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Abstract: Constrained optimization problems (COPs) are widely encountered in chemical engineering
processes, and are normally defined by complex objective functions with a large number of constraints.
Classical optimization methods often fail to solve such problems. In this paper, to solve COPs
efficiently, a two-phase search method based on a heat transfer search (HTS) algorithm and a tandem
running (TR) strategy is proposed. The main framework of the MHTS–TR method aims to alternate
between a feasible search phase that only examines feasible solutions, using the HTS algorithm,
and an infeasible search phase where the treatment of infeasible solutions is relaxed in a controlled
manner, using the TR strategy. These two phases play different roles in the search process; the former
ensures an intensified optimum in a relevant feasible region, whereas the latter is used to introduce
more diversity into the former. Thus, the ensemble of these two complementary phases can provide
an effective method to solve a wide variety of COPs. The proposed variant was investigated over 24
well-known constrained benchmark functions, and then compared with various well-established
metaheuristic approaches. Furthermore, it was applied for solving a chemical COP. The promising
results demonstrate that the MHTS–TR approach is applicable for solving real-world COPs.

Keywords: chemical processes; constrained optimization; engineering design problems; heat transfer
search algorithm; tandem running strategy; global optimization; constraint-handling techniques

1. Introduction

Nowadays, many real-world chemical engineering processes are defined by complex
objective functions with a large number of constraints [1]. The optimization problems that
contain several constraints are described as constrained optimization problems (COPs) [2].
These problems are generally characterized by their different types, such as linear, non-
linear, polynomial, quadratic, cubic, etc. Due to the complexity of highly constrained
chemical processes, new generation optimization methods need to be found, as classical
methods often fail to solve COPs efficiently. Thus, various metaheuristic algorithms
(MHAs) have been developed, modified, and applied significantly to optimize a wide
variety of COPs [2–4].

Various approaches have been applied as constraint-handling techniques to deal
with COPs during the search course, as reported in the surveys [5,6]. One of the most
popular approaches are penalty-based methods [7–9], which can be simply classified into
static and self-adaptive methods. The static methods deal with the infeasible solutions,
by transforming a COP into an unconstrained problem. However, defining the penalty
parameter values is not straightforward. Self-adaptive penalty methods modify the penalty
term value throughout the search course, such as the adaptive penalty method (APM) [10],
an effective penalty-based method that automatically calibrates the infeasible surface
throughout evolution. However, it may lose feasible solutions during the search course.
A set of three feasibility rules called Deb’s rules [11] is a popular selecting candidate
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solutions technique, using pre-established priority rules which separately rank the solutions
depending on their constraint violation values and objective function values, respectively.
These rules state that: (i) between two feasible solutions, the solution that has a superior
value of the objective function is preferred; (ii) between feasible and infeasible solutions,
the feasible one is preferred; (iii) between two infeasible solutions, the one with smaller
constraint violation values is preferred. These rules can be incorporated with several
MHAs, since they do not often require any additional parameters [12]. A variant of the
feasibility rules for diversity maintenance was proposed by Mezura and Coello [13]. It is
one of the simplest mechanisms that allows a set of infeasible solutions to remain in the
search. In this variant, these solutions are adjacent to the feasible domain; moreover, they
have a great objective function value and the lowest sum of constraint violation. These
solutions are selected from the offspring or the parent’s population with a 50% probability.

When solving complex COPs, simply finding a feasible solution is not a straightfor-
ward task. Several types of research on highly constrained optimization problems [14–16]
have reported that the consideration of infeasible solutions during the search course, in-
stead of limiting the search process to feasible regions, may help to better explore the search
space. As it can be noted from the above-mentioned works of literature, the main goal of
their work is the focus on the addition of evolutionary mechanisms within the feasible and
infeasible regions during the search process. The idea of preserving the infeasible solutions
close to the feasible region allows for finding an optimum on the boundary of the feasible
region of the search space [17]. The optimal solution of COPs is often located in the interior
or near the boundary of the feasible region. Hence, the individuals that are far away from
the feasible region are practically unhelpful to the optimization of the population, whereas
the individuals that are close to the feasible region may contain favorable information
that can help the population in searching for an optimum on or near the boundary of the
feasible region. Therefore, based on the above observation, it is important to consider how
to properly preserve the infeasible individuals close to the feasible region during the search
course, for the sake of guiding the search of the feasible region toward the global optima
of COPs.

The heat transfer search (HTS) algorithm [18] is a novel population-based method
inspired by the natural laws of thermodynamics and heat transfer. Its basic framework
mainly includes three main phases such as conduction, convection, and radiation. This
algorithm belongs to the family of new generation MHAs, and is considered one of the
most competent optimization approaches in comparison with other MHAs, as shown in
the literature [18]. Although it is a relatively new method, a number of its variants have
been developed, modified, and applied significantly to solve a wide variety of optimization
problems [19–26]. However, the HTS-based variants have not been applied for handling
chemical COPs. Therefore, we aim to extend the actual applications of this MHA to handle
such problems.

The major contributions of our paper are described below:

(1) A novel approach with two search phases called MHTS–TR is proposed through
integrating the multiple HTS algorithm and the TR strategy. The ensemble of these two
complementary phases can provide an effective algorithm for solving various COPs;

(2) The effectiveness of the new variant is tested through a set of 24 constrained benchmark
problems, and the simulation results are compared with those of other competitors;

(3) The MHTS–TR approach is used to handle a real-world chemical COPs. Additionally,
the simulation results obtained on this problem are compared with those of different
approaches existing in the literature. To the best of our knowledge, this paper presents
the first attempt for applying an HTS-based method to handle a chemical COP.

