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Abstract: The separation and recovery of noble metals is increasingly of interest, in particular the
recovery of gold nanocrystals, which have applications in medicine and industry. Typically, metal
recovery is performed using liquid–liquid extraction or electrowinning. However, it is necessary to
develop noble metal recovery systems providing high selectivity in conjunction with a one-pot setup,
ready product recovery, and the use of dilute aqueous solutions. In prior work, our group developed
a selective gold recovery process using peptides. This previous research showed that RU065, a
nonapeptide containing an anthracene moiety (at a concentration of 2.0 × 10−4 M), is capable of
selective reduction of HAuCl4 to recover gold from a solution of HAuCl4 and H2PtCl6, each at
5.0 × 10−5 M. However, peptide molecules are generally costly to synthesize, and therefore it is
important to determine the minimum required structural features to design non-peptide anthracene
derivatives that could reduce operational costs. In this study, we used RU065 together with 23 of its
fragment peptides and investigated the selective precipitation/recovery of metallic gold. RU0654–8,
a fragment peptide comprising five amino acid residues (having two lysine, one L-isoleusine, and
one L-alanine residue (representing six amide groups) along with an L-2-anthrylalanine residue)
provided an Au/Pt atomic ratio of approximately 8, which was comparable to that for the full-length
original RU065. The structural features identified in this study are expected to contribute to the
design of non-peptide anthracene derivatives for low-cost, one-pot selective gold recovery.

Keywords: peptide; self-assembly; noble metal recovery; gold; platinum; anthracene

1. Introduction

The separation and recovery of noble metals from industrial wastewater has recently
received significant attention as a component of sustainable chemistry. Especially, recovery
of metals from electronic waste and other sources may be preferable to standard mining
practices on a per mass basis, because discarded electronics contain greater relative pro-
portions of metals compared with ores [1]. Meanwhile, it is also important to note that
electronic waste tends to contain noble metals at relatively low levels mixed with other
metals [2]. In order to separate metal ions of interest, liquid–liquid extraction is a common
technique where metals such as gold and palladium can be extracted from an aqueous
phase by employing specific organic solvents [3–7]. This technique is commonly used but
is labor intensive and requires organic solvents that can have environmental impacts. In
recent years, new approaches to liquid-based separation of noble metals have been demon-
strated. These include the use of ionic liquids supported on silica to extract platinum group
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metals [8] and the selective separation of gold by adsorption on polyhedral oligomeric
silsesquioxanes tethered to imidazole thiones [9]. Metals can also be recovered via selective
precipitation using electrowinning based on tuning electrode redox potentials, although
this requires special instrumentation and produces hydrogen as a by-product under low
metal ion concentrations [10,11]. An alternative approach for selective gold recovery is
the use of sulfur atom-containing polymeric sorbents. For instance, 2,2′-thiobisethanol
dimethacrylate was designed, synthesized, and demonstrated for selective gold separa-
tion under dilute conditions [12–14]. Selenium-containing polymers (polyselenoureas)
were also synthesized and demonstrated for selective gold recovery [15]. Although there
are now several excellent methods to selectively recover noble metals, especially gold,
remaining requirements include (i) improvement of selectivity for specific metal elements,
(ii) development of a simple one-pot processing method, (iii) development of a simple
separation method for metals of interest, and (iv) development of an extraction method for
homogenous, dilute water-based solutions.

Our own group has studied the synthesis of gold nanocrystals because this material
exhibits special chemical and physical properties and is also biocompatible. Gold nanoparticles
have applications as components of sensing or imaging devices, photonic or plasmonic
systems, catalysts, and photothermal or drug delivery processes [16–24]. Previously, we
demonstrated the formation of a nonapeptide capable of forming β-sheets (RU006: Ac-Ala-Ile-
Ala-Lys-Ala-X-Lys-Ile-Ala-NH2, where X = L-2-naphthylalanine (Nal), Figure 1A). Combining
HAuCl4 with RU006 in water was found to fabricate gold nanoribbons having widths in the
range of 50–100 nm, heights of several nanometers, and lengths below 1 µm [25,26]. This
process does not need additional reducing agents because the naphthalene moiety in the
peptide can reduce HAuCl4. The formation of these nanoribbons is believed to proceed
in several stages. Firstly, AuCl4− ions are captured in the internal spaces of the peptide
network based on electrostatic interactions with the L-lysine (Lys) side chains that form
during self-assembly of the peptide. Following this, there is a transfer of electrons from the
naphthalene groups to the Au(III) ions such that crystalline gold is gradually produced and
gold nanoribbons are generated along the framework of the peptide by self-assembly. The
obtained metallic gold-peptide composites are collected by simple centrifugation. Therefore,
RU006 can be considered to act as a combination of an extracting agent, a reducing agent, and
a precipitating agent during gold nanoribbon synthesis. Replacing the Nal group (which has a
peak oxidation potential of 1.50 V) at the 6th position in the RU006 with an anthracene group
(which has a stronger reducing effect and an oxidation potential of 1.05 V) to obtain [Ant6]-
RU006 (X = L-2-anthrylalanine (Ant), referred to herein as RU065 (a), Figure 1B) has been
found to form β-sheet conformation and modify the morphology of the resulting nanocrystals
to generate spheres rather than ribbons [25,26].

