alkylation and other processes [18,19]. Moreover, nanosized iron oxides, stabilized on
silica or in the bulk of polymer matrices, serve as active and selective catalysts for the
conversion of halogenated hydrocarbons [20–22]. On another hand, iron oxide catalysts
are highly effective in hydrogenation reactions of highly condensed organic matter, such
as brown coal [23,24], shales [25], lignin [26] or heavy oil [26,27]. Several authors have
shown an increase in the content of light C10-C16 alkanes in the treated oil composition
relatively to high-molecular homologues C23-C29. In addition, there has been shown a
significant decrease in high molecular weight region intensity of the so-called naphthenic
hump, reflecting the content of isoalkanes that undergo destruction [28].

Much work on the potential of combining traditional thermal methods and microwave
radiation has been carried out because of the promising effect of this application on
enhancing heavy oil and bitumen recovery from reservoirs with low thermal conductivity
and low permeability [29]. Besides heavy oil and bitumen reservoirs, microwave treatment
can be effective as well for shale rocks as reported by El harfi et al. [30]. In general
terms, an electric field oscillating at a high frequency promotes the cleavage of chemical
bonds such as in petroleum pitch with a high sulfur content. The addition of a catalyst
leads to the formation of hydrogen sulfide which can be further utilized for absorbing
the microwave field. However, there are several works which demonstrated that the
greatest ability to absorb microwave field is characterized by asphaltenes [31,32]. Taken
together, the functioning of the catalysts and the effect of microwave radiation provide
deep conversion of resins and asphaltenes, a decrease in the produced oil viscosity, and
an increase in oil recovery factor. According to conditions totality for the use of catalytic
electromagnetic heating mentioned in literature, the criteria for the applicability of the
developed technology are summarized in Table 1.

Table 1. EM Heating Technology applicability criteria.

Reservoir and Fluid Characteristics Parameters

Layer depth, m up to 2000
Effective oil-saturated thickness, m from 3 and more

Permeability, µm2 any, if less than 0.10, preliminary fracturing is
carried out for the injection of catalysts

Oil viscosity in reservoir conditions, mPa.s more than 500
Density of oil, kg/m3 850–1100
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The use of microwave exposure is possible on any heavy hydrocarbon feedstock
containing resinous-asphaltene substances. The limit value of viscosity indicated in the
table is set for the entire array of the analyzed sources. In fact, the minimum value of
oil viscosity exposed to microwave heating in the presence of catalysts is reported in the
works of Taheri et al. [32]. It has been shown that nanodispersed catalysts can perform
two functions: On one hand, efficiently absorb a microwave field with the generation of
thermal energy and on another one provides chemical conversion of heavy hydrocarbons
molecules. Actually, the most effective in terms of their ability to absorb microwave fields
are graphite, FeS2, Fe3O4, Co3O4, NiOx characterized by a resistivity of 10−4–10−2 Ohm
m and providing local heating within 1019–1305 ◦C at an industrial radiation frequency
of 2.45 GHz and a power of 800 watts. Our knowledge of the effect of the dispersion of
catalyst particles on the process of converting microwave radiation into thermal energy
and the influence of the electric and magnetic components of the electromagnetic field on
the process of chemical conversion of hydrocarbons is largely based on very limited data.
The aim of the present research was thus to study further this subject by determining the
most effective catalysts with the ability to absorb the microwave field. These catalysts have
been found to be primarily oxide-sulfide compounds of a number of transition metals such
as Fe3O4, NiOx, NiS2, FeS2, etc. This work will be devoted for investigating the magnetite
effect on microwave absorption. According to the literature data, magnetite has the greatest
ability to absorb the microwave field. The resistivity of magnetite is 10−4–10−2 Ohm·m.
which makes the heating reaches 1258 ◦C near the particles [33].

2. Materials and Methods
2.1. Materials

The object of the present study was samples of an oil-saturated rocks obtained from
the Mayorovskoye field of the Volga-Ural oil and gas province with a 3.8 wt.% organic
matter content (Figure 1). It is well known that the most oil-saturated reservoir is the B1
carbonate reservoir of the Upper Fransk-Tournaisian oil and gas complex. The reservoir
configuration is shown in Figure 1.
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Figure 1. A sample of the Mayorovskoye field oil-saturated rocks and 3D model of oil saturation.

The fractional composition of saturates, aromatic hydrocarbons in addition to resins
and asphaltenes contained in the extracted oil from the Mayorovskoye oil-saturated rock
has been determined by means of SARA analysis and the obtained data are summarized in
Table 2.

Table 2. SARA analysis of the extracted oil from the Mayorovskoye oil-saturated rock.

