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Abstract: In the development of high-tech industries, graphite has become increasingly more impor-
tant. The world has gradually entered the graphite era from the silicon era. In order to make good
use of high-quality graphite resources, a graphite classification and recognition algorithm based on
an improved convolution neural network is proposed in this paper. Based on the self-built initial
data set, the offline expansion and online enhancement of the data set can effectively expand the data
set and reduce the risk of deep convolution neural network overfitting. Based on the visual geometry
group 16 (VGG16), residual net 34 (ResNet34), and mobile net Vision 2 (MobileNet V2), a new output
module is redesigned and loaded into the full connection layer. The improved migration network
enhances the generalization ability and robustness of the model; moreover, combined with the focal
loss function, the superparameters of the model are modified and trained on the basis of the graphite
data set. The simulation results illustrate that the recognition accuracy of the proposed method is
significantly improved, the convergence speed is accelerated, and the model is more stable, which
proves the feasibility and effectiveness of the proposed method.

Keywords: graphite; classification; transfer learning; focal loss; convolution neural network

1. Introduction

At present, nonmetallic mineral resources are widely used in emerging materials,
energy, national defense, aerospace industry, and other fields [1–7]. Its strategic significance
is gradually improved and its application field is expanding. Therefore, the research on
graphite is of great significance [8–14]. In general, graphite can be divided into two
categories: natural graphite and artificial graphite. They are similar in structure and
physicochemical properties, but their use paths are quite different. In metallurgy, machinery
industry, chemical industry, and many other application fields, it is particularly important
to identify the type of graphite. If the two are confused, decision-making errors will result,
leading to much resource waste and economic losses. Therefore, from the perspective of
strategic demand, research on the intelligent classification of graphite has great far-reaching
significance for the classification management of graphite resources.

Most of the traditional methods to identify graphite are microscope identification or
chemical identification. These methods have a large human factor and high time cost, which
bring great challenges to the industry [15]. Currently, artificial intelligence research based
on deep learning provides the most advanced solution for computer vision. As a deep
learning method, convolution neural network (CNN) is popular in different disciplines
of image recognition application. Small details that people do not notice can be easily
distinguished by CNN. This algorithm can directly extract visual patterns from pixel
images with minimal preprocessing. CNN structure introduced by LeCun net (LeNet)
architecture and Alex Krizhevsky net (AlexNet) makes CNN popular. Since then, CNN’s
popularity has grown exponentially with a variety of designs and applications [16–20].
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Due to the high similarity of the four types of graphite images shown in Figure 1,
the recognition rate of shallow CNN (such as AlexNet) is low, and the model is relatively
simple, which may limit its classification accuracy. Considering the recognition accuracy,
recognition time, and model parameters, VGG16, ResNet34, and MobileNet V2, which have
more complex network structure and deeper layers, are selected to improve classification
accuracy. These networks have less hardware requirements and lower computational
complexity, and can effectively extract deep features of images while shortening training
time. Furthermore, these networks avoid the complex method of manual feature extraction
and improve the recognition accuracy. In view of the characteristics of graphite images and
the small data set, the data set is preprocessed to achieve the purpose of data enhancement.
At the same time, preprocessing resets the loading module of the migration network,
debugs the output parameters of each layer connection, improves the convergence speed
of the network, and adds a dropout layer optimization model to effectively integrate the
migration network and the model.
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Traditional CNN models mostly use cross entropy loss function (CEL), but CEL only
considers the accuracy of correct tags, ignoring the difference of incorrect tags, so most
researchers have studied the loss function. Triplet loss was proposed by Schroff in 2015 [21].
It is mainly used to train samples with small differences. However, the training process
of this function is unstable, the convergence speed is slow, and it may fall into a local
optimum. In 2017, for target detection of dense objects, heproposed focal loss function (FL),
which not only solved the imbalance problem of samples, but also solved the imbalance
problem of difficult and easy samples, making the network give more attention to difficult
samples [22]. Recognizing that the graphite data set image difference is small, not easy to
distinguish, and a difficult sample is far more challenging than an easy sample, this paper
selects FL as the loss function to improve the stability of the network. The simulation results
show that the improved migration network combined with FL has stronger robustness and
generalization ability, higher recognition accuracy, and achieves an ideal recognition effect.