Based on our prior results on the synthesis of gold nanocrystals using peptides con-
taining aromatic side chains [25,26], we investigated the selective recovery of gold from
homogenous aqueous (monophasic) solutions containing a mixture of dilute HAuCl4 and
H2PtCl6 (5.0 × 10−5 M each) using peptides (2.0 × 10−4 M each) [27]. Much higher selec-
tivity for gold (meaning Au-to-Pt (Au/Pt) atomic ratios of approximately 7.5) was obtained
using the anthracene-containing peptide RU065 (a) than using the naphthalene-containing
peptide RU006. The recovery of gold was confirmed by elemental analysis of precipitates
obtained from the reaction mixtures after simple centrifugation. These precipitates likely
resulted from the rapid reduction of the HAuCl4 with the anthracene rings inhibiting elec-
tron reception by H2PtCl6 [28,29]. On this basis, we concluded that anthracene-containing
peptides could potentially be used to develop a selective gold precipitation/recovery
process meeting the four criteria described above.



Processes 2021, 9, 2010 3 of 16Processes 2021, 9, x FOR PEER REVIEW 3 of 16 
 

 

 
Figure 1. Molecular structures of (A) RU006 and (B) RU065 (a), (C) amino acid sequences of RU065 
(a) and its fragment peptides (b–x). Yellow squares show the Ant residues at the sixth position of 
the original RU065 (a) while white squares show amino acid residues other than Ant comprising 
RU065 (a). Ant = L-2-anthrylalanine. Molecular structures of the fragment peptides used in this 
study are shown in Figure S1. 

However, peptide molecules are generally costly to synthesize and so it is important 
to determine the minimum requirements for the structural features of RU065 (a) for low-
cost, selective gold recovery. This would contribute to the design of low-cost non-peptidyl 
anthracene derivatives. Therefore, the present study designed and synthesized 24 differ-
ent anthracene-containing peptides, comprising the original RU065 (a) [27] and 23 of its 
fragment peptides (b–x, Figure 1C). These fragments were obtained by deleting amino 
acid residues one-by-one from both N- and C-termini of the original RU065 (a). Each of 
these compounds was applied to the selective precipitation/recovery of metallic gold from 
a mixture of dilute HAuCl4 and H2PtCl6 (5.0 × 10−5 M each), using a peptide (a) or peptide 
fragment (b–x) at a concentration of 2.0 × 10−4 M. The selectivity obtained from peptides 
(a–x) was examined by analysis of the precipitates using energy dispersive X-ray spec-
troscopy-field emission scanning electron microscopy (EDS-FESEM) after samples were 
collected by centrifugation to determine elemental contents and distributions. Based on 
the data from EDS-FESEM, we determined the most active miniaturized molecular struc-
ture derived from the original RU065 (a) and characterized its secondary structure using 
attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Induc-
tively coupled plasma-optical emission spectroscopy (ICP-OES) was also employed to 
compare the residual metal ion concentrations of supernatants after the removal of metal-
lic precipitates by centrifugation, in trials using the original RU065 (a) and the miniatur-
ized peptides. We also examined the mechanism by which this peptide-based gold recov-
ery system functioned, employing matrix-assisted laser desorption/ionization time-of-

Figure 1. Molecular structures of (A) RU006 and (B) RU065 (a), (C) amino acid sequences of RU065 (a) and its fragment
peptides (b–x). Yellow squares show the Ant residues at the sixth position of the original RU065 (a) while white squares
show amino acid residues other than Ant comprising RU065 (a). Ant = L-2-anthrylalanine. Molecular structures of the
fragment peptides used in this study are shown in Figure S1.

However, peptide molecules are generally costly to synthesize and so it is important to
determine the minimum requirements for the structural features of RU065 (a) for low-cost,
selective gold recovery. This would contribute to the design of low-cost non-peptidyl
anthracene derivatives. Therefore, the present study designed and synthesized 24 different
anthracene-containing peptides, comprising the original RU065 (a) [27] and 23 of its
fragment peptides (b–x, Figure 1C). These fragments were obtained by deleting amino acid
residues one-by-one from both N- and C-termini of the original RU065 (a). Each of these
compounds was applied to the selective precipitation/recovery of metallic gold from a
mixture of dilute HAuCl4 and H2PtCl6 (5.0 × 10−5 M each), using a peptide (a) or peptide
fragment (b–x) at a concentration of 2.0× 10−4 M. The selectivity obtained from peptides (a–
x) was examined by analysis of the precipitates using energy dispersive X-ray spectroscopy-
field emission scanning electron microscopy (EDS-FESEM) after samples were collected by
centrifugation to determine elemental contents and distributions. Based on the data from
EDS-FESEM, we determined the most active miniaturized molecular structure derived
from the original RU065 (a) and characterized its secondary structure using attenuated total
reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Inductively coupled plasma-
optical emission spectroscopy (ICP-OES) was also employed to compare the residual
metal ion concentrations of supernatants after the removal of metallic precipitates by
centrifugation, in trials using the original RU065 (a) and the miniaturized peptides. We also
examined the mechanism by which this peptide-based gold recovery system functioned,
employing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOFMS). The findings of this study are expected to assist in the future design of
non-peptidyl anthracene derivatives for low-cost, environmentally friendly, and selective
recovery of gold.
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2. Materials and Methods
2.1. General

All solvents and reagents, unless otherwise noted, were purchased from Wako Pure
Chemical Industries (Osaka, Japan) and used as received. The 9-fluorenylmethoxycarbony
(Fmoc)-protected amino acid derivatives and reagents for peptide synthesis were purchased
from Watanabe Chemical Industries (Hiroshima, Japan). Acetonitrile (high performance
liquid chromatography (HPLC) grade) was purchased from Nacalai Tesque Inc. (Kyoto,
Japan) and used for HPLC analysis and peptide purification. Ultrapure water (hereafter
water) was purchased from Wako Pure Chemical Industries (Japan).

