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Abstract: This paper studies the distributed secondary control of DC microgrids (MGs) in the case of
asynchronous sampling, including both the stability condition and accurate consensus algorithm.
The asynchrony means that the update actions of each distributed generation (DG) based on the local
information and information received from neighbors are independent of the actions of others at
sampled discrete times, which would cause deviation from the accurate convergence and even lead
to instability in the worst case. First, a small-signal model of MG installed with secondary voltage
control is established to include the individual sampling periods. A stability criterion based on the
periodic continuity of sampling instant offset is thus formulated to reveal a stability mapping of
multiple sampling. By quantifying the accuracy deviations caused by the asynchrony, an improved
ratio consensus strategy is proposed that allows the deviation to be estimated accurately via an
auxiliary signal and compensated with respect to the eventual equilibrium to produce an exact
solution. Our approach customizes the stability and accuracy for distributed secondary control
considering asynchronous sampling in MG, which has been ignored in most existing literature. The
effectiveness of the proposed methodology is verified by simulations.

Keywords: asynchronous sampling; accurate consensus; convergence deviation; microgrid; sec-
ondary control

1. Introduction

With the increasing penetration of renewable energy resources, the microgrid (MG) has
emerged as a promising concept for integration of distributed generations (DGs), storages
and loads within an identifiable electrical boundary [1–3]. Typically, an MG can operate
while connected to the main grid, and the most appealing advantage of MG is its ability to
island itself to form an uninterruptible power supply [4]. With increased DGs, storages and
loads being used in power systems, the incumbent power generation paradigm is being
developed toward a more DC future because of advantages including simple structure
and high efficiency [5–7], where an appropriate hierarchical control is indispensable to
guarantee reliable and efficient operation of MG systems. To realize spontaneous power
sharing without critical communication links, primary control is often implemented using
the droop paradigm, which would lead to poor power sharing because of the distinct
output impedance and voltage deviations involved.

To overcome these disadvantages of primary control, secondary control schemes
ranging from centralized to distributed approaches have been proposed. Centralized
control assumes the use of a microgrid centralized controller (MGCC) and a complex com-
munication network that reduces system reliability and increases its sensitivity to single
points-of-failure [8–10]. Inspired by the multiagent cooperative technology, distributed
secondary control, where each DG exchanges information with its immediate neighbors via
local networks, was proposed in [11] and has attracted considerable interest in numerous

Processes 2021, 9, 1992. https://doi.org/10.3390/pr9111992 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-6764-8934
https://orcid.org/0000-0001-5600-3671
https://doi.org/10.3390/pr9111992
https://doi.org/10.3390/pr9111992
https://doi.org/10.3390/pr9111992
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9111992
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9111992?type=check_update&version=3


Processes 2021, 9, 1992 2 of 20

literatures [12–17]. In ref. [12], the concept of “virtual voltage drop” was introduced to real-
ize current sharing and voltage restoration in DC MG regardless of the type of resistance. A
distributed robust control method has been proposed in [13] to implement secondary con-
trol in cases of system uncertainties. In ref. [14], a novel unified distributed control strategy
was proposed to realize seamless operation mode transitions. By integrating an event-
triggered mechanism, a periodic distributed controller was presented, which allowed the
information transmission to be both intermittent and relaxed [15]. In ref. [16], an additional
controller for the droop coefficient was introduced to improve the system’s current sharing
performance. In ref. [17], through the distributed iterative learning method, the secondary
control in MG was realized without accurate knowledge of the system parameters.

Generally, a control cycle consists mainly of information sampling, updating and
processing, as well as command transmission and execution [18], which initiates from
the information sampling stage. Most of the existing literature on distributed secondary
control is based on the assumption that the sampling actions of heterogeneous DGs are
triggered in the same time sequence, i.e., using synchronous sampling instants. However,
each DG’s update actions based on the local sampled local information and information
received from neighboring units are independent of others’ in the sense that each DG is
allowed to adjust its dynamics intermittently and dependently, which is inherent behavior
in distributed control systems. As such, completely synchronous information exchange is
almost unobtainable without the aid of synchronizers, while asynchronous information
exchange among DGs can definitely lead to data interleaving and even disorder [19,20],
which would then cause persistent convergence deviations from accurate solutions or even
system instability. Additionally, the majority of DGs are integrated into an MG via power
electronic inverters and because of their negligible inertia, the DGs can respond rapidly
to control commands composed of distinctly sampled information; this in turn makes
the cooperativity and controllability of distributed control approach more challenging.
It should be noted here that the asynchrony of distributed information exchange has
been demonstrated in previous research [21,22] that concerned multiple transmission
delays; however, these works addressed delay-dependent stability only ignoring consensus
accuracy, while the impact of asynchronous sampling on the overall performance is much
more sophisticated because of the accumulated time instant offset.

Motivated by the research gap mentioned above, this paper investigates distributed
secondary control for MGs taking the impact of asynchronous sampling into considera-
tion. Using a small-signal dynamic model embedded with diverse sampling periods, the
sampling margin of DGs is determined. To address the convergence deviation caused
by asynchrony, an improved ratio consensus algorithm is proposed based on deviation
compensation. The main contributions are listed below.