Sample SARA Fractions, wt.%

Saturates Aromatics Resins Asphaltenes

The extracted oil from the
Mayorovskoye oil-saturated rock 17.2 31.4 31.3 20.1
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2.2. Experiments

In order to stimulate heavy oil production, we synthesized a nano-sized catalyst
based on mixed iron oxide Fe3O4 at room temperature and atmospheric pressure by
mixing two previously prepared aqueous solutions based on the recommendations of
Sitnov et al. [34]. The first aqueous solution consisted of a mixture of iron salts Fe2+ and
Fe3+ (chlorides, sulfates or nitrates), meanwhile the second aqueous solution consisted
of a precipitant. The latter was basic hydroxides, for example ammonium hydroxide,
alkaline earth metal hydroxides, and a stabilizing agent, which is used as surfactants
(polyacrylic acid, sodium lauryl sulfate). In this case, the mixing process was carried out
under continuous cavitation action by means of an ultrasonic disperser for no more than
thirty minutes to obtain a sol of mixed iron oxide Fe3O4. The resulting reaction mass was
then treated with ion-exchange resins (cation exchanger—KU-2-8 and anion exchanger—
AB-17-8) with continuous cavitation effect on the mass, meanwhile ion-exchange resins
were added to the reaction mass until the pH value of the mass reaches a neutral value, to
obtain the target product [34].

Four experiments were carried out on a microwave reactor at the Institute of Applied
Physics, Russian Academy of Sciences, 46 Ulyanova St., Nizhniy Novgorod, Russia, 603950,
under the following conditions presented in Table 3.

Table 3. Microwave reactor experiments conditions.

The Presence of
a Catalyst Power, W Exhaust Gas

Temperature, ◦C Time, min

Original rock sample
+ 800 110 36
- 600 100 20
+ 600 110 28

Small fraction + 600 120 60

The experiment was organized according to the following methodology: the mi-
crowave reactor was powered by an industrial 2.46 GHz/1 kW magnetron with a high-
voltage power source that allows setting a preset level of output microwave power. The
magnetron had additional water cooling for long-term continuous operation of the radia-
tion source. The reactor was a thermally insulated vacuum-tight chamber. The pressure
was 0.1 atm. To reduce the reflection coefficient of radiation from the loaded resonator-
reactor at an operating frequency of 2.45 GHz, the initial installation of the optimal amount
of rock sample was carried out. To control the reflected signal during microwave pyrolysis,
a directional coupler was included in the path. The initial adjustment of the operating
frequency of the resonator was performed using a meter. Reflection does not exceed −10 dB
in the 2.4–2.54 GHz frequency band. The temperature was measured at the outer boundary
of the sample surface using a thermocouple. A rock sample weighing 1 kg was loaded into
a container made of fine metal mesh, which had an air gap from the walls of the reactor
to reduce thermal contact with the walls and improve its heating due to gases released
during the pyrolysis reaction. The resulting gases were removed from the reactor volume
through an outlet valve with a mechanical gate and cooled in a heat exchanger to room
temperature. The amount of escaping gas was measured by a gas meter. It allowed to take
part of the gas into a special trap for the subsequent study of its chemical composition.
Liquid and oily fractions were deposited in primary and secondary fractionation systems.
A vacuum pump was used to operate the reactor at a pressure below atmospheric pressure.
The time of the experiment varied from 20 to 60 min. The technological block diagram of
the experiment is shown in Figure 2.
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SARA Analysis. The group compositions of extracts from the rocks were determined
by separating them into four fractions: saturates, aromatics, resins and asphaltenes as
per GOST 32269—2013 standard—«Petroleum bitumen. Method of separation into four
fractions», which is similar to SARA analysis. Precipitation of asphaltenes was carried out
in a 40-fold amount of an aliphatic solvent (hexane). Next, the precipitated asphaltenes
were washed off the filter with toluene in a Soxhlet apparatus.

The composition of gases after the experiments were investigated by gas chromatog-
raphy method in Chromatec-Crystal 5000.2 (Yoshkar-Ola, Mari El Republic, Russina Feder-
ation, 2021) with further digital data processing using GOST 32507-2013 (ASTM D 5134-98
(2008), MOD). The gas samples were delivered to the given machine from the autoclave’s
gas output through special heat resistant tubing. The gas separation was carried out in
capillary column with a length of 100 m and two absorption chambers. Chromatography
was run in following temperature mode: from 35 ◦C to 250 ◦C with the heating rate of
2 ◦C/min. The gas carrier was helium and the stream velocity was 25 mL/min.