The rest of our work is organized as follows: the main formula of COPs is defined in
Section 2; the main theoretical principles of the TR strategy and HTS method are described
in Section 3; the new variant is explained in detail in Section 4; in Section 5, certain
experimental investigations and comparisons are conducted, and the proposed MHTS–
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TR approach is used for solving a real-world COP in Section 6. In Section 7, our final
conclusions are summarized.

2. Problem Statement

In general, the mathematical model of a COP can be described as follows, where the
main goal is to optimize the objective function, represented as f (x):

minimize f (x), x = [x1, . . . , xi, . . . , xn] ∈ Rn

subject to gj(x) ≤ 0, (j = 1, . . . , l)
hj(x) = 0, (j = l + 1, . . . , p)
x(Low)

i ≤ xi ≤ x(Up)
i , (i = 1, 2, . . . , n)

(1)

where f (x) represents the fitness function; x ∈ Ω ⊆ S indicates the n-dimensional solution
vector, xi denotes the ith dimensional component of x; S ∈ Rn indicates the solution
space determined by the upper and lower bounds (xmax = [x1

max, . . . , xi
max, . . . , xn

max]
and xmin =

[
x1

min, . . . , xi
min, . . . , xn

min]) of the solution vector x; Ω represents the feasible
region of dimension n; gj(x) ≤ 0 indicates the inequality constraint; hj(x) = 0 denotes
the equality constraint, and l and p are defined as the number of inequality and equality
constraints, respectively. Due to the constraints shown in Equation (1), two disjoint subsets
(feasible and infeasible) constitute the search domain. The feasible domain is defined by the
regions where all p constraint functions of equalities and inequalities are satisfied. Thus, the
solutions x belonging to the feasible region and infeasible region are classified as feasible
and infeasible candidate solutions, respectively.

In general, the constraint-handling techniques can be classified either as indirect, when
both feasible and infeasible candidate solutions are considered along the search, or as direct,
when only the feasible candidate solutions are employed. The penalty method is the most
common indirect approach applied with MHAs to penalize the infeasible solutions. In this
method, when x is an infeasible solution, its objective function is penalized by adding a
penalty term, which depends on the constraint violation. When solving COPs, in addition
to calculating the fitness value of the population according to the function f (x), it is also
necessary to evaluate the constraint violation. Generally, the violation degree of a member
x to the jth constraint can be expressed as follows:

Gj(x) =
{

max
{

0, gj(x)
}

if 1 ≤ j ≤ l∣∣hj(x)
∣∣ if l + 1 ≤ j ≤ p

(2)

Here, the absolute value of the equality constraint function (
∣∣hj(x)

∣∣) can be treated as
an inequality given by Gj(x) = max

{
0,
∣∣hj(x)

∣∣− δ
}

, where δ is a small positive value.
The general form of the penalty function (p (x)) and the corresponding evaluation

function (eval (x)) can be described as follows [1]:
p(x) = C ∑

l+p
j=1 [Gj(x)]β

eval (x) =
{

f (x) if x ∈ F
f (x) + p(x) if x ∈ U

(3)

where β and C are generalized dynamic or static coefficients, chosen according to the
applied technique; F and U represent the feasible and infeasible spaces, respectively. When
handling COPs, p(x) is usually used to evaluate the infeasibility of the population.

3. Heat Transfer Search (HTS) Algorithm

The HTS algorithm is a relatively new population-based approach that belongs to
the family of MHAs. It is inspired by the natural laws of thermodynamics and heat
transfer; [18] declares that “any system usually attempts to attain an equilibrium state with
the surroundings” [18]. It has been reported that the HTS algorithm mimics the thermal
equilibrium behavior of the systems by considering three heat transfer phases, including
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the conduction phase, convection phase, and radiation phase [18]; each phase plays a
crucial role in establishing the thermal equilibrium and attaining an equilibrium state.
Similarly to other MHAs, this algorithm starts with a randomly initialized population, and
the population is considered as a cluster of the system’s molecules. These molecules aim to
attain an equilibrium state with the surroundings through the three phases of heat transfer,
by interacting with each other and with their surrounding environment. In the basic HTS
algorithm, the population members are only updated through one phase of the three heat
transfer phases in each iteration. The selection process for which of the three phases to be
activated for updating the solutions in the particular iteration is carried out by a uniformly
distributed random number R. This random number is generated in the range [0, 1],
randomly, in each iteration to determine the phase that must be selected. In other words,
the population members undergo the conduction phase when the random number R varies
between 0 and 0.3333, the radiation phase when the random number R varies between
0.3333 and 0.6666, and the convection phase when the random number R varies between
0.6666 and 1. The greedy selection technique is the main selection mechanism for newly
generated solutions in the HTS algorithm; this technique states that only new updated
solutions which have a superior objective value will be accepted, and the solutions with an
inferior objective value will be subsequently substituted by the best solutions. Hence, by
comparing the difference between the current solution and the elite solutions, the greatest
solution can be finally achieved. In the basic HTS algorithm, the main search process is
performed by the elementary operations of the three heat transfer phases (conduction,
convection, and radiation); the basic principle of each phase is briefly described in the
subsequent subsections. The overall flow-chart of the original HTS method is illustrated in
Figure 1.