2.2. Peptide Synthesis and Storage

The original peptide RU065 (a) and its fragment peptides (b–x) were synthesized by
performing Fmoc chemistry on Rink amide resin with 2-(1H-benzotriazole-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole monohy-
drate (HOBt·H2O) as coupling reagents [30]. The amino acid side chains of Lys groups
were protected with t-butyloxycarbonyl (Boc).

Fmoc-protected Rink amide resin was treated with 20% piperidine (PPD) in N-
methylpyrrolidone (NMP) (v/v) at room temperature for 15 min and washed with NMP
three times to remove the Fmoc protecting groups. A solution of Fmoc-protected amino
acid (10 eq), HBTU (10 eq), HOBt·H2O (10 eq), and N,N-diisopropylethylamine (DIEA,
20 eq) in NMP was added to a reaction vessel containing the N-terminal free Rink amide
resin (1 eq), and the mixture was reacted at room temperature for 90 min for peptide chain
elongation. The reaction mixture was filtrated and the resulting Fmoc-amino acid-bound
resin was washed with NMP three times. The N-terminal Fmoc protecting groups of the
resin were removed with 20% PPD /NMP (v/v) at room temperature for 15 min, and
the resulting resin was washed with NMP three times. These coupling and deprotection
cycles were repeated as required for peptide elongation. Subsequently, the Fmoc protecting
groups at the N-termini of the peptide-bound resin were removed with 20% PPD/NMP
(v/v) at room temperature for 15 min, and the resulting resin was washed with NMP three
times. A solution of acetic anhydride (10 eq) and DIEA (10 eq) was added to the reaction
vessel containing the N-terminal free peptide-bound resin (1 eq) and the mixture was
reacted at room temperature for 30 min for N-terminal acetylation. The reaction mixture
was filtrated and the resulting N-acetylated peptide-bound resin was washed with NMP
three times, washed with chloroform three times, and then dried in vacuo to prepare a fully
protected peptide-bound resin.

Final deprotection and cleavage of the resin-bound peptides were performed by
treatment with trifluoroacetic acid (TFA)/thioanisole/m-cresol (90/7.5/2.5, v/v/v) at room
temperature for 60 min. The reaction mixtures were concentrated and then precipitated
with cold diethyl ether to provide the crude peptides. The crude peptides were washed with
cold diethyl ether three times, dried in vacuo, and purified on a Hitachi LaChrom Elite HPLC
system (Hitachi, Tokyo, Japan) using Cosmosil 5C18-AR-II packed columns (4.6 × 150 mm
and 10 × 250 mm, Nacalai Tesque, Japan) with a linear gradient of acetonitrile/0.1% TFA,
at a flow rate of 3.0 mL min−1. The purified peptides were lyophilized and characterized
by MALDI-TOFMS (AXIMA-CFR Plus or MALDI-8020, Shimadzu, Kyoto, Japan).

Peptide stock solutions (ca. 1.0 × 10−3 M) were prepared by dissolving each purified
peptide powder in 2,2,2-trifluoroethanol (TFE) to prevent self-assembly during storage.
The concentrations of the stock solutions of peptides (a–x) were determined by absorption
spectroscopy (Shimadzu UV-3100 spectrophotometer, Japan) using an extinction coefficient
of 5300 M−1 cm−1 at 377 nm for an Ant residue in methanol solutions containing 1% TFE
(v/v) [27]. The peptide stock solutions were stored at −20 ◦C until use.

2.3. Preparation of Sample Solutions

According to a procedure previously described in the literature [27], a portion of each
peptide stock solution in TFE was transferred to a microtube, dried with a N2 gas stream,
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then further dried in vacuo for 1 h. Water was added to the microtube to give a peptide
concentration of 4.0 × 10−4 M and the solution was sonicated at 40 ◦C for 2 min to break
up any peptide aggregates. Mixtures of equal volumes of the peptide solution and of an
aqueous solution containing HAuCl4 and H2PtCl6 (together with Ni(NO3)2 if required;
1.0 × 10−4 M each) were incubated in a dry block heater (As One EB-303, As One, Osaka,
Japan) at 40 ◦C for 24 h in the dark to prepare “sample solutions”.

2.4. Absorption Spectra of Reaction Mixtures

A portion of each sample solution was transferred from the microtube to a 1.0 cm path
length quartz cell and its UV–Vis absorption spectrum was recorded on a spectrophotome-
ter (UV-3100, Shimadzu, Japan).

2.5. Energy Dispersive X-ray Spectroscopy-Field Emission Scanning Electron Microscopy
(EDS-FESEM)

According to a procedure previously described in the literature [27], a sample solution
was centrifuged at 15,000 rpm (himac CT15E, Hitachi, Japan) for 3 min and the supernatant
was removed. The resulting solid was redispersed in a small volume of water, and droplets
of the suspension were applied to a transmission electron microscopy (TEM) grid (Cu
200 mesh covered with a collodion membrane, Nisshin EM, Japan), allowed to stand for
1 min, and dried with filter paper. The resulting sample was further dried in vacuo before
acquiring images and performing an EDS analysis (JIB-4601F, JEOL, Akishima, Japan). The
Au/Pt atomic ratio in the precipitate was calculated by comparing the intensities of the
characteristic X-ray signals for gold and platinum obtained from 12 to 27 randomly selected
areas per sample.