(1) Given that each DG unit in a distributed control system updates its dynamics
independently, the distributed secondary control in MG with regard to asynchronous
sampling is first investigated in this paper, including both the stability condition and an
accurate consensus algorithm.

(2) A small-signal MG model with distributed secondary control is established using
the normalized periodicity of sampling offset among the interactive DGs, which allows for
the stability assessment of MG with asynchronous sampling.

(3) The equilibrium deviation caused by the asynchrony of the distributed infor-
mation exchange among DGs is analyzed quantitatively. Then, an accurate distributed
control based on ratio consensus is proposed, where the deviation is estimated and then
compensated via an auxiliary state observer timely.

The remainder of this paper is organized as follows. Section 2 reviews MG hierarchical
control and formulates the asynchronous sampling concerns; a small-signal model is
then proposed, with sampling stability criteria in Section 3. An improved ratio consensus
algorithm is proposed in Section 4. Section 5 validates the effectiveness of proposed method
by simulations; finally, conclusions are provided in Section 6.



Processes 2021, 9, 1992 3 of 20

2. MG Hierarchical Control and Problem Formulation
2.1. Primary Control and Distributed Secondary Control

The hierarchical control scheme is widely applied in the MG field using the control
structure presented in Figure 1 [23], where each hierarchy is endowed with significant
control objective and different timescale. As stated in ref. [24], the bandwidths for the
voltage loop and current loop in primary control are 5 kHz and 20 kHz, respectively, while
that for secondary control is 30 Hz.

Figure 1. Hierarchical control structure for DC microgrid.

Droop control is adopted as the primary control approach to ensure system stability
through voltage and current regulators. The voltage loop is responsible for regulating
output voltage to the set-point and a reference for the current loop is also supplied. The
error between the actual and expected currents will be calculated and fed into the inner
loop to determine the duty cycle to generate PWM for converters [25]. In summary, the
complete droop control dynamics can be expressed as [26]:

dθ
dt = Vni −miPi −Vi

ire f = kpv(Vni −miPi −Vi) + kivθ

dϑ
dt = ire f − ii

di = kpi(ire f − ii) + kiiϑ

(1)

where Vi and Vni denote the output and nominal voltages, respectively; ii and iref denote
the output and reference currents, respectively; kpv and kiv (kpi and kii) are the proportional
and integral gains of voltage (current) controller; di represents the duty cycle; mi is droop
coefficient; and Pi is active power.

Distributed secondary control is then introduced to realize active power sharing and
voltage restoration. Typically, the active powers must be allocated appropriately in inverse
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proportion to droop coefficients, i.e., m1P1 = m2P2 = . . . = mnPn [27]. Then, a distributed
control scheme that enables elimination of the active power disagreement upi is given as:

uPi =
n

∑
j=1,j 6=i

aij(mjPj −miPi) (2)

where aij = 1 indicates the information exchanges between the ith and the jth DGs; other-
wise, aij = 0. Considering the inherent tradeoff between power sharing and local voltage
restoration, the average voltage across the MG is expected to converge to a rated value. An
average voltage estimator is then localized in each DG based on the dynamic consensus
algorithm [21] to steer its estimated voltage to the practical average voltage:

Vi = Vi + ki3

∫ n

∑
j=1,j 6=i

aij(V j −Vi)dt (3)

where Vi and V j denote the average voltages from the estimators of the ith and jth DGs,
respectively.

Then, the integrated secondary control input is deduced as

ui = (kp1 +
ki1
s
)uPi + (kp2 +

ki2
s
)(Vn −Vi) (4)

where ui is secondary control input; kp1, ki1, kp2 and ki2 denote the proportional and integral
gains, respectively. It can be observed from (2) and (3) that the average consensus and the
dynamic average consensus as basis of distributed secondary control have an important
effect on system performance.

2.2. Problem Formulation of Asynchronous Samplinlg

In the absence of centralized synchronized clock, it is difficult for each DG to update
its action at exactly the same time as others; this is inherent in distributed control system.
The process of asynchronous information interaction is illustrated in Figure 2, where the
secondary control of DGi is triggered at the sampling instant ti

m1 and it receives the most
recently sampled information x* from its neighbors, which comes from their latest update
timeslots, ti

m2 and ti
m3 , which lag behind ti

m1 with a varying offset sij,mTi at each sampling
instant. Therefore, the signal asynchrony and further convergence deviation appear.

Figure 2. Schematic diagram of clock triggering process.

Suppose pij is the total number of possible sampling instant offsets during information
transmission from the jth DG to ith DG and 1/pij is then denoted as the distribution
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function of sampling offset corresponding to sij,m for m ∈ [1, pij] (see the explanation
in Appendix A). For more practical implementation, a discrete form of the consensus
algorithm that considers asynchronous control periods is formulated as [28]:

xi(k + 1) = (1− diεTi)xi(k) + εTi ∑
j∈Ni

[

pij

∑
m=1

1
pij

xj(k− sij,m)] (5)

where di denotes the degree of the ith DG, di = ∑jaij; ε represents the interaction strength
and Ti denotes the control period. Specifically, pij and sij,m can be formulated as:

pij =
lcm(Ti, Tj)

Ti
, sij,m =

mod(mTi/Tj)

Ti
(6)

where lcm(x, y) represents the least common multiple of x and y and mod(·) represents its
remainder.