Figure 1. The overall flowchart of the HTS algorithm.
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3.1. Conduction Phase

The fundamental principle of the conduction phase in the original HTS algorithm
is concerned with the influence of conduction among the substance’s molecules, and the
outcome is that the heat transfer takes place. Thus, by aiming to attain a state of thermal
equilibrium through the conduction influence, the molecules that have higher energy
transfer the heat to the molecules that have lower energy. In other words, the system
here aims to neutralize the thermal imbalance among the substance’s molecules. In the
conduction phase of the HTS algorithm, a potential new solution is updated by utilizing
the following formulas:

Xnew
j,i = Xold

k,i + CDS1 If f (Xj) > f (Xk)

Xnew
k,i = Xold

j,i + CDS2 If f (Xk) > f (Xj)

CDS1 = −R2Xold
k,i

CDS2 = −R2Xold
j,i

i f FE ≤ maxFEs
CDF

(4)


Xnew

j,i = Xold
k,i + CDS3 If f (Xj) > f (Xk)

Xnew
k,i = Xold

j,i + CDS4 If f (Xk) > f (Xj)

CDS3 = −riXold
k,i

CDS4 = −riXold
j,i

i f FE ≥ maxFEs
CDF

(5)

where maxFEs denotes the maximum function evaluations; CDF indicates the conduction
factor which is set to a value of 2 for balancing the exploration and exploitation in this
phase; FE indicates the function evaluations; Xnew

j,i denotes the newly updated solution;
j = 1, 2, . . . , n; k indicates a randomly chosen solution; j 6= k, where k ∈ (1, 2, . . . , n);
i represents a randomly chosen decision variable, and i ∈ (1, 2, . . . , m); R indicates the
random variable that varies in the interval [0, 0.3333], and ri indicates a random number
that varies in the interval [0, 1]. Here, ri and R2 are in correlation with the conductance
elements of the Fourier’s law of heat conduction [18].

3.2. Convection Phase

The fundamental principle of the convection phase in the basic HTS algorithm is that
due to the convection effect between the surrounding temperature and the system, heat
transfer occurs. Thus, by attaining a state of thermal equilibrium through the convection
effect, the mean temperature of the system interacts with the adjacent surrounding temper-
ature to neutralize the thermal imbalance. In the convection phase, the mean temperature
of the system is represented by the mean of the population members, which is marked as
Xms, whereas the surrounding temperature is represented by the best solution, which is
marked as Xs. Therefore, a new solution is updated in this part of the algorithm using the
following equation: {

Xnew
j,i = Xold

j,i + COS
COS = R(Xs − Xms)TCF

}
(6)

TCF =

{
abs(R− ri) If FE ≤ maxFEs/COF
round(1 + ri) If FE ≥ maxFEs/COF

(7)

where COF represents the convection factor, and is set to a value of 10 for balancing
the exploration and exploitation in this phase; FE denotes the function evaluations;
TCF indicates the temperature change factor; Xnew

j,i denotes the new updated solution;
j = 1, 2, . . . , n; i = 1, 2, . . . , m; ri is a random number which varies in the interval [0, 1],
and R is the random variable that varies in the interval [0.6666, 1]. Here, ri and R are in
correlation with the convection elements of Newton’s law of cooling [18]. The value of TCF
varies randomly in the range [0, 1] in the first part of this phase, whereas it varies either as
1 or 2 in the second part of this phase.
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3.3. Radiation Phase

The fundamental principle of the radiation phase in the original HTS algorithm is that
the system attempts to neutralize the thermal imbalance by interacting within the system
itself (for example, the other solution), or with the surrounding temperature (for example,
the best solution). Here, the system aims to establish a state of thermal balance. In the
radiation phase of the HTS algorithm, a potential new solution is updated by utilizing the
subsequent formulas:

Xnew
j,i = Xold

j,i + RDS1 If f (Xj) > f (Xk)

Xnew
k,i = Xold

k,i + RDS2 If f (Xk) > f (Xj)

RDS1 = R
(

Xold
k,i − Xold

j,i

)
RDS2 = R

(
Xold

j,i − Xold
k,i

)
 i f FE ≤ maxFEs

RDF
(8)


Xnew

j,i = Xold
j,i + RDS3 i f f (Xj) > f (Xk)

Xnew
k,i = Xold

k,i + RDS4 i f f (Xk) > f (Xj)

RDS3 = ri

(
Xold

k,i − Xold
j,i

)
RDS4 = ri

(
Xold

j,i − Xold
k,i

)
 i f FE ≥ maxFEs

RDF
(9)

where RDF denotes the radiation factor whose value is set at 2 for balancing the exploita-
tion and exploration in this phase; FE indicates the function evaluations; Xnew

j,i denotes the
new updated solution; j = 1, 2, . . . , n; i = 1, 2, . . . , m; k represents the randomly selected
solutions; j 6= k, and k ∈ (1, 2, . . . , n); ri indicates a random number which varies in the in-
terval [0, 1], and R denotes the random variable which varies in the interval [0.3333, 0.6666].
Here, ri and R are in correlation with the radiation parameters of the Stefan–Boltzmann
law [18].

4. Proposed MHTS–TR Algorithm

In this section, by integrating the tandem running (TR) strategy into the basic HTS
algorithm, a novel variant of the HTS algorithm named MHTS–TR is presented. The
proposed variant is described in detail in the following subsections.

4.1. Tandem-Running Strategy

In nature, animals acquire information socially, and comprehensively utilize such
information to allow them to exist in large, collaborative societies. The behavior of ener-
getically sharing personal information with other members of a social group is referred
to as cooperative communication [27]. Tandem running (TR) is a form of recruitment
seen in some groups of ants, in which one member guides another to a crucial resource,
such as a superior nest location. For instance, the Temnothorax Albipennis ant species
use tandem-run recruitment, where one ant acts as a leader and guides a single follower
from the nest to food; thus, the follower finds food more rapidly than when seeking alone.
The tandem leader is familiar with the location of the food resource whereas the follower
is naive. The course and speed of the leader are governed by the follower, who taps the
leader’s legs and gaster with its antennae [28]. The following ant acquires knowledge
regarding the placemarks and surroundings en route, and thus learns to take a more linear
route, usually returning to its nest quicker than before [28]. Generally speaking, when ant
colonies are suddenly placed in a complex and unfamiliar environment, this information
sharing behavior commonly appears. Thus, this behavior can also be mimicked in complex
environments for exploring useful formation.