2. Experimental Data
2.1. Data Set Construction

In this paper, the experimental samples were collected in Neixiang County, Shaanxi
Province, China, from the flake graphite, artificial graphite, expanded graphite, and car-
bon black samples of Ruixin high-temperature composite products. The samples were
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photographed from different directions for 3 min by using an iPhone rear camera at the
same position, and the resolution of the video was 1080 p, the captured graphite video was
extracted by frame, 1 frame per second. After screening, 715 sample images were obtained
and classified. During the experiment, all the images were obtained from the saved data.
The four types of graphite images are shown in Figure 1. However, it is difficult to obtain a
variety of graphite data sets. The images collected sometimes have the characteristics of
uneven distribution and few images, so it was necessary to enhance the data set. The data
enhancement method is given in Section 2.2.

2.2. Offline Expansion and Online Enhancement of Data Sets

The data enhancement method can be divided into offline enhancement and online
enhancement. Offline enhancement directly processes the data set, which is often used
when the data set is small. Online enhancement is suitable for large data sets. After the
batch data are obtained in the process of model training, the batch data are enhanced, such
as rotation, translation, folding, and other corresponding changes. In this paper, when the
initial data set was small, offline expansion was adopted to directly process the data set and
increase the sample size of the data set, and the collected images were flipped vertically,
rotated by 90 degrees, flipped around an axis, and underwent affine transformation; finally,
3575 images were obtained. Moreover, in order to reduce the overfitting problem of deep
CNN, online enhancement was used to process the data. Based on the characteristics of the
graphite image, the training set images were randomly scrambled before input to reduce
the influence of image order on the model. Each image in the training set was randomly
cropped, the image pixels unified, and the image flipped horizontally according to the
probability (here, setting p = 0.5). Finally, the processed data set was normalized, and the
data of each channel were regularized with the mean value 0.5 and standard deviation 0.5,
so as to achieve the purpose of data expansion and data enhancement.

According to the proportion, 2860 data sets (80%) were randomly selected as the
training set to train the network, and 715 data sets (20%) were selected as the test set to
verify the performance of the network. The training set and the test set were processed
separately. The classification of data sets is shown in Table 1.

Table 1. Graphite data set.

Flake Graphite Expanded
Graphite

Artificial
Graphite Carbon Black

Data set 1020 965 715 875
Training set 816 772 572 700

Test set 204 193 143 175

3. Experimental Principle and Method
3.1. Transfer Learning

In recent years, successful case studies regard deep CNN as the mainstream method
to solve challenging computer vision tasks [23]. However, training a network from scratch
requires many training data, much time, and a large graphic processing unit (GPU). We
only have 3575 training and test images, and a small data set cannot train a deep CNN.
Therefore, this paper combines the idea of transfer learning to train the convolution neural
network.

Transfer learning refers to the process of using models that have been trained for
different tasks, hoping that the model can have sufficient generalized information to solve
new specific tasks [24]. This method uses CNN, a pretraining model on a huge database,
to help learning target tasks [25]. The classified image in this paper is graphite, which
has different visual performance, which has a visual performance different from cats and
dogs. The visual performance learned from a large image may not be able to represent
the graphite image very well, so it is necessary to modify the pretrained CNN structure to
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adapt to our task. Zeiler and Fergus provide evidence that the general image representation
learned from the pretrained CNN is superior to the most advanced handmade features [26].

3.2. Convolution Neural Network Model

At present, common CNN include AlexNet, visual geometry group (VGG), residual
net (ResNet), mobile net (MobileNet), etc.; the ready-made image representation learned
from these deep networks is powerful and universal, and has been used to solve many
visual recognition problems [27]. Considering the good performance of these ready-made
CNN features, they have become the mainstream image features to solve most computer
vision problems [28].