2.6. Hydropathy Assessment of Peptides by Reversed-Phase High-Performance
Liquid Chromatography

According to a procedure described in the literature [31,32], 10 µL aliquots of each
peptide stock solution in TFE were analyzed by HPLC (LaChrom Elite HPLC system,
Hitachi, Japan) using Cosmosil 5C18-AR-II packed columns (4.6 × 150 mm, Nacalai Tesque
Inc., Japan) with a linear gradient from H2O/0.1% TFA to CH3CN/0.1% TFA over a span
of 30 min, using a flow rate of 1.0 mL min−1 and UV detection at 220 nm. The retention
times of the analytes were converted to relative hydrophobic index values (H) using
the equation:

H = 10 × [tR − tR(RU0654-7, p)]/[tR(RU0656, x) − tR(RU0654-7, p)] − 5.00 (1)

where tR is the retention time for the peptide of interest and tR(RU0654–7, p) and tR(RU0656,
x) are the retention times for the most hydrophilic and hydrophobic peptides, respectively.

2.7. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy

According to a procedure previously described in the literature [25], an ATR-FTIR spec-
trum of peptide film prepared from a peptide solution obtained in the manner described
above (peptide = 1.0 × 10−3 M in water, incubated at 40 ◦C for 24 h) was acquired on a
Shimadzu Fourier transform infrared spectrophotometer IRTracer-100 (Japan) equipped
with an ATR-8200HA unit (Shimadzu, Japan).

2.8. Transmission Electron Microscopy

TEM samples were prepared using the procedure described above for the EDS-FESEM
analyses and TEM images were acquired using a JEM-2100 instrument (JEOL, Japan) at an
accelerating voltage of 200 kV.

2.9. X-ray Diffraction (XRD)

The precipitates obtained after centrifugation of each sample solution were dried
and mounted on a quartz sample cell. The XRD pattern was recorded on a RINT2000
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spectrometer (Rigaku, Tokyo, Japan) with Cu-Kα radiation with a scan area from 2.0 to
80.0◦, a scan step of 0.02◦, and a scan speed of 2.00◦ min−1.

2.10. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)

The supernatant (15 mL) obtained after centrifugation of each sample solution for 1 h
at 15,000 rpm (himac CT15E, Hitachi, Japan) was analyzed by ICP-OES (Optima 5300DV,
Perkin Elmer, Yokohama, Japan). The residual metal ion concentrations were calculated
based on the working curves prepared by three-point-calibration using standard solutions
of gold, platinum, and nickel.

3. Results and Discussion

Design, Synthesis, and Characterization of the Peptides. As described in the in-
troduction, in prior work, our group synthesized [Ant6]-RU006, a nonapeptide forming
amphiphilic β-sheets (referred to herein as RU065 (a)) and having the structure Ac-Ala-
Ile-Ala-Lys-Ala-Ant-Lys-Ile-Ala-NH2 (Figure 1B) [25,26]. The L-isoleucine (Ile) residues
at the second and eighth positions in this peptide along with the Ant at the sixth position
were all situated on the same side and so generated a hydrophobic face. A hydrophilic side
was also produced based on the L-alanine (Ala) residues at the first, third, fifth, and ninth
positions and the Lys at the seventh position, all of which were either less hydrophobic or,
in the case of the Lys, were hydrophilic (see Figure 1B and Figure S1). A Lys residue was
also present at the fourth position in proximity to the Ant on the hydrophobic side to allow
interactions with AuCl4− and PtCl62− ions, so as to both concentrate and reduce the metal
ions in the self-assembled peptides to generate metallic precipitates. As noted, 23 different
peptides having smaller structures than the original RU065 (that is, specimens b–x) were
obtained by sequentially removing amino acid residues from both N- and C- termini to
the Ant group at the sixth position of the original molecule. These fragment peptides are
referred to herein as RU065x-y, where x and y are the positions on the original RU065 (a)
at which these fragments begin and end, respectively (Figure 1C and Figure S1). As an
example, RU0652–9 (b) had the structure Ac-Ile-Ala-Lys-Ala-Ant-Lys-Ile-Ala-NH2, and so
spanned the second to ninth positions of the original peptide, based on removing the Ala
at the first position.

A typical solid-state peptide synthesis technique based on Fmoc chemistry was used
to synthesize these peptides [30]. This synthesis was followed by purification using HPLC
(Figure S2) and characterization by MALDI-TOFMS (Table S1 and Figure S2).

Screening of Peptides by UV–Vis Absorption Spectroscopic Measurements. We
initially examined the abilities of peptides a–x to reduce the metal ions by preparing
equivolume mixtures of aqueous peptide solutions (4.0 × 10−4 M) and aqueous solutions
containing HAuCl4 and H2PtCl6 (1.0 × 10−4 M each) that were assessed using UV–Vis
spectroscopy. Figure S3 shows the spectra of these sample solutions. It is evident that the
majority of the peptide solutions (a–u) generated a surface plasmonic absorption band
at approximately 540 nm, while the short fragments (v–x) produced a band at 580 nm.
These results suggest the formation of spherical gold nanocrystals via the reduction of
Au ions by the anthracene moieties in the former peptides (a–u), and also indicate that
peptides (v–x) caused aggregation of the nanocrystals and/or provided anisotropic gold
nanocrystals [25,33,34]. It should be noted that the formation of platinum nanocrystals
could not be ascertained from the UV–Vis absorption spectra because this material did not
generate characteristic peaks in the visible region of the spectrum [35].