4.2. Outline of the MHTS–TR Algorithm

Inspired by the cooperative exploration behavior of the Temnothorax Albipennis
ant species in unknown areas, described as a “move-to-improve” method, this strategy
is incorporated into the HTS algorithm, and a new variant named MHTS–TR has been
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proposed. The overall scheme of the MHTS–TR algorithm is shown in Figure 2. For this
approach, we divided the population members into two categories (feasible and infeasible)
at each iteration, depending on constraint violation. The members that did not violate the
constraints were termed as “leaders”, and were evolved within the feasible region by the
HTS algorithm. By contrast, the violated members were termed as “followers”, and were
further classified into two parts (XHV and XSV) depending on their violation degree. XHV
represented the member with a higher degree of violation, with a position often further
away from the feasible region. Thus, a member was randomly selected from the feasible
region to be the leader, and the followers then moved toward the neighborhood of this
leader to search within the feasible region. As a result, the members within the infeasible
region that did not contribute to the population were moved toward the feasible region.
Meanwhile, as each follower randomly selected its leader, the population density within
the feasible region increased evenly and, hence, increased the diversity of the population
within the feasible region. On another hand, XSV represented the member with a relatively
lower degree of violation, which was considered as it was almost close to the feasible region.
It selected the nearest member that was located in the feasible region to be its leader, and
moved towards it; hence, the boundaries of the feasible region were gradually searched by
approximating towards the leader. In this way, the members with infeasible information
nearby the boundaries were utilized to explore the superior areas that were hidden nearby
the boundaries of the feasible region.

Figure 2. The overall scheme of the MHTS–TR algorithm.

Therefore, due to the methods used by XHV and XSV to select their respective leaders
being carried out through random selection and distance judgment, which was irrespective
of the fitness value, there was no issue of the members being overly concentrated around
the global optimal member. Thus, the non-connectivity in the feasible region did not affect
the distribution of the population in each feasible region. By alternating between these two
complementary phases, the MHTS–TR method was expected to explore various zones of
the search space without being easily trapped in a local optimum. The moving strategies
of XHV and XSV are shown in Figure 3.
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Figure 3. The moving strategies of XHV and XSV.

4.3. The Overall Process of MHTS–TR Method

Firstly, we assumed that the population M was the number of members that searched in an
n-dimensional space (S ∈ Rn), and Ω ⊆ S was the feasible region of the solution space. At the
beginning of the kth iteration, the distance matrix (Disk =

[
Dis1

k, . . . , Disi
k, . . . , DisM

k
]
) for all

the members was calculated, in which Disi
k was an m-dimensional vector that represented the

distance between the member i and other members, and Disi
k =

[
disi1

k, . . . , disij
k, . . . , disiM

k
]
,

where disij
k was the Euclidean distance between the member i and member j (1 ≤ j ≤M and

j 6= i).
Secondly, all members of the population were evaluated as to whether they were

within the feasible region or not, and then divided into two sub-populations, accordingly.
We assumed that Fb was the number of members within the infeasible region, where
0 ≤ Fbk ≤ M, and the number of members within the feasible region was M− Fbk. These
members were considered as “leaders”, and would evolve according to the basic rules of
the conduction, convection, and radiation phases of the HTS algorithm.

The degree of constraint violations for all the members in the infeasible region was
calculated G(x) = [G(x1), . . . , G(xi), . . . , G(xFb)], i = 1, 2, . . . , Fb, and then G(x) was
sorted in descending order. A number of members with the highest degree of violation
(denoted by SN) were selected to be XHV, and the other members were selected to be XSV.
Here, the SN was jointly determined by the number of members within the infeasible
region (Fb) and the XHV ratio (psk) at the kth iteration. It can be calculated as follows:

SN = bFb ∗ pskc (10)

psk = psmin +
(psmax − psmin) ∗ k

MaxIter
(11)

where the operational sign “
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(1) The moving strategy of XHV:  

” means round number; psmin and psmax are the initial
and terminal values of ps, respectively, where 0 ≤ psmin < psmax ≤ 1. The value of
psk increased with the increase in iterations throughout the whole process of calculation,
meaning that the MHTS–TR algorithm had a high tolerance level for the violated mem-
bers at the beginning of the calculation. In other words, most of the members within
the infeasible region were moved towards the feasible region using the approximation
manner, whereas in the later stage of the calculation, the tolerance of violated members
was gradually tightened by the increasing the ratio of XHV. Most of them were directly
updated into the interior of the feasible region for searching. The detailed evolutionary
mechanisms of the XHV and XSV are given as follows:

(1) The moving strategy of XHV:

We assume that, a member i is selected to be XHV at the kth iteration, when its position
is xk

i = (xk
i1, xk

i2, · · ·xk
in) /∈ Ω, then a member j will be randomly selected from the feasible
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region to be the leader of this member, so that the member i will be updated to a new position
around the member j, where the position of the member j is xk

j = (xk
j1, xk

j2, · · ·xk
in) ∈ Ω.