Deep convolution neural network has the characteristics of deep depth and good
recognition effect. VGG16, ResNet34, and MobileNet V2 are representative CNNs in recent
years, which have achieved excellent results in the field of image classification. VGG
uses several smaller convolution kernels instead of larger ones to ensure that the network
depth can continue to increase under the condition of the same receptive field. VGG16
has 16 hidden layers (13 convolution layers and 3 fully connected layers), which is a
classic CNN model for image classification in the deep learning framework. ResNet puts
forward residual structure and uses convolution to reduce dimension, which makes ResNet
have advantages in parameters, depth, width, and calculation cost without introducing
additional parameters and increasing network calculation complexity. There are less than
4000 data sets in this paper, and the depth of ResNet34 model can be used effectively to
train the samples. As a lightweight network proposed in 2018, MobileNet V2 always uses
depthwise (DW) convolution to extract features, and proposes inverted residual, which can
reduce the use of memory in implementation [29]. Based on these advantages, this paper
establishes graphite classification and recognition model based on VGG16, ResNet34, and
MobileNet V2 networks; the comparative analysis is shown in Table 2.

Table 2. Comparative analysis of models.

Network VGG16 ResNet34 MobileNet V2

Year 2014 2015 2018
Top-1 accuracy 71.5% - 71.7%

Number of parameters 138,357,544 63,470,656 4,253,864
Number of layers 16 34 -

BN No Yes Yes
Residual structure No Yes Yes

3.3. Focus Loss Function

In image classification, the loss function is generally cross entropy loss function. Cross
entropy is the distance between the real output (probability) and the predicted output
(probability); therefore, the smaller the value of cross entropy, the closer the two probability
distribution. For the multiclassification of graphite, there are a large number of simple
negative samples in the data set. The losses caused by these samples in the iterative process
occupy the majority of the total losses, which may lead us to deviate from the correct
optimization direction. To improve this situation, the focus loss function is used in this
paper; the formula is shown in Equation (1).

LFL =

{
−(1− y′ )γ log y′ , y = 1
−yγ log(1− y′ ), y = 0

(1)

Equation (1) gives the contribution of classified samples to the loss. Due to the effect of
modulation factor γ, the model weakens the error contribution of easy-to-identify samples,
so that the model can focus on the hard-to-classify samples more effectively in training.
After many experiments, γ = 0.25 is set. On this basis, FL also introduces a balance
factor α, as shown in Equation (2). This factor can be used to balance the imbalance



Processes 2021, 9, 1995 5 of 10

between the number of positive and negative samples, that is, class imbalance. Because the
class imbalance problem of the self-built graphite data set is not very prominent, we set
γ= NAN.

LFL =

{
−α(1− y′ )γ log y′ , y = 1
−(1− α)yγ log(1− y′ ), y = 0

(2)

3.4. Improved Migration Network Model

Combined with transfer learning, the model training process designed in this paper
includes the following three stages: data expansion, transfer learning, and superparameter
adjustment. The model training process is shown in Figure 2.
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Figure 2. Flow chart of algorithm implementation.

Before loading new output modules, a global average pooling layer is added. Next,
the SoftMax nonlinear final classification layer is used to set the final output to 4. Finally,
the Adam optimizer is used to fine tune 100 epochs of all models. The initial learning rate
is 0.0002, Nesterov momentum is 0.9, and batch size is 32.

In the above algorithm flow, this paper improves the three networks used, freezes the
feature layer of each model architecture, redesigns new output modules and loads them
into the full connection layer of their respective networks. The new full connection layer is
shown in Figure 3.
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Figure 3. New output module.

In the new output module, three connection layers are set up to debug the output
parameters of connection layers full connection 1 (FC1) and full connection 2 (FC2) to
optimize the stability and generalization ability of the model. Because there are a large
number of parameters in the full connection layer of the network, dropout is added in
connection layers FC1 and FC2 to set the random loss probability p = 0.5. This technology
can reduce the complex co-adaptation of neurons and make the model more effective
for fusion. In this way, the structure of the migration network is improved, as shown in
Figure 4.
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Herein, this model is called the improved convolutional neural network model based
on transfer learning, which is applied to the graphite classification problem. The modified
and optimized networks are renamed the improved visual geometry group 16 (I-VGG16),
improved residual net 34 (I-ResNet34), and improved mobile net Vision 2 (I-MobileNet
V2). On the basis of these improvements, the networks combined with FL loss function are
recorded as I-VGG16 + FL, I-ResNet34 + FL, and I-MobileNet V2 + FL.

4. Result Analysis
4.1. Evaluation Index and Environmental Configuration

In this paper, the training effect of a network is evaluated by three indexes: accuracy
(acc), loss, and running time. Test acc refers to the ratio of the model’s output of correct
results on the test set, and its definition formula is shown in Equation (3).

acc =
ncorrect

n
(3)

where ncorrect denotes the number of correct network identifications in the test set and n
denotes the number of samples in the test set.