For the integrity of time sequences for (5), the discretization period in (6) is reselected
to be sbTi, where sb is the largest common divisor of all possible time deviations, i.e.,
sb = gcd ({sij,m | i, j ∈ [1,n], m ∈ [1, pij]}), where gcd (·) is the largest common divisor.
Accordingly, (6) can then be rewritten as:

xi(k + h) = (1− diεTi)xi(k) + εTi ∑
j∈Ni

[

pij

∑
m=1

1
pij

xj(k− rij,m)] (7)

where h = 1/sb and rij,m = sij,m/sb.
Let x(k + r) = [x1(k + r), x2(k + r), . . . , xn(k + r)]T and X(k) = [x(k + h − 1), x(k + h − 2),

. . . , x(k − rmax)]T, where rmax represents the maximum of rij,m. Then, a compact form of
(7) yields:

X(k + h) = A1X(k) (8)

where A1 is a row stochastic matrix that is directly related to the individual sampling
periods (listed in the Appendix A); 1 is an eigenvalue of A1 along the corresponding right
eigenvector [1, 1, . . . , 1]T, which implies that all states converge to a constant value. The
eigenvalues of A1 are defined as λn ≤ . . . ≤ λ2 ≤ λ1, with ui and vi as the left and right
eigenvectors that correspond to λi, respectively. Therefore, the initial state X(0) can be
expressed using the eigenbasis of A1 as X(0) = ∑n

i=1 (uiX(0))vi, and then

lim
k→∞

X(k) = lim
k→∞

n

∑
i=1

λi
k
h (uiX(0))vi (9)

Considering the sufficient and necessary condition to reach consensus to be maxi

≥ 2|λi| < 1, it can be inferred that limk→∞X(k) = (u1X(0))v1 with v1 = [1, 1, . . . , 1]T.
Consequently, the final convergence value of x can be expressed as:

cx = u1X(0) (10)

where u1 is the left eigenvector of A1 corresponding to the eigenvalue 1. As shown in (10),
in addition to the control parameters, the distributed consensus equilibrium is dependent
on the individual sampling instants, corresponding to the sampling time offset, which is
the main focus of this paper.

For the dynamic consensus, we suppose that all the dynamic states have converged
to cx’ at t = t0, and the instant variation of the dynamic state at t = t0 is then modeled as
the step function ∆zi. The accurate average value can then be expressed as u2∆z, where
u2 represents the left eigenvector of L and L = D − Λ with D = diag(di) and Λ = [aij]. The
deviation of the consensus equilibrium from its accurate counterpart can be calculated as:

∆cx = (u′ − u2)∆z (11)
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where u′ = [∑h
k=0 u1(nk + 1), . . . , ∑h

k=0 u1(nk + n)]T and ∆z = [∆z1, ∆z2, . . . , ∆zn]T. There-
fore, the convergence deviation of dynamic consensus is decided not only by the factor
in average consensus (10) but also by the variations of the dynamic states, which makes
achieving convergence accuracy more challenging.

3. Stability Analysis in the Asynchronous Sampling Period Case

In this section, a small-signal dynamic model of an islanded MG is established. It
allows for the determination of stability region for the individual sampling periods of DGs.

3.1. Small-Signal Modeling

An MG model typically comprises three specific components: the inverters, the
network and the loads. Given the fairly rapid response of double-loop controller when
compared with that of power loop, we consider the dynamics of the power control loop
only and neglect those of the double-loop [22]:

Vi = Vni −miPi + ui (12)

where Pi can be measured using a low-pass filter:

.
Pi = −ω f Pi + ω f Vi Ii (13)

where ωf denotes the filter cutoff frequency and Ii denotes the output current of the ith DG.
It is assumed that n DGs are connected to the load network and the network structure

is then as shown in Figure 3.

Figure 3. Network structure.

Thus, the output current can be given as:

I = Y(V −Vb) (14)

where I = [I1, I2, . . . , In]T, V = [V1, V2, . . . , Vn]T, and Vb = [Vb1, Vb2, . . . , Vbn]T, with Vbi
denoting the voltage of the ith bus; and Y = diag(yi), where yi is the output admittance of
the ith DG.

According to the node voltage equation of the network, the ith bus voltage can be
determined using:

ysiVbi = yline(i−1)Vb(i−1) + ylineiVb(i+1) + yiVi (15)

where ysi = ylinei + yline(i − 1) + yi + yloadi with ylinei and yloadi representing the line and load
admittances, respectively.
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Combining (14) with (15), the output current and voltage can be arranged in a com-
pact form:

I = Y′V (16)

where Y′ = Y(1 − Ys
−1Y) and Ys is

Ys =



ys1 −yline1 0 · · · 0

−yline1 ys2 −yline2
. . .