Firstly, the leader (member j) will select the closest member g which is also within the fea-
sible region according to the distance Disj

k, when its position is xk
g = (xk

g1, xk
g2, · · ·xk

gn) ∈ Ω,
and then the Euclidian distance between the member j and member g on each dimension
is calculated NDisj

k = [edis1, . . . , edish, . . . edisn], where edish is the distance between the
member j and member g on the h dimension, and its calculation formula is as below:

edish =
∣∣∣xk

gh − xk
jh

∣∣∣ (12)

Then, the XHV (member i) will update its position using the subsequent formula.

xk+1
i = xk

j + rand(n)× NDisk
j (13)

where rand(n) is an n-dimensional random vector, it is uniformly distributed between 0
and 1, and the operator “×” means calculating the element-wise product of the two vectors.

(2) The moving strategy of XSV:

We assume that, at the kth iteration, when a member i is selected to be XSV, it selects
the nearest member j within the feasible region depending on the distance Disi

k between
this member and other members, and then approximates towards the member j. Thus, it
will update its position as follows:

xk+1
i = xk

i + c ∗ rand(n) ∗ (xk
j − xk

i ) (14)

where c is the velocity factor of XSV, it is used to adjust the velocity of the XSV to approxi-
mate toward the feasible region.

The overall process of this approach is illustrated by the flowchart diagram in Figure 4.

Figure 4. Flowchart of the MHTS–TR method.

5. Numerical Experiments and Discussion

In this section, we outline how the overall effectiveness of the MHTS–TR approach
was verified by a set of 24 well-defined COPs of Congress on Evolutionary Computation
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2006 (CEC 2006) [29–31]. Moreover, comparisons between the new variant and several
other well-established MHAs, such as differential evolution (DE), particle swarm op-
timization (PSO), biogeography-based optimization (BBO), artificial bee colony (ABC),
teaching-learning-based optimization (TLBO), and the original heat transfer search (HTS)
algorithm were conducted. These comparative approaches were examined against the
considered benchmark problems noted previously in the literature [18]. Therefore, they
were employed for comparison with the proposed variant; this is notable since a com-
mon experimental platform is required to make fair comparisons against the competitor
algorithms. Hence, the population size (NP) was set at 50, and the maximum number of
function evaluations (maxIter) was set to 240,000. Furthermore, the computational results
obtained from 100 independent runs, such as the best value (Best), mean value (Mean),
worst value (Worst), standard deviations (Std), and success rate (SR) were listed. To fur-
ther quantify the performances of the competitors statistically, a Friedman rank test was
also conducted on the mean and best solutions obtained by the comparative approaches.
The constraint-handling technique used with the considered competitors was the static
penalty method.

5.1. Benchmark Functions

The considered test functions offered challenges to the MHAs and can be classified
into different types: non-linear, linear, quadratic, polynomial, and cubic functions. The
detailed characteristics of each test function are illustrated in Table 1, and the detailed
mathematical formulation of each test function with its constraints can be found in the
literature [18].

Table 1. The characteristics of 24 COPs used in the investigation. n denotes the number of decision variables; F indicates the
global optimum value; P (%) indicates the estimated ratio between the search space and the feasible domain; NI represents
the number of non-linear inequality constraints; LI denotes the number of linear inequality constraints; NE denotes the
number of non-linear equality constraints; LE indicates the number of linear equality constraints, and ac represents the
number of active constraints at the optimum solution.

Function Type of Function n F P (%) NI LI NE LE ac

C01 Quadratic 13 −15.0000 0.0111 0 9 0 0 6
C02 Non linear 20 −8.036 × 10−1 99.9971 2 0 0 0 1
C03 Polynomial 10 −1.0005 0.0000 0 0 1 0 1
C04 Quadratic 5 −30,665.5 52.1230 6 0 0 0 2
C05 Cubic 4 5126.496 0.0000 0 2 3 0 3
C06 Cubic 2 −6961.81 0.0066 2 0 0 0 2
C07 Quadratic 10 24.3062 0.0003 5 3 0 0 6
C08 Non linear 2 −9.582 × 10−2 0.8560 2 0 0 0 0
C09 Polynomial 7 680.63 0.5121 4 0 0 0 2
C10 Linear 8 7049.248 0.0010 3 3 0 0 6
C11 Quadratic 2 7.499 × 10−1 0.0000 0 0 1 0 1
C12 Quadratic 3 −1.0000 4.7713 1 0 0 0 0
C13 Non linear 5 5.390 × 10−2 0.0000 0 0 3 0 3
C14 Non linear 10 −47.7649 0.0000 0 0 0 3 3
C15 Quadratic 3 961.715 0.0000 0 0 1 1 2
C16 Non linear 5 −1.9051 0.0204 34 4 0 0 4
C17 Non linear 6 8853.539 0.0000 0 0 4 0 4
C18 Quadratic 9 −8.6602 × 10−1 0.0000 13 0 0 0 6
C19 Non linear 15 32.6556 33.4761 5 0 0 0 0
C20 Linear 24 2.0498 × 10−1 0.0000 6 0 12 2 16
C21 Linear 7 193.7245 0.0000 1 0 5 0 6
C22 Linear 22 236.4309 0.0000 1 0 11 8 19
C23 Linear 9 −400.055 0.0000 2 0 1 3 6
C24 Linear 2 −5.50801 79.6556 2 0 0 0 2
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5.2. Simulation Results and Analysis