Screening of Peptides by EDS-FESEM Measurements. We next separated the pre-
cipitates recovered from the sample solutions containing peptides (a–x), HAuCl4, and
H2PtCl6 following centrifugation and analyzed their morphologies and elemental distri-
butions by EDS-FESEM. Figure S4 presents representative elemental mapping images of
the precipitates for all peptides. In these images, the Au and Pt distributions are shown in
yellow and purple, respectively, along with the corresponding EDS spectra. The results of
replicate trials are summarized in Figure 2A. The Au/Pt atomic ratio for the precipitates
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generated using the original RU065 (a) was 8.4 ± 0.4, while the fragment peptides lacking
one, two, and three amino acids from the N-terminus of RU065 (a) (RU065x–9 (x = 2–4, b–d))
all provided similar ratios of 8.6 ± 0.2, 8.6 ± 0.6, and 8.8 ± 0.5, respectively. Surprisingly,
the deletion of four and five amino acids from the N-terminus of the RU065 (peptides e
and f ) gave much lower ratios of 4.9 ± 0.3 and 5.1 ± 0.6, respectively.
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We also examined the series of fragment peptides lacking an Ala residue at the
ninth position of the RU065 (a) (RU065x-8 (x = 1–6, g–l)) and found that the deletion of
one, two, and three amino acids from the N-terminus of RU0651-8 (g) provided excellent
gold selectivity, with ratios of 7.8 ± 0.2 (RU0651–8 (g)), 7.9 ± 0.2 (RU0652–8 (h)), 7.6 ±
0.5 (RU0653–8 (i)) and 7.8 ± 0.4 (RU0654–8 (j)), respectively. These values were compa-
rable to those for peptides a–d. In contrast, greatly decreased Au/Pt atomic ratios of
5.0 ± 0.7 and 3.0 ± 0.8 were determined for RU0655–8 (k) and RU0656–8 (l), respectively.
These observations strongly indicate that the Lys residue at the fourth position of the
original RU065 (a) was important with regard to obtaining significant gold selectivity.

The fragment series RU065x–7 (x = 1–6, m–r), lacking two amino acid residues at
the eighth and ninth position of the original RU065 (a), were also assessed by EDS-
FESEM. RU0651–7 (m) and RU0652–7 (n) provided suitable levels of selectivity, with ratios of
7.9 ± 0.3 and 7.8 ± 0.4, respectively. However, the deletion of the Ile residue at the second
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position of RU0651–7 (m) afforded significantly decreased Au/Pt ratios of 3.8 ± 0.3 and 4.3
± 0.5 in the case of the RU0653–7 (o) and RU0654–7 (p), respectively. The RU065x–7 (x = 5–6,
q–r) specimens did not provide large variations in the ratio even though the Lys residue at
the fourth position was deleted in both, with RU0655–7 (q) and RU0656–7 (r) giving ratios of
3.2 ± 0.4 and 2.8 ± 0.7, respectively. These data suggest that the presence of a hydrophobic
Ile residue at the second position of RU0651–7 (m) was vital to realizing high selectivity for
gold. This effect is attributed to the lack of hydrophobic Ile and Ala residues at the eighth
and ninth positions of the original RU065 (a) in the RU065x–7 (x = 1–6, m–r) fragments.

Lastly, we examined the selectivity of the RU065x–6 (x = 1–5, s–w) specimens, which
lacked three amino acid residues at the seventh, eighth, and ninth positions of the original
RU065 (a), and of Ac-Ant-NH2 (RU0656 (x)), which comprised only an Ant residue. The
selectivity data trend for these peptides was similar to that for the RU065x–7 (x = 1–6,
m–r) series. That is, the ratios for RU0651–6 (s) and RU0652–6 (t) showed slightly reduced
values of 6.2 ± 1.2 and 6.4 ± 1.0, respectively, compared with those for peptides a–d, g–j,
m, and n. The removal of the Ile residue at the second position of RU0651–6 (s) evidently
lowered the ratio, giving values of 2.8 ± 0.3, 4.0 ± 1.2, 2.5 ± 0.4, and 2.6 ± 0.3 for the
RU065x–6 (x = 3–5, u–w) and RU0656 (x) fragments, respectively. From these data, it
appears that the incorporation of a hydrophobic Ile residue and a positively charged Lys
residue is necessary for good selectivity. This is likely because the Ile and Lys residues
facilitate the initial self-assembly of the peptide through hydrophobic interactions and
also promote the accommodation/enrichment of AuCl4− ions within the self-assembled
peptide nanostructure, based on the proposed mechanism [25,26].