...

0
. . . . . . . . . 0

...
. . . −yline(n−1) ys(n−1) −ylinen

0 · · · 0 −ylinen ysn


Using (3), (4), (12), (13) and (16), we can then obtain

∆
.

Vi = −mi∆
.
Pi + ∆

.
ui (17)

∆
.
Pi = −ω f ∆Pi + ω f (Ii∆Vi +

n

∑
j=1

Viy′ij∆Vj) (18)

∆
.
ui = kp1

n

∑
j=1,j 6=i

aij(mj∆
.
Pj −mi∆

.
Pi) + ki1

n

∑
j=1,j 6=i

aij(mj∆Pj −mi∆Pi)− kp2∆
.

Vi − ki2∆Vi (19)

∆
.

Vi = ∆
.

Vi + ki3

n

∑
j=1,j 6=i

aij(V j −Vi) (20)

By consolidating (17)–(20), the complete small-signal model of system can then be
deduced to be:

∆
.
x = A2∆x (21)

where ∆x = [∆P1, . . . , ∆Pn, ∆V1, . . . , ∆Vn, ∆V1, . . . , ∆Vn, ]T and A2 is the coefficient ma-
trix listed in the Appendix A.

Consideration of the significant distinction between the control periods of the primary
and secondary layers shows that they would be implemented at their discrete times
separately, and the primary control periods of DGs are supposed to be the same. The
incremental forms of the droop control and power measurement equations can then be
expressed as:

∆Vi(n + 1)− ∆Vi(n) = mi∆Pi(n)−mi∆Pi(n + 1) + ∆ui(n + 1)− ∆ui(n) (22)

∆Pi(n + 1)− ∆Pi(n) = −ω f Ts∆Pi(n) + ω f Ts[Ii∆Vi(n) +
n

∑
j=1

Viy′ij∆Vj(n)] (23)

where Ts denotes the primary control period.
Analogously, the incremental model for secondary control with consideration of the

asynchrony can be formulated as:

∆ui(n + 1)− ∆ui(n) = kp1
n
∑

j=1,j 6=i
aij[mj(∆Pj(n + 1)− ∆Pj(n))−mi(∆Pi(n + 1)− ∆Pi(n))]

+ki1Ti
n
∑

j=1,j 6=i
aij[mj∆Pj(n)−mi∆Pi(n)] + kp2[∆Vi(n)− ∆Vi(n + 1)]− ki2Ti∆Vi(n)

(24)

∆Vi(n + 1)− ∆Vi(n) = ∆Vi(n + 1)− ∆Vi(n) + ki3Ti

n

∑
j=1,j 6=i

aij[∆V j(n)− ∆Vi(n)] (25)
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3.2. Asynchronous Sampling-Dependent Stability Analysis

As demonstrated in Figure 4, supposing that the initial instant of all DGs is uniform
at t = t0 and letting T be the least common multiple of all the DG control periods, i.e.,
T = lcm (T1, T2, . . . , Tn), the staggered information interaction process continues except
for the instant set t = t0 + kT (k = 1, 2, . . . ) when the sampling information in MG is
synchronous because of the global timeslot. Therefore, we perform the modeling and
analysis within T, which is regarded as a normalized cycle period.
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As stated previously, the primary and secondary control layers are operated with
different control periods. The primary control instants of individual DGs within the cycle
period T are represented by t1k , t2k , . . . , tn

k , where n = T/Ts, and the update process of
the measured powers and voltages at the primary control instant tl

k can then be expressed
based on (22) and (23):

∆x(tl+1
k ) = W1∆x(tl

k) + H1[∆u(tl+1
k )− ∆u(tl

k)] (26)

where ∆x = [∆P1, ∆P2, . . . , ∆Pn, ∆V1, ∆V2, . . . , ∆Vn]T; W1 and H1 are the coefficient
matrices presented in the Appendix A.

Here, we consider two cases: (1) if secondary control is not activated at t = tl+1k
, then

∆u(tl+1k
) − ∆u(t1k ) = 0; (2) if secondary control is triggered at t = tl+1k

, then the related
variables of the ith DG can be updated as:

∆ui(tl+1
k )− ∆ui(tl

k) = Wi2∆x(tl+1
k ) + Wi3∆x(t̃k) + Gi1∆V(tl+1

k ) + Gi2∆V(t̃k) (27)

∆Vi(tl+1
k ) = Wi4[∆x(tl+1

k )− ∆x(t̃k)] + Gi3∆Vi(t̃k) (28)

where x(t̃k) represents the state from the last secondary control instant that was recorded;
Wi2, Wi3, Wi4, Gi1, Gi2, and Gi3 are the coefficient matrices presented in the Appendix A.