The comparative results of each approach on C01 to C13 are displayed in Table 2.
It can be observed from the results table that the MHTS–TR, HTS, and ABC algorithms
markedly outperformed the other four algorithms on the results of the quadratic function
(C01). Moreover, they produced a 100% success rate compared to the other algorithms
on this function. In terms of the non-linear function (C02), although the ABC method
produced superior results to the other approaches, all comparative results were considered,
as they failed to attain the global optimum. For the polynomial test function (C03), the
ABC approach produced superior results than other methods; however, the MHTS–TR
and HTS methods obtained competitive performances, and achieved the global optimum
on this test function. On the quadratic function (C04), all approaches produced equally
great results except for the BBO algorithm. On the cubic function (C05), the MHTS–
TR, HTS, and TLBO methods showed competitive results over the other methods, and
the mean value acquired by the MHTS–TR was superior to that of the HTS and TLBO,
respectively. On the cubic function (C06), the MHTS–TR, ABC, TLBO, HTS, and PSO
approaches produced equally great values. On the quadratic function (C07), the mean
value obtained by the MHTS–TR, HTS, ABC, and DE algorithms was better than those
of the other competitive algorithms. On the non-linear function (C08) and polynomial
function (C09), all the competitive methods (except the BBO) produced equally good results.
On the linear function (C10), the mean value acquired by the MHTS–TR was superior to
those of the other competitive algorithms. All the competitive algorithms (except the DE
and BBO) produced equally great results on the quadratic function (C11). On the quadratic
function (C12), all approaches (except the PSO) produced equally good solutions. All
the competitive approaches failed to attain the global optimum value on the non-linear
function (C13); however, the mean value obtained by the MHTS–TR and PSO approaches
was better than those of other competitive algorithms.

Table 2. Computational results of C01–C13 for the MHTS–TR method with other MHAs. (The experimental results of the
competitor algorithms are derived from the literature [18]).

Function DE PSO BBO ABC TLBO HTS MHTS–TR

C01

Best −15.0000 −15.0000 −14.977 −15.0000 −15.0000 −15.0000 −15.0000

Mean −14.555 −14.71 −14.7698 −15.0000 −10.782 −15.0000 −15.0000

Worst −11.828 −13.0000 −14.5882 −15.0000 −6.0000 −15.0000 −15.0000

SR 94 38 0 100 26 100 100

C02

Best −4.720 × 10−1 −6.691 × 10−1 −7.821 × 10−1 −8.035 × 10−1 −7.835 × 10−1 −7.517 × 10−1 −7.689 × 10−1

Mean −6.650 × 10−1 −4.199 × 10−1 −7.642 × 10−1 −7.924 × 10−1 −6.705 × 10−1 −6.437 × 10−1 −7.678 × 10−1

Worst −4.720 × 10−1 −2.994 × 10−1 −7.389 × 10−1 −7.497 × 10−1 −5.518 × 10−1 −5.482 × 10−1 −7.662 × 10−1

SR 0 0 0 0 0 0 0

C03

Best −9.939 × 10−1 −1 −1.0005 −1.0000 −1.0005 −1.0005 −1.0005

Mean −1.0000 7.648 × 10−1 −3.957 × 10−1 −1.0000 −8.000 × 10−1 −9.004 × 10−1 −9.601 × 10−1

Worst −1.00000 −4.640 × 10−1 −4.550 × 10−2 −1.0000 0.0000 0.0000 0.0000

SR 41 59 23 67 74 86 90

C04

Best −30,665.539 −30,665.539 −30,665.539 −30,665.539 −30,665.5387 −30,665.5387 −30,665.5387

Mean −30,665.539 −30,665.539 −30,411.865 −30,665.539 −30,665.5387 −30,665.5387 −30,665.5387

Worst −30,665.539 −30,665.539 −29,942.3 −30,665.539 −30,665.5387 −30,665.5387 −30,665.5387

SR 100 100 16 100 100 100 100

C05

Best 5126.484 5126.484 5134.2749 5126.484 5126.486 5126.486 5126.487

Mean 5264.27 5135.973 6130.5289 5185.714 5126.6184 5126.5152 5126.5030

Worst 5534.61 5249.825 7899.2756 5438.387 5127.714 5126.6831 5126.5049

SR 93 61 0 28 92 95 97
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Table 2. Cont.

Function DE PSO BBO ABC TLBO HTS MHTS–TR

C06

Best −6954.434 −6961.814 −6961.8139 −6961.814 −6961.814 −6961.814 −6961.814

Mean −6954.434 −6961.814 −6181.7461 −6961.813 −6961.814 −6961.814 −6961.814

Worst −6954.434 −6961.814 −5404.4941 −6961.805 −6961.814 −6961.814 −6961.814

SR 100 100 21 100 100 100 100

C07

Best 24.306 24.37 25.6645 24.33 24.3101 24.3104 24.3086

Mean 24.31 32.407 29.829 24.473 24.837 24.4945 24.4879

Worst 24.33 56.055 37.6912 25.19 27.6106 25.0083 24.9563

SR 26 21 0 28 23 37 41

C08

Best −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2

Mean −9.5825 × 10−2 −9.5825 × 10−2 −9.5824 × 10−2 −9.5825 × 10−2 −9.5825 × 10−2 −9.5825 × 10−2 −9.5824 × 10−2

Worst −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2 −9.582 × 10−2

SR 100 100 94 100 100 100 100

C09

Best 680.63 680.63 680.6301 680.634 680.6301 680.6301 680.6301

Mean 680.63 680.63 692.7162 680.64 680.6336 680.6329 680.6326

Worst 680.631 680.631 721.0795 680.653 680.6456 680.644 680.642

SR 95 84 26 89 91 96 98

C10

Best 7049.548 7049.481 7679.0681 7053.904 7250.9704 7049.4836 7049.4833

Mean 7147.334 7205.5 8764.9864 7224.407 7257.0927 7119.7015 7050.1982

Worst 9264.886 7894.812 9570.5714 7604.132 7291.3779 7252.0546 7128.9652

SR 0 0 0 0 0 0 94

C11

Best 7.520 × 10−1 7.490 × 10−1 7.499 × 10−1 7.500 × 10−1 7.499 × 10−1 7.499 × 10−1 7.499 × 10−1