Hydropathy Assessment. The EDS-FESEM experiments described above highlighted
the importance of characterizing the hydropathy of the original RU065 (a) and its fragment
peptides (b–x) by HPLC analysis [31,32]. Figure 2B summarizes the H values for these
specimens. Note that more positive values are associated with more hydrophobic com-
pounds while negative values indicate more hydrophilic species. These data demonstrate
that the original RU065 (a) was relatively hydrophobic but a significant transition from
hydrophobic to hydrophilic was induced by removing the hydrophobic Ile residue at the
second position between RU0652–9 (b) and RU0653–9 (c). The deletion of the hydrophilic
Lys residue at the fourth position led to another significant transition from hydrophilic
back to hydrophobic between RU0654–9 (d) and RU0655–9. Similar transitions also occurred
between RU0652–8 (h) and RU0653–8 (i) and between RU0654–8 (j) and RU0655–8 (k). In
the case of the RU065x–7 (x = 1–6, m–r) series, there was a change from hydrophobic to
hydrophilic following the removal of the hydrophobic Ile residue at the second position
on going from RU0652–7 (n) to RU0653–7 (o), resulting in the most hydrophilic peptide
lacking two hydrophobic Ile residues at the second and eighth positions. Although the
deletion of the Lys at the fourth position to generate RU0655–7 (q) decreased the relative
hydrophilicity of this peptide (or more accurately increased the relative hydrophobicity), its
H value was still within the hydrophilic range because it did not have two of the Ile resides.
The H values for the RU065x–6 (x = 1–5, s–w) series and RU0656 (x) also demonstrated a
significant transition from hydrophobic to hydrophilic between RU0652–6 (t) and RU0653–6
(u) and from hydrophilic to hydrophobic between RU0654–6 (v) and RU0655–6 (w). These
transitions were similar to those that occurred in the other series. The most hydrophobic
fragment was RU0656 (x), which contained only one Ant residue. The smaller peptide
structures afforded higher H values, likely due to the greater contributions of individual
amino acid residues.

Determination of Miniaturized Active Structures. The relationship between the
Au/Pt atomic ratios determined from Figure 2A and the H values from Figure 2B for all
peptides, along with the amino acid residues comprising each specimen, are presented
in Figure 3. Those fragments having H values between −2 and +2 provided the best
ratios (in the vicinity of 8). Specifically, these specimens were a, b, c, d, g, h, i, j, m, and
n, among which the smallest peptide was RU0654–8 (j), having five amino acid residues
including two Lys and one Ile (Figure 4A). On this basis, we determined that RU0654–8 (j)
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had the minimum structure required to precipitate/recover gold from a mixture of gold
and platinum ions.
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Next, we characterized the secondary structure of the miniaturized active peptide
RU0654–8 (j) by measuring the ATR-FTIR spectrum of a peptide film prepared from aqueous
solution (Figure 4B). The amide I region, originating from the amide carbonyl stretching
frequencies between 1600 and 1700 cm−1, is commonly used to determine the amide
mode. The ATR-FTIR spectrum showed a strong amide I band around 1630 cm−1 and
a weak band around 1675 cm−1, indicating that an antiparallel β-sheet conformation
was predominant [25], suggesting that even such a small fragment peptide (j) preferably
formed β-sheet conformation as seen for RU006 and RU065 (a, [Ant6]-RU006) in the
literature [25]. This presumably contributed to the enrichment of gold ions during self-
assembly and the densification of the obtained metallic gold-peptide composites resulting
in easy separation [27].
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Interestingly, peptides RU0654–8 (j) and RU0653–7 (o), each of which comprised five
amino acids, showed very different Au/Pt atomic ratios even though the only difference
was that the Ile residue in RU0654–8 (j) was replaced with an Ala residue in RU0653–7 (o).
Further, peptides RU0654–8 (j) and RU0655–7 (q) had similar hydropathy characteristics
but different numbers of amino acid residues, and also showed a significant difference
in ratios. These variations can presumably be ascribed to the important role of amide
moieties in forming the hydrogen bond networks that facilitated peptide self-assembly
and metal precipitation. These results strongly suggest that adequate hydrophobicity and
the presence of several amide moieties are important to the self-assembly process that, in
turn, accommodates and concentrates gold ions with the subsequent reduction of these
ions within the assemblies to provide high Au/Pt atomic ratios.

Transmission Electron Microscopy and X-ray Diffraction. The precipitates gener-
ated from mixtures of RU0654–8 (j) with HAuCl4 and H2PtCl6 were characterized using
TEM (Figure 5A–C). The image in Figure 5A demonstrates a spherical particle with a
diameter of approximately 30 nm along with numerous other spherical particles with
diameters on the order of 2 nm. The image in Figure 5B presents a magnified view of the
nanosphere surrounded by the yellow square in Figure 5A. This image indicates a d-spacing
of 2.35 Å that corresponds to the Au<111> direction in crystals having a face-centered
cubic (fcc) structure [27,36]. A magnified view of the region within the blue square is
provided in Figure 5C, with a d-spacing of 2.21 Å that equates to the Pt<111> direction
in an fcc crystal [27,36]. These results were verified by acquiring X-ray diffraction (XRD)
data. The powder XRD pattern in Figure 5D contains four broad peaks at 2θ values of 38.2◦,
44.4◦, 64.6◦, and 77.6◦ that are attributed to (111), (200), (220), and (311) crystal planes,
respectively, in metallic gold having an fcc crystal structure. XRD peaks corresponding to
elemental platinum (2θ = 39.8◦, 46.3◦, and 67.5◦, assigned to (111), (200) and (220) crystal
planes, respectively) were not observed, likely because the platinum nanospheres had
crystallite sizes smaller than those detectable by powder XRD. These results suggest that
the precipitates from the reaction of RU0654–8 (j), HAuCl4, and H2PtCl6 were in a metallic
state and that metallic platinum formed much smaller particles than metallic gold.
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Figure 5. (A) TEM image of precipitate obtained from mixture of HAuCl4, H2PtCl6, and RU0654–8