By performing n iterations based on the process described above, the discrete small-
signal model of MG system within the cycle period T can be arranged as:

∆x(tl+n
k ) = D1∆x(tl

k) (29)

where D1 is the coefficient matrix shown in the Appendix A.
The eigenvalues of D1 are denoted by λn ≤ . . . ≤ λ2 ≤ λ1, and then the asynchronous

MG system is stable if and only if all the characteristic roots lie within the unit circle, i.e.,
max|λi| ≤ 1.
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4. Improved Ratio Consensus Algorithm

As shown in Section 2, the average consensus and dynamic consensus are two impor-
tant aspects of MG secondary control, where the former is a special case of the latter based
on the supposition that the local dynamic state disappears. Therefore, for the convenience
of analysis, the accuracy improvement for dynamic average consensus is formulated later,
and the average consensus can be dealt with in the similar way.

4.1. Ratio Consensus Algorithm

To address the exact observed average equilibrium of distributed control in the presence
of communication delays, the ratio consensus algorithm was proposed in [29] as follows:

.
xi(t) =

.
zi(t) + ε∑

j 6=i
aij[xj(t− τ)− xi(t)] (30)

.
yi(t) = ε∑

j 6=i
aij[yj(t− τ)− yi(t)] (31)

pi(t) =
xi(t)
yi(t)

(32)

where zi is the actual dynamic state of ith agent, whose average is being tracked; xi and xj
are the average values from the ith and jth observers; yi and pi are state variable and local
average observation, respectively and τ is the transmission delay.

The ratio consensus algorithm consists of two parts (30) and (31), of which the simul-
taneous convergence indicate the consensus of entire protocol. As stated in ref. [30], the ob-
server of the scheme can accurately track the average dynamic states (i.e.,
xi = ∑N i=1zi/N) only when τ remains unchanged, otherwise it would lead to conver-
gence error from the exact solution. In contrast to the unchanged τ, the asynchronous
sampling case considered in this paper is notoriously complex because the probability
distribution of timeslot for information exchange is time-varying during the sampling
procedure, which poses challenge to the ratio consensus algorithm in accurate average.

4.2. Improved Consensus Algorithm

In this section, an improved algorithm is proposed to track the accurate consensus
equilibrium of MG system in case of asynchronous sampling of DGs. The discrete form of
this distributed average estimator is formulated as follows:

xi(n + 1) = zi(n + 1) + εTi

n

∑
r=1

∑
j 6=i

aij[xj(r− sij)− xi(r)] (33)

yi(n + 1) = gi(n + 1) + εTi

n

∑
r=1

∑
j 6=i

aij[yj(r− sij)− yi(r)] (34)

p(n + 1) = p(n) +
x(n + 1)− x(n)

∆cy(n)
(35)

where xi and yi represent the estimated average values of z = [z1, z2, . . . , zn] and g = [g1, g2,
. . . , gn], respectively; sij denotes the sampling time offset between the ith DG and jth DG,
which is time-varying; gi is a predefined slope signal localized in each DG:

gi = fsquare(t) ·min(k ·
[

2t
Tg

]
, 1) +

3
2
− 1

2
fsquare(t) (36)

fsquare(t) =
4
π

∞

∑
m=1

sin((2m− 1)
t

Tg
)/(2m− 1) (37)
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where fsquare(t) is a square function with variation range [−1, 1]; k is the slope coefficient
corresponding to variation dynamics of z; [·] represents the rounding function; Tg is the
designed period of gi. It can be observed from (36) and (37) that gi varies with k every Tg
and |gmax − gmin| = 1. ∆cy = |cy − cy

′|, with cy and cy
′ are the estimated average of gi

with respect to gmax and gmin, respectively.
The control diagram of the proposed consensus scheme consists of three parts, the

traditional dynamic consensus, deviation estimation and compensation as presented in
Figure 5. Because of asynchronous information exchange, xi deviates from the accurate
average value using traditional observer and the relevant deviation depends on the dis-
tribution of sampling instant offset based on Section 2, which is difficult to obtain. It is
obvious that zi and gi in each DG can be updated using the uniform control period; hence
they share the same time offset distribution. Similar to the time delay case in ref. [27], we
denote the deviation factor (DF) here as the ratio of estimated average variation of observer
and actual average variation to indicate the impact of asynchronous sampling on consensus
accuracy. For the definition of (36), it is easy to calculate DF of gi as

DF =
1

1 + εs
=

∣∣∆cy
∣∣

|∆g| =
∣∣∆cy

∣∣ (38)

where s represents the mean of the sampling time offset; ∆g is the actual average variation,
|∆g| = |gmax − gmin| = 1 here. ∆cy updated every time when gi reaches its maximum or
minimum value and is observed locally so DF is accessible for each DG.

Figure 5. Control diagram for the proposed dynamic consensus algorithm.

Alternatively, the observed average variation of dynamic state zi can be expressed as:

x(n + 1)− x(n) =
1

1 + εs
u2∆z (39)

where u2∆z denotes the actual variation of average states.
Considering that zi under track holds the same sampling time offset s as gi, they

also have the same DF. Therefore, the actual variation can thus be obtained without the
measurement of time offset even in face of a varying sampling offset during state exchange.
Based on (38) and (39), it yields,

u2∆z =
x(n + 1)− x(n)

∆cy
(40)

Then, the accurate average states can be observed using

u2z = cx
′ + ∑ u2∆z (41)
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where cx
′ is the consensus value obtained from the traditional dynamic observer as shown

in Figure 5. Combining (40) and (41), the improved dynamic observer can be formulated
in (35) with the deviation estimated and compensated step by step, to arrive at an exact
consensus solution eventually.