Mean 9.010 × 10−1 7.490 × 10−1 8.305 × 10−1 7.500 × 10−1 7.499 × 10−1 7.499 × 10−1 7.499 × 10−1

Worst 1.00 7.490 × 10−1 9.289 × 10−1 7.500 × 10−1 7.499 × 10−1 7.499 × 10−1 7.499 × 10−1

SR 19 100 57 100 100 100 100

C12

Best −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00

Mean −1.00 9.988 × 10−1 −1.00 −1.00 −1.00 −1.00 −1.00

Worst −1.00 −9.940 × 10−1 −1.00 −1.00 −1.00 −1.00 −1.00

SR 100 100 100 100 100 100 100

C13

Best 3.850 × 10−1 8.565 × 10−2 6.282 × 10−1 7.600 × 10−1 4.401 × 10−1 3.731 × 10−1 4.679 × 10−1

Mean 8.720 × 10−1 5.693 × 10−1 1.09289 9.680 × 10−1 6.905 × 10−1 6.694 × 10−1 5.841 × 10−1

Worst 9.900 × 10−1 1.793361 1.45492 1.00 9.560 × 10−1 7.975 × 10−1 6.416 × 10−1

SR 0 0 0 0 0 0 0

Table 3 shows the Friedman rank test, which was conducted on the mean and best
solutions obtained by the comparative methods on the functions C01 to C13. It can be seen
from the result table that the MHTS–TR algorithm ranked first to obtain the mean solution,
followed by the original HTS, ABC, and the rest of the other approaches, whereas it secured
the second rank after the PSO algorithm to obtain the best solution on these test functions.

The results of the comparative algorithms on the functions C14 to C24 are shown in
Table 4. It can be observed from the results table that all the methods failed to attain the
global optimum value on the non-linear function (C14), which was a difficult function.
However, the MHTS–TR algorithm produced a superior mean value compared to the other
approaches. The mean result obtained by the MHTS–TR and DE algorithms outperformed
the other algorithms on the quadratic function (C15). On the non-linear function (C16),
it can be seen that all approaches (except the BBO) showed identical results and have
succeeded to attain the global optimum value. On the non-linear functions (C17 and C19),
and the quadratic function (C18), the mean results obtained by the TLBO, DE, and ABC
algorithms were superior to the results of the other comparative algorithms. However, the
MHTS–TR algorithm generated better results than the original HTS on these functions.
On the rest of the linear functions (C20 to C24), due to C20, C22 and C23 having test
problems as difficult functions, it can be seen that all the approaches failed to attain the
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global optimum value. However, the MHTS–TR method generated superior mean results
compared to the other comparative approaches on the functions C20 and C23. The mean
result and success rate obtained by the MHTS–TR algorithm on the function C21 was
better than those of the other algorithms. On the function C24, it can be observed that all
algorithms attained the global optimum value, and also shown identical results.

Table 3. Friedman rank of C01–C13 for the solutions obtained by the MHTS–TR and other MHAs. (The experimental results
of the competitors are derived from the literature [18]).

The Mean Solution The Best Solution

Method Friedman
Value

Normalized
Value Rank Method Friedman

Value
Normalized

Value Rank

DE 53.5 1.53 6 DE 50.5 1.23 6

PSO 47 1.34 4 PSO 41 1 1

BBO 84 2.4 7 BBO 63.5 1.55 7

ABC 38 1.09 3 ABC 47 1.15 4

TLBO 52 1.49 5 TLBO 47.5 1.16 5

HTS 35 1 2 HTS 45.5 1.11 3

MHTS–TR 34.2 0.93 1 MHTS–TR 43.8 1.04 2

Table 4. Computational results of C14–C24 for the MHTS–TR method with other MHAs. (The experimental results of the
competitor algorithms are derived from the literature [18]).