(j) (scale bar = 10 nm). Expanded TEM images of the areas surrounded by (B) yellow and (C) blue
squares in panel A. (D) X-ray diffraction pattern for precipitate from mixture of HAuCl4, H2PtCl6,
and RU0654–8 (j). Diffraction peaks were assigned based on JCPDS data for face-centered cubic (fcc)
structures for each element. Peptide = 2.0 × 10−4 M, HAuCl4 = H2PtCl6 = 5.0 × 10−5 M in water.
Reactions were conducted at 40 ◦C for 24 h in the dark.
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Gold Selectivity Assessment by ICP-OES. ICP-OES was used to better assess the
precise selectivity of the peptide-based recovery system for gold by quantifying residual ion
concentrations in the supernatants obtained after centrifugation of mixtures comprising the
peptides, HAuCl4 and H2PtCl6 (Figure 6) [27,37]. As shown in Figure 6A, ICP-OES analyses
of the supernatants of the reaction mixtures containing the original RU065 (a) revealed a
residual Au(III)/Au(I) concentration of 2.7 × 10−6 M (equivalent to 95% recovery) and
a residual Pt(IV)/Pt(II) concentration of 3.7 × 10−5 M (26% recovery). These results are
comparable to those in our previous work [27].
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Figure 6. Quantification of residual Au, Pt, and Ni concentrations in supernatants from mixtures of
HAuCl4 and H2PtCl6 (and Ni(NO3)2 for panel C) with (A) original RU065 (a) and (B,C) RU0654–8 (j),
as determined by IOC-OES analysis (mean ± SD, n = 3). Peptide = 2.0 × 10−4 M, HAuCl4 = H2PtCl6
= Ni(NO3)2 = 5.0 × 10−5 M in water. Reactions were conducted at 40 ◦C for 24 h in the dark.

ICP-OES analysis of the reaction mixtures containing RU0654–8 (j) gave residual
concentrations of 1.6 × 10−6 M (97% recovery) for Au(III)/Au(I) and 3.9 × 10−5 M (22%
recovery) for Pt(IV)/Pt(II) in Figure 6B. The results for RU065 (a) and RU0654–8 (j) were
similar, suggesting that the latter has the same potential to selectively reduce/recover gold
ions as RU065 (a), even though it has four fewer amino acids. Consequently, the minimum
requirement for the structure would be Ac-Lys-Ala-Ant-Lys-Ile-NH2. The high recovery
yields for gold with RU065 (a) and RU0654–8 (j) suggest that RU0654–8 (j) also concentrated
gold ions on the basis of a mechanism involving self-assembly, reduction of gold ions to the
metallic state and concentration, enabling easy separation of the metallic solids by simple
centrifugation, as RU065 (a) did in our previous work [27]. However, the selectivity (that
is, the Au recovery %/Pt recovery %) determined by ICP-OES was somewhat lower than
the Au/Pt atomic ratio obtained from the EDS-FESEM analyses, as shown in Figure 2A.
These small differences between the selectivity determined by ICP-OES and EDS-FESEM
could be attributed to the formation of platinum nanoclusters that were difficult to separate
by centrifugation (as shown in Figure 5A,C), such that different amounts of gold were
determined using the two methods.

We next demonstrated selective gold reduction/recovery from a mixture of gold,
platinum, and nickel ions using RU0654–8 (j) to examine the effects of a transition metal.
Figure 6C shows the residual ion concentrations in the supernatant obtained from a mixture
of RU0654–8 (j, 2.0 × 10−4 M), HAuCl4, H2PtCl6, and Ni(NO3)2 (metal ion = 5.0 × 10−5 M
each) in water. The data show residual concentrations of 1.8 × 10−6 M (96% recovery)
for Au(III)/Au(I), 4.1 × 10−5 M (18% recovery) for Pt(IV)/Pt(II) and 5.0 (4.96) × 10−5 M
(approximately 1% recovery) for Ni(II). These results suggest that positively charged
transition metal ions such as nickel were more difficult to reduce than noble metals and so
primarily remained in solution as a consequence of charge repulsion between the Ni(II)
ions and RU0654–8 (j). Therefore, the present peptide-based system could be robust for
selective gold recovery from a mixture of base metal ions with redox potentials lower than
those for noble metal ions.
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As reported by Kim et al., a tannin-TiO2 heterostructure selectively adsorbed gold
ions from a solution containing nine different metal ions ([metal ion] = 1.0 × 10−3 M each)
with an Au/Pt ratio of ca. 50 under light irradiation [38]. Dogan et al. showed that nitrile
and amidoxime-containing nanoporous polymer microspheres adsorbed gold ions from a
solution containing eleven different metal ions ([metal ion] = 100 ppb each) with an Au/Pt
ratio of ca. 3.8 [39]. These results suggest that for high metal ion concentrations, an excellent
Au/Pt ratio can be achieved, whereas for low metal ion concentrations, it is difficult to
improve the gold selectivity against platinum. Thus, our results (metal ion = 5.0 × 10−5 M
each) are competitive and it is possible to design low-cost gold-selective recovery agents
based on the active short peptide RU0654–8 (j).

Mechanistic Study. Our prior work demonstrated that the original RU065 (a) was
able to generate metal nanocrystals after a span of 4 h. This was a more rapid process
than was evident using another peptide incorporating a naphthalene moiety in place of
an anthracene ring. Specifically, EDS-FESEM indicated that a combination of RU065 (a),
HAuCl4, and H2PtCl6 decreased the Au/Pt ratio from 12.3 to 7.3 after 4 h. On this basis,
we suggest that gold nanocrystals were initially generated as the HAuCl4 was reduced
by the anthracene rings, while nanocrystals of platinum were formed more gradually.
Consequently, Au(III) was rapidly changed to metallic gold with limited formation of Au(I)
as an intermediate, while Pt(IV)/Pt(II) ions received electrons less slowly to produce a
platinum precipitate [27–29].