As discussed above, the deviation estimation is of most significance for the proposed
accurate consensus algorithm. To guarantee properly determination of ∆cy every step,
a convergence check and an update detection module are applied as shown in Figure 5.
The judgment condition for the convergence check can be expressed as |y(n + 1) − y(n)|
< δ, where δ is a preset upper error bound. When the condition above is satisfied, it
can be deduced that y converges to a new equilibrium, which then become the updated
output; otherwise, the previous value will hold, so cy is available if a step variation in
gi. Additionally, |cy(n + 1) − cy(n)| is measured to detect the update action of cy, where
|cy(n + 1) − cy(n)| > ξ indicates that cy has updated to a new value with a threshold ξ
and ∆cy can then be obtained as |cy(n + 1) − cy(n)|. In order to avoid the misjudgment
of ∆cy update, it should be satisfied that ξ > δ. Ultimately, a precise average estimation
can be realized due to the accessible compensation. As average consensus is a special case
of dynamic consensus, the proposed algorithm can also be utilized for accurate average
convergence, which is demonstrated from power sharing.

5. Simulation Results

Case studies are performed to investigate the secondary control performance under
asynchronous sampling conditions using a test DC microgrid shown in Figure 6, where
the system and control parameters are listed in Table 1 and the desired power sharing
ratio among the three DG units is 1:1:1. For simplification, the test system consisting of
three DGs is considered, whereas the method proposed in this paper is also applicable to
systems with larger scales. Moreover, note that this paper focuses on the effect of distinct
sampling, so a cycle network is adopted which can be modified to other connected forms.
Simulation results using MATLAB/Simulink are utilized to verify the effectiveness of the
proposed criterion.

Figure 6. Structure of the test DC microgrid.
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Table 1. Network and control parameters.

Parameter Value Parameter Value

MG voltage 800 V Connection impedances

DG power ratings R1/R2/R3 0.15 Ω/0.3 Ω/0.4 Ω

DG1, DG2, DG3 120 kW Line impedances

Voltage droop coefficient rline1/rline2 0.2 Ω

mP1, mP2, mP3 1 × 10−3 V/W Load ratings

Control parameters rload1 60 Ω/5 Ω

ki1/kp1 6/0.5 rload2 60 Ω/5 Ω

ki2/kp2 10/0.5 rload3 80 Ω/15 Ω

ki3 3

5.1. Stability Analysis

(1) Theoretical stability region of control periods: The control period of each DG
is assumed to be independent of others and the sampling-dependent stability region is
calculated using the method proposed in Section 3. Figure 7a–c shows the dominant root
loci of state matrix D1 in (29), revealing the critical sampling periods which occupies the
unit cycle. It can be found that generally as the control period increases, the eigenvalues
move from the inside of unit circle to the outside, which indicates a less stable system.
Another significant phenomenon is that the system could also become unstable with a
great disagreement among the control periods. It can be observed that when T1 = 0.12 s
and T2 = 0.16 s, the MG system becomes unstable if T3 ≤ 0.04 s due to the notable sampling
inconsistence. This is in contrast to the widely held opinion that the smaller control period
is, the more stable system is and is crucial for the design of control period. Similarly, the
stability mapping with regard to multiple independent control periods are yielded and the
results are depicted in Figure 7d.
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(2) Simulation verification of stability region: To validate the theoretically calculated
stability region, simulation studies are performed with T1 = 0.12 s, T2 = 0.16 s and different
T3. The MG is initially controlled by droop control and secondary voltage control is
activated at t = 3 s. The effectiveness of secondary control is verified with the consistent
control period T1 = T2 = T3 = 0.1 s as shown in Figure 8a, where the voltage deviates and
proper power sharing fails initially and after launching secondary control, the voltages
restore and power is accurately apportioned. Figure 8b–d display the corresponding
responses for asynchronous cases. For T3 = 0.07 s, the simulation results in Figure 8b
experience violent but decaying oscillations. With an increased control period T3 = 0.18 s,
the MG becomes unstable due to the growing oscillations. Then, the T3 stability region lies
within [0.07 s, 0.18 s] for T1 = 0.12 s and T2 = 0.16 s, which coincides with the theoretically
calculated range [0.05 s, 0.017 s] (see Figure 7a). However, for a relatively small value
T3 = 0.04 s, the system tends to be unstable as shown in Figure 8d because of the notable
sampling disagreement. Therefore, we confirm the validity of the proposed stability
analysis criterion.