Thermal analysis. Organic matter content in rock sample and thermal effects analysis
were performed using a synchronous thermal analysis instrument STA 443 F3 Jupiter
(Netzsch, Gebrüder-Netzsch-Straße, Selb, Germany) in air as oxidizing environment at a
heating rate of 10 ◦C/min, and a temperature range of 20 to 1000 ◦C. TG-DTA curves were
processed by means of Netzsch ProteusThermalAnalysis standard software.

3. Results and discussion

The composition of non-hydrocarbon gases is shown in Table 4. In all four experiments,
oxygen, nitrogen, and carbon dioxide were identified. It has been found that the presence
of a magnetite catalyst leads to a significant increase in oxygen content. Moreover, the
highest carbon dioxide content was observed in the longest experiment (No 4).

In addition, carbon monoxide and hydrogen were not recorded in all experiments. It
is worthy to note that carbon dioxide was the predominant component in gas products.
However, the results showed no correlation in the content of carbon dioxide from the
conditions of microwave exposure and the presence of a catalyst. In the presence of catalyst
in experiments No 1 and No 3, gases of the methane series C5 and higher prevailed,
among which—propane, n-butane, i-butane, n-pentane, i-pentane, etc have presented the
significant amount. Besides, the methane content was several times higher in experiments
No 1 and No 3 in the presence of catalyst compared to the non-catalytic experiment. What’s
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more, the content of ethane and ethylene naturally increased in a series of experiments
No 1 and No 3 as the radiation power decreases. From another hand, the presence of the
catalyst leads to significant increasing in the content of pentane molecules. In contrast,
the content of butane molecules practically was independent of experimental conditions
meanwhile the propane content was at maximum in the experiment without catalyst and it
has been found that the largest amount of saturated hydrocarbon gases is formed in the
experiment No 3 in the presence of the catalyst.

Table 4. Composition of gas products obtained during experiments.
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1 97.4 0.46 0.04 0.08 0.16 0.04 0.15 0.12 1.05 0.01 0.05 0.15 0.12 0.34 1.26
2 98.1 0.10 0.16 0.27 0.08 0.05 0.03 0.02 0.72 0.18 0.19 0.17 0.06 0.60 0.55
3 94.2 0.22 0.30 0.12 0.07 0.06 0.04 3.75 4.56 0.25 0.19 0.17 0.07 0.69 0.58
4 98.5 0.07 0.27 0.11 0.06 0.01 0.03 0.01 0.58 0.17 0.20 0.18 0.08 0.63 0.31

The oil containing rock extracts have been analyzed after experiments of microwave
exposure, and the obtained SARA group analysis has been presented in (Table 5).

Table 5. SARA analysis of the rock extract before and after microwave exposure.

Sample
SARA Fractions, wt.%

Saturated HC Aromatic HC Resins Asphaltenes

Original extract 17.2 31.4 31.3 20.1

After
microwave
processing

No 1 19.3 20.4 39.7 20.6
No 2 19.0 22.3 31.3 27.4
No 3 20.1 19.3 43.3 17.3
No 4 19.4 17.0 44.4 19.2

The original composition of oil is characterized by a high content of resinous-asphaltene
substances (more than 50 wt.%) and a low content of saturated hydrocarbons (17.2 wt.%). In
all scenarios of microwave processing, an increase in the content of saturated hydrocarbons
by 2 wt.% or more is achieved. At the same time, the content of aromatic hydrocarbons
decreases in all cases, but to varying degrees. To the greatest extent, the content of aromatic
hydrocarbons was observed for the longest experiment (No. 4)—up to 17.0 wt.%. Our data
indicate that the lightest fractions have been removed from the rock sample as a result of
microwave energy conversion into thermal energy which led to an increase in the content
of heavy components. What’s more, the obtained results showed a decrease in the content
of asphaltenes by 1.3–1.6 times in all experiments with catalysts (No2). This has been
provided with a commensurate increase in the content of resins. It should be noted that
the ratios of saturates to aromatics is 1.14 for catalytic process. This result is more effective
than other alternative noncatalytic methods [35].

The obtained data indicate the occurrence of the destructive hydrogenation process
at the carbon-heteroatom bonds in the asphaltene structure. In this case, a part of the
aromatic hydrocarbon fraction can act as a hydrogen donor with a corresponding decrease
in solubility and their transfer to the resin fraction. The result of a variety of chemical
reactions is a decrease in the content of asphaltenes and a decrease in their molecular
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weight, which increases the filtration capacity of the oil fluid in the porous medium of the
reservoir rock. Previously, filtration experiments were carried out for such catalysts [9].
this effect can be explained by the destruction of asphaltene aggregates and a decrease in
their molecular weight [36]. As a result, the rheological parameters of the oil change [37].