The present work also attempted to elucidate the mechanism of the selective reduc-
tion/recovery of metallic gold from the mixture of HAuCl4 and H2PtCl6 by RU0654–8 (j).
This was done by analyzing sample solutions using MALDI-TOFMS. Figure 7A shows the
MALDI-TOFMS profile for the solution containing RU0654–8 (j) prepared using the stan-
dard conditions described in the Experimental Section but without HAuCl4 and H2PtCl6.
A single peak was obtained at m/z = 748.5, corresponding to the molecular ion peak (that
is, [M + H]+) along with a less intense peak at m/z = 770 likely corresponding to [M + Na]+.
These data indicate that RU0654–8 (j) remained intact after a 24 h incubation in water at
40 ◦C. In contrast, the MALDI-TOFMS profile for the sample solution prepared under the
standard conditions contained peaks at m/z = 748.7 and 770.9 corresponding to [M + H]+

and [M + Na]+ for the intact RU0654–8 (j) but also at m/z = 764.8, 779.0, 802.9, and 818.1,
corresponding to [M + O + H]+, [M + 2O + H]+, [M + 2O + Na]+, and [M + 2O + K]+, and
peaks around m/z = 767 likely attributable to [M + K]+ and/or [M + O + Na]+ (Figure
7B,C). These results strongly suggest that the anthracene rings were oxidized by gold
and/or platinum ions to generate ketone, hydroxide, quinone, and/or hydroquinone-like
functional groups during the self-assembly of the peptides and the subsequent reduction
of the metal ions to form gold-rich metallic precipitates [40]. However, since only limited
reaction kinetics data were obtained in our previous study [27], further experiments are
required to clarify the reaction mechanisms that lead to good gold selectivity.
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Figure 7. MALDI-TOFMS data obtained from (A) RU0654–8 (j) only, (B) mixture of HAuCl4, H2PtCl6,
and RU0654–8 (j), and (C) expanded region of mass spectrum in panel B. The symbols ‘O’ in the labels
indicates an oxygen atom added to the anthracene ring of RU0654–8 (j). Peptide = 2.0 × 10−4 M,
HAuCl4 = H2PtCl6 = 5.0 × 10−5 M in water. Each reaction was conducted at 40 ◦C for 24 h in the dark.

4. Conclusions

The anthracene-containing peptide RU065 (a) and its fragment peptides (b–x) were
synthesized and investigated with regard to the selective metallic recovery of gold. These
trials used peptides (2.0 × 10−4 M each) in homogenous aqueous solutions containing
dilute HAuCl4 and H2PtCl6 (5.0 × 10−5 M each) to determine the minimum required
structural composition. Ten peptides provided suitable Au/Pt atomic ratios on the order of
8 based on the data obtained from EDS-FESEM and HPLC analyses. The smallest useable
peptide structure was determined to be RU0654–8 (j), a fragment peptide made of five
amino acid residues (an Ant, two Lys, one Ile, and one Ala). Therefore, an anthracene ring
accompanied by residues providing adequate hydrophobicity, two positive charges, and
several amide groups are required to facilitate selective metallic gold precipitation/recovery.
This process results in the subsequent oxygenation of the anthracene rings as determined
by MALDI-TOFMS. We also demonstrated peptide-based selective gold recovery from a
mixture containing gold, platinum, and nickel ions using the RU0654–8 (j) fragment. This
system successfully precipitated and recovered metallic gold by simple centrifugation with
high selectivity and good recovery, as indicated by ICP-OES data. We believe that the
minimum structural features for miniaturized active molecules as demonstrated herein
will assist in the future design of small, non-peptidyl anthracene derivatives that selectively
precipitate/recover metallic gold with a high gold recovery rate per unit mass of recovery
agents. This could allow the development of a low-cost, one-pot gold recovery system
applicable on a large scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pr9112010/s1, Molecular structures (Figure S1), MALDI-TOFMS and HPLC data (Tables
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S1 and S2, Figure S2), UV–Vis absorption spectra (Figure S3), EDS-FESEM elemental distribution
images and corresponding EDS spectra for all peptides (a–x) (Figure S4).
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Ala: L-alanine; Ant: L-2-anthrylalanine; ATR-FTIR: attenuated total reflection Fourier
transform Infrared; Boc: t-butyloxycarbonyl; DIEA: N,N-diisopropylethylamine; EDS-
FESEM: energy dispersive X-ray spectroscopy-field emission scanning electron microscopy;
Fmoc: 9-fluorenylmethoxycarbony; HBTU: 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluro
nium hexafluorophosphate; HOBt·H2O: 1-hydroxybenzotriazole monohydrate; HPLC:
high performance liquid chromatography; ICP-OES: inductively coupled plasma-optical
emission spectroscopy; Ile: L-isoleucine; Lys: L-lysine; MALDI-TOFMS: matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry; Nal: L-2-naphthylalanine;
NMP: N-methylpyrrolidone; PPD: piperidine; TEM: transmission electron microscopy;
TFA: trifluoroacetic acid; TFE: 2,2,2-trifluoroethanol; XRD: X-ray diffraction.
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