The training process of transfer learning is to minimize the loss function, and loss is
the value of the loss function. In fact, the loss function calculates the mean square error
(MSE, E) of the model on the test set.

E =
1
n∑

i

(
ŷ− ytest)2

i (4)

In this paper, accordingly, the epoch time is specified by the end of the whole network
model. An epoch is a process in which all training samples are propagated forward and
backward in the neural network model; that is, all training samples are trained once.

We used the 1.8.0 version of Python framework to complete the experimental sim-
ulation under the compiling environment of Python 3.8, and realized the image data
preprocessing through transform.

4.2. Test Results

In order to verify the feasibility and effectiveness of the method presented, the graphite
data set after data enhancement was imported into the method proposed in this paper.
Through the experiment on the test set, the (i) unmodified model, (ii) improved model,
and (ii) network model with the modified loss function, are all compared. Finally, the
comparison curves of model loss and accuracy are obtained, as shown in Figures 5–7.
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As shown in Figure 5, VGG16 has large loss value vibration, and the stability of the
model is poor. After improvement of the model, the network performance of I-VGG16 and
I-VGG16 + FL is obviously more stable and superior. Compared with VGG16, ResNet34
and MobileNet V2 have a deeper network and more stable model. It can be seen that
the improved network effectively alleviates the problem of poor feature extraction ability
caused by the secondary application of transfer learning. After using FL, the model is
further optimized, the loss value is gradually reduced, and the accuracy is effectively
improved, as shown in Figures 6 and 7.



Processes 2021, 9, 1995 8 of 10

In order to better understand the improved CNN model, the loss value, accuracy, and
training time of the final experimental results of nine models in this paper are shown in
Table 3. Table 3 shows that although the accuracy and training time of VGG16 are relatively
poor, the loss is relatively minimal; overall, the training time of ResNet34 is relatively short
and the accuracy of the optimized model is also improved. MobileNet V2, as a lightweight
network, can reach more than 99% recognition accuracy, and with the improvement of
the loss function, the loss value gradually decreases, which proves that the combination
of FL and the improved model can effectively focus on the difficult sample image of the
graphite data set. This shows the feasibility and effectiveness of a convolutional neural
network in graphite classification. The comparison chart of the loss value and accuracy
of the improved CNN model of FL is shown in Figure 8, which intuitively shows that the
improved model is more stable, can converge quickly in several epochs, and the accuracy
is floating within 93%, which proves the effectiveness of the improved algorithm.

Table 3. Comparison of loss value, accuracy, and training time of different algorithm models.

Model Loss Value (×10−2) Accuracy (%) Training Time (min)

VGG16 0.36 92.93 74.73
I-VGG16 0.16 93.71 76.13

I-VGG16 + FL 0.10 95.69 75.88
ResNet34 6.75 93.29 40.13

I-ResNet34 2.61 99.18 40.72
I-ResNet34 + FL 0.97 99.84 41.27
MobileNet V2 4.37 98.57 39.10

I-MobileNet V2 1.68 99.81 45.18
I-MobileNet V2 + FL 1.23 99.57 46.82
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As can be seen from these experimental results, a graphite classification and recogni-
tion method using an improved convolution neural network is effective and achieves the
purpose of the paper.

5. Conclusions

In this paper, an improved CNN combined with focal loss is applied to graphite
image classification and recognition. The recognition model based on CNN does not need
complicated image preprocessing steps in the early stage, and the data enhancement can
also be completed online in the training process, which makes the model building process
more concise. The graphite data set is expanded and enhanced to solve the problem
of insufficient training samples. Through the simulation experiment on the processed
data set, it is concluded that the redesigned full connection layer is helpful to improve
the classification performance of the network. After optimizing the loss function, the
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performance of the network model is further improved by debugging the superparameters
of the model, and the relatively high accuracy and low loss value of graphite classification
are realized. In the future work, we will try deep networks other than the three kinds of
CNN that were implemented. Therefore, it is our key research content in the future to
explore the influence of different freezing ratios and freezing layers on the classification
effect of the graphite data set.
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