5.2. Accuracy Analysis

(1) Theoretical Analysis of Consensus Deviation. Case studies are developed with
the sampling set (T1 = 0.07 s, T2 = 0.08 s and T3 = 0.05 s) to verify the accurate consensus
convergence of the proposed algorithm. In this case, the average sampling time offset sij
during information interactions between any two DGs can be calculated to be s12 = 0.035 s,
s13 = 0.02 s, s21 = 0.03 s, s23 = 0.02 s, s31 = 0.03 s, and s32 = 0.035 s in this case. Provided that
the threshold of average sampling time offset estimation is 1/5smin, it can be derived that
N12T1 = 0.484, N13T1 = 0.245, N21T2 = 0.46, N23T2 = 0.28, N31T3 = 0.2875, and N32T3 = 0.34.

(2) Simulation verification for accurate consensus. To illustrate the superiority of
proposed consensus algorithm, a comparison with conventional consensus scheme is per-
formed with the same operation. Initially, the system operates under the individual effect of
droop control, where the average voltage is remarkably lower than the nominal value and
the active power sharing is inappropriate among DGs. After t = 4 s, the secondary control
launches and the states of the system tend to adjust to the ideal operating equilibrium.
In the traditional dynamic consensus protocol as shown in Figure 9, when the observed
average voltage value is regulated to the reference 800 V, an approximate deviation of
13.5 V appears in the estimated average voltage because of the asynchronous sampled
information among DGs. Further, we can observe the voltage variation on the occasion
of activation of secondary control as ∆z = [81 V, 90 V, 102 V]T via simulation responses,
and then the theoretical equilibrium deviation is calculated to be ∆cx = 19.16 V using the
method proposed in Section 2, which is roughly identical to the actual value 13.5 V. As
shown in Figure 10, the observed average voltage of proposed consensus algorithm can
exactly track the actual average voltage due to the real-time deviation estimation and
compensation so that the accurate secondary control is maintained. Moreover, the total
output power of the conventional method in Figure 9a is nearly 10 kW higher than that
in Figure 10a because of the convergence error. Therefore, the accuracy and effectiveness
of the proposed distributed secondary control is verified despite asynchronous sampling
instants among individual DGs.
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Figure 8. Simulations with different control periods. (a) T1, T2, T3 = 0.1 s. (b) T1 = 0.12 s, T2 = 0.16 s,
T3 = 0.07 s. (c) T1 = 0.12 s, T2 = 0.16 s, T3 = 0.18 s. (d) T1 = 0.12 s, T2 = 0.16 s, T3 = 0.04 s.
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Figure 9. Simulation results for asynchronous sampled system with conventional algorithm. (a) Active powers. (b) Average
voltage. (c) Secondary control inputs.

Figure 10. Simulation results for asynchronous sampled system with proposed algorithm. (a) Active powers. (b) Average
voltage. (c) Secondary control inputs.

To further demonstrate the effectiveness of the proposed strategy in different cases,
the cases of load variation and topology switch are developed, with their simulation results
displayed in Figures 11 and 12 respectively. In the first case, an additional load (30 Ω)
is connected to the voltage bus Vbus2 at t = 6 s. As can be visualized from Figure 11, the
active power of each DG increases and the average voltage decreases at t = 6 s, whereas
the average voltage can still restore to the nominal value accurately and the active power
would be stable at a new operation equilibrium after a transient process with the assistance
of the proposed control strategy.

Further, the topology switch is considered in the second case where the communication
link between DG1 and DG3 in the topology is set to be disconnected at t = 4.5 s. As is
shown in Figure 12, the convergence rate would become slow due to the reduction in the
number of communication links, whereas accurate power sharing and voltage regulation
can still be achieved ultimately using the proposed strategy.
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Figure 11. Simulation results in case of load variation under proposed algorithm.

Figure 12. Simulation results in case of topology switch under proposed algorithm.

5.3. Discussion of the results

According to the simulation results, it can be deduced that:

(1) The simulation results accord well with the theoretical analysis, which verifies the
effectiveness of the proposed analytical method.

(2) The increase of one individual control period would lead to system instability.
(3) The enlargement of the disagreement between control periods of various DGs can

also cause system instability.
(4) The asynchronization between control periods would give rise to steady-state devia-

tion when adopting the conventional consensus control, whereas the deviation can
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be effectively eliminated using the improved ratio consensus algorithm proposed in
this paper.

(5) The proposed algorithm would be effective regardless of load variation or topol-
ogy switch.

6. Conclusions

In this paper, the stability and convergence accuracy of the distributed secondary
control of DC microgrids in the case of asynchronous sampling have been investigated. The
stability condition for the sampling periods of DGs is presented based on the periodicity
of sampling time offset. Considering the convergence deviation caused by information
asynchrony, an accurate distributed control algorithm based on ratio consensus is proposed,
where an accurate solution can be achieved by real-time estimation and compensation of
deviations. Through simulation testing, the following conclusions can be drawn:

• The system could come to be unstable when any individual control period becomes larger.
• Expansion of asynchronous degree can also lead to system instability.
• Steady-state deviation would occur in case of asynchronous control periods when

adopting the conventional consensus control, whereas the deviation can be effectively
eliminated using the proposed control method.
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Appendix A

Statement: 1/pij is the probability that the time deviation is equal to sij,m for any
m ∈ [1, pij].