A wide range of literature has reported that oil yield increases in the presence of iron
or nickel oxides nanoparticles as a result of asphaltenes destruction [38,39].

In order to determine the content of non-extractable organic matter in the composition
of the oil-containing rock and the effect of the microwave field in the presence of catalyst
on the possible additional generation of coke-like substances like carbene-carboids (com-
paction products during asphaltene conversion reactions), thermogravimetric study of rock
samples after oil extraction was carried out. Weight loss during thermal analysis of the
extracted rock samples is presented in Table 6 and the obtained general thermograms are
presented by Figures 3 and 4.

Table 6. Weight loss during thermal analysis of the extracted rock samples before and after microwave exposure.

Sample
Temperature Ranges, ◦C

Total Weight Loss
Up to 100 100–200 200–300 300–400 400–500 500–600

Original Extract 0.33 0.30 0.44 1.17 0.65 0.86 3.75

After
microwave
processing

No 1 0.40 0.29 0.40 0.66 0.80 1.45 4.00
No 2 0.20 0.22 0.39 0.71 0.69 1.08 3.29
No 3 0.12 0.56 0.69 1.52 0.72 1.79 5.40
No 4 0.17 0.27 0.46 0.70 0.77 1.98 4.35
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It has been found that the absence of the catalyst causes the least increase in the content
of non-extractable organic matter in the rock. This fact is related to the intensive processes
of resinous-asphaltene compounds destruction especially at the level of peripheral groups
which are the most condensed fraction, and hence leads to a decrease in their solubility in
the organic medium and eases their adsorption on the mineral skeleton surface.

4. Conclusions

A series of experiments was carried out on a sample of oil-containing rock under
various modes of microwave exposure in the presence and absence of nanoscale magnetite.
The advantage of this laboratory design (with a small amount of substance loaded) was the
ability to quickly reach the temperature necessary for the pyrolysis reaction at a relatively
low power level. It should be noted that a feature of the experimental setup used was a
significant inhomogeneity of the microwave field in the reactor volume, leading to inhomo-
geneity of heating inside the reactor volume. In order to ensure more uniform heating, it is
necessary to optimize the electrodynamic input system of the reactor radiation from the
point of view of reducing the reflected power from the study object. The composition of
gaseous products of oil transformation in the composition of the rock has been studied in
addition to identifying oxygen, nitrogen, and carbon dioxide in all four experiments. It
has been found that oxygen content increases noticeably in the presence of magnetite cata-
lyst and the highest carbon dioxide content has been observed in the longest experiment.
Moreover, the methane content was found to be several times higher in the presence of
catalyst compared with the experiment in its absence. On the other hand, the content of
ethane and ethylene naturally increases in a number of experiments as the radiation power
decreases. The largest amount of saturated hydrocarbon gases was found to be formed in
the experiment with a catalyst.

The group composition of the extracted oil was studied after the experiments, and
it has been found that the original composition of oil is characterized by a high content
of resinous-asphaltene substances—more than 50 wt.% and a low content of saturated
hydrocarbons—17.2 wt.%. In all scenarios of microwave processing, an increase in the
content of saturated hydrocarbons by 2 wt.% or more is achieved. At the same time, the
content of aromatic hydrocarbons decreases in all cases, but to varying degrees. It has
been shown that the content of aromatic hydrocarbons to a greatest extent, was associated
with the longest experiment—up to 17.0 wt.%. As a result of the conversion of microwave
energy into thermal energy, the lightest fractions were removed from the rock sample and
the content of heavy components increased. What’s more, the obtained results showed a
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decrease in the content of asphaltenes by 1.3–1.6 times in all experiments with catalysts
(No 2). This has been provided with a commensurate increase in the content of resins.
The obtained data indicate the occurrence of the destructive hydrogenation process at the
carbon-heteroatom bonds in the asphaltene structure. In this case, a part of the aromatic
hydrocarbon fraction can act as a hydrogen donor with a corresponding decrease in
solubility and their transfer to the resin fraction. The result of a variety of chemical
reactions is a decrease in the content of asphaltenes and a decrease in their molecular
weight, which increases the filtration capacity of the oil fluid in the porous medium of the
reservoir rock.

The content of non-extractable organic matter in the rock sample after experiments and
after oil extraction was determined. It has been found that the absence of the catalyst causes
the least increase in the content of non-extractable organic matter in the rock. This fact is
related to the intensive processes of resinous-asphaltene compounds destruction especially
at the level of peripheral groups which are the most condensed fraction, and hence leads
to a decrease in their solubility in the organic medium and eases their adsorption on the
mineral skeleton surface.
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