Explanation: Assume T = lcm(Ti,Tj) = pijTi and there exists a time deviation value s that
occurs more than once within period T.

According to the hypothesis, there must be integers m1, m2 ∈ [1, pij], which satisfy:

mod(
m1Ti

Tj
) = mod(

m2Ti
Tj

) (A1)

Thereby, there are positive integers k1, k2 meet the equation:

m1Ti − k1Tj = m2Ti − k2Tj (A2)

Rearranging the equation, it can be obtained that:

(m1 −m2)Ti = (k1 − k2)Tj = T′ (A3)

i.e., T′ is the common multiple of Ti and Tj. Meanwhile, given that T is the least common
multiple of Ti and Tj, it can be inferred that T′ = cT, and thus m1 − m2 = cpij, where c is a
positive integer. Whereas the result that m1 = m2 + cpij contradicts the assumption that m1,
m2 ∈ [1, pij], implying the invalidation of the hypothesis. Therefore, each time deviation
value can only occur once within period T. Further, consider the secondary control of the
ith and jth DG is synchronous at t0, they will synchronize again at t0 + T. Thus, it can be
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inferred that the change of the time deviation of information transmission between the ith
and jth DG is periodic with respect to T.

Synthesize the above analysis, the conclusion can be drawn that it is equiprobable
for the time deviation to be equal to any possible value sij,m during a certain information
transmission from the jth DG to the ith DG.

A1 =

[
A11

In·rmax×n·rmax [0]n·rmax×n·h

]
n·(h+rmax)×n·(h+rmax)

where A11 =

 C′n×n·(h+rmax)
...

C′n×n·(h+rmax)


n·h×n·(h+rmax)

and

C′ =
[
[0]n×n·(h−1) Hn×n fn×n·rmax

]
n×n·(h+rmax)

with

Hn×n =


1− εT1

εT1
p12

· · · εT1
p1n

εT2
p21

1− εT2 · · · εT2
p2n

...
...

. . .
...

εTn
pn1

εTn
pn2

· · · 1− εTn


n×n

.

f (i, n · (m− 1) + j) =

{
εTi
pij

i f∃k ∈ [1, pij], rij,k = m

0 otherwise

R1 =

 In×n [0]n×n [0]n×n
M + kp1LM In×n kp2 · In×n

[0]n×n −In×n In×n



B′ =

 S1 n×n ω f Ts(I + VY′) [0]n×n
−ki1LM [0]n×n −ki2 · In×n
[0]n×n [0]n×n −k3L


R2 =

[
In×n [0]n×n

Mn×n In×n

]

B1 =

[
S2 n×n ω f Ts(I + VY′)
Mn×n In×n

]

C1 =

[
[0]n×n [0]n×n
[0]n×n In×n

]

In×n =


1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1


n×n

S1 n×n =


−ω f 0 · · · 0

0 −ω f
...

...
. . . 0

0 · · · 0 −ω f


n×n
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S2 n×n =


1−ω f Ts 0 · · · 0

0 1−ω f Ts
...

...
. . . 0

0 · · · 0 1−ω f Ts


n×n

Wi2 = kp1
[

Mi1 [0]1×n
]

1×2n, Wi3 = −Wi2 + ki1Ti

[
Mi1 [0] 1×n

]
1×2n

, Gi1 = −kp2 · ei,

Gi2 = −Gi1 − ki2Ti · ei, Wi4 =
[
[0]1×n ei

]
1×2n, Gi3 = ei + ki3TiLi1 with

ei =

[
0 · · · 0 1︸︷︷︸

ith

0 · · · 0
]

1×n
,

Mi1 =
[

m1 · · · mi−1 −dimi mi+1 · · · mn
]

1×n and
Li1 =

[
1 · · · 1 −di 1 · · · 1

]
1×n.

The acquisition of D1 can be implemented as follows: for l ∈ [1,n], suppose ni con-
trol instants are included in a secondary control period of the ith DG, i.e., ni = Ti/Ts;
D(0)

1 = I3n×3n if tl+1
k is not a secondary control instant, i.e., mod(l/ni) 6= 0 for any i

D(l)
1 = W1D(l−1)

1

where W1 =

[
W1 [0]2n×n

[0]n×2n In×n

]
3n×3n

, if tl+1
k is a secondary control instant of the ith DG,

i.e., mod(l/ni) = 0.
D(l)

1 = R−1
(

WD(l−1)
1 + HVi)

R =

[
I2n×2n − H1W2 −H1G1

−W4 I2n×2n

]
3n×3n

W =

[
W1 [0]2n×n

[0]n×2n [0]n×n

]
3n×3n

H =

[
H1W3 H1G2
−W4 G3

]
3n×3n

with W2 = eT
i Wi2, W3 = eT

i Wi3, G1 = eT
i Gi1, G2 = eT

i Gi2,

W4 = eT
i Wi4, G3 = eT

i Gi3.

Then Vi will be updated as Vi = D(l)
1 .

After n iterations, it can be obtained that D1 = D(n)
1 .
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