Function DE PSO ABC BBO TLBO HTS MHTS–TR

C14

Best −45.7372 −44.9343 −44.6431 54.6979 −46.5903 −47.7278 −47.7391

Mean −29.2187 −40.8710 −40.1071 175.9832 −39.9725 −46.4076 −46.6872

STD 1.36 × 101 2.2900 7.1400 7.90 × 101 1.15 × 101 8.53 × 10−1 7.29 × 10−1

Worst −12.7618 −37.5000 −23.3210 257.7061 −17.4780 −45.0648 −46.4135

SR 0 0 0 0 0 0 0

C15

Best 961.7150 961.7150 961.7568 962.6640 961.7150 961.7150 961.7150

Mean 961.7537 965.5154 966.2868 1001.4367 962.8641 961.7500 961.7483

STD 1.22 × 10−1 3.7200 3.1200 4.74 × 101 1.4900 1.11 × 10−1 1.18 × 10−1

Worst 962.1022 972.3170 970.3170 1087.3557 964.8922 962.0653 961.9642

SR 73 53 42 0 81 83 84

C16

Best −1.9052 −1.9052 −1.9052 −1.9052 −1.9052 −1.9052 −1.9052

Mean −1.9052 −1.9052 −1.9052 −1.6121 −1.9052 −1.9052 −1.9052

STD 2.34 × 10−16 2.34 × 10−16 2.34 × 10−16 2.58 × 10−1 2.34 × 10−16 2.34 × 10−16 2.34 × 10−16

Worst −1.9052 −1.9052 −1.9052 −1.1586 −1.9052 −1.9052 −1.9052

SR 100 100 100 18 100 100 100

C17

Best 8854.6501 8857.5140 8859.7130 9008.5594 8853.5396 8853.5396 8853.5396

Mean 8932.0444 8899.4721 8941.9245 9384.2680 8876.5071 8877.9175 8876.7492

STD 4.68 × 101 3.79 × 101 4.26 × 101 3.06 × 102 3.02 × 101 3.09 × 101 3.01 × 101

Worst 8996.3215 8965.4010 8997.1450 9916.7742 8919.6595 8932.0712 8917.3041

SR 0 0 0 0 58 26 29

C18

Best −8.653 × 10−1 −8.660 × 10−1 −8.660 × 10−1 −6.573 × 10−1 −8.660 × 10−1 −8.660 × 10−1 −8.660 × 10−1

Mean −8.616 × 10−1 −8.276 × 10−1 −8.658 × 10−1 −5.681 × 10−1 −8.656 × 10−1 −7.703 × 10−1 −8.512 × 10−1

STD 3.67 × 10−3 1.11 × 10−1 3.37 × 10−4 8.55 × 10−2 9.67 × 10−4 1.01 × 10−1 1.16 × 10−1

Worst −8.551 × 10−1 −5.108 × 10−1 −8.652 × 10−1 −3.887 × 10−1 −8.629 × 10−1 −6.746 × 10−1 −8.423 × 10−1

SR 61 56 73 0 64 47 53
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Table 4. Cont.

Function DE PSO ABC BBO TLBO HTS MHTS–TR

C19

Best 32.6851 33.5358 33.3325 39.1471 32.7916 32.7132 32.7085

Mean 32.7680 36.8443 36.0078 51.8769 34.0792 32.7903 32.7696

STD 6.28 × 10−2 2.0400 1.8300 1.12 × 101 9.33 × 10−1 1.53 × 10−1 1.78 × 10−1

Worst 32.9078 39.8443 38.5614 71.3106 36.1935 33.2140 32.932

SR 0 0 0 0 0 0 0

C20

Best 2.4743 × 10−1 2.474 × 10−1 2.4743 × 10−1 1.26181 2.4743 × 10−1 2.4743 × 10−1 2.4743 × 10−1

Mean 2.616 × 10−1 9.723 × 10−1 8.053 × 10−1 1.43488 1.22037 2.5519 × 10−1 2.4817 × 10−1

STD 1.91 × 10−2 6.34 × 10−1 5.93 × 10−1 2.20 × 10−1 5.89 × 10−1 1.25 × 10−2 1.61 × 10−2

Worst 2.876 × 10−1 1.87320 1.52017 1.98625 1.84773 2.733 × 10−1 2.596 × 10−1

SR 0 0 0 0 0 0 0

C21

Best 193.7346 193.7311 193.7343 198.8151 193.7246 193.7264 193.7253

Mean 366.9193 345.6595 275.5436 367.2513 264.6092 256.6091 252.3172

STD 9.13 × 101 6.36 × 101 6.05 × 101 1.34 × 102 9.23 × 101 6.63 × 101 6.72 × 101

Worst 418.4616 409.1320 330.1638 581.2178 393.8295 320.2342 313.0856

SR 24 12 36 0 35 48 51

C22

Best 1.25 × 1018 1.68 × 1022 2.82 × 108 1.02 × 1015 4.50 × 1017 2.16 × 103 1.23 × 103

Mean 1.78 × 1019 1.63 × 1023 4.10 × 1017 1.41 × 1016 1.61 × 1019 1.36 × 106 1.18 × 106

STD 1.17 × 1019 9.17 × 1022 4.72 × 1017 1.96 × 1016 1.51 × 1019 4.20 × 106 3.87 × 106

Worst 2.67 × 1019 3.25 × 1025 1.25 × 1018 6.70 × 1016 4.06 × 1019 1.33 × 107 1.22 × 107

SR 0 0 0 0 0 0 0

C23

Best −72.6420 −105.9826 −43.2541 2.3613 −385.0043 −390.6472 −394.0927

Mean −7.2642 −25.9179 −4.3254 22.1401 −83.7728 −131.2522 −134.8962

STD 2.30 × 101 4.30 × 101 1.37 × 101 2.51 × 101 1.59 × 102 1.67 × 102 1.62 × 102

Worst 0.00 0.00 0.00 74.6089 0.00 0.00 0.00

SR 0 0 0 0 0 0 0

C24

Best −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080

Mean −5.5080 −5.5080 −5.5080 −5.4982 −5.5080 −5.5080 −5.5080

STD 9.36 × 10−16 9.36 × 10−16 9.36 × 10−16 6.75 × 10−3 9.36 × 10−16 9.36 × 10−16 9.36 × 10−16

Worst −5.5080 −5.5080 −5.5080 −5.4857 −5.5080 −5.5080 −5.5080

SR 100 100 100 27 100 100 100

Table 5 shows the Friedman rank test, which was conducted on the mean and best
solutions acquired by the comparative methods on the functions C14 to C24. It can be seen
from the results table that the MHTS–TR algorithm ranked first to obtain the mean and
best solutions, followed by the original HTS, TLBO, DE, and the other algorithms.

Table 5. Friedman rank of C14–C24 for the solutions obtained by the MHTS–TR and other MHAs. (The experimental results
of the competitors are derived from the literature [18]).

The Mean Solution The Best Solution

Method Friedman
Value

Normalized
Value Rank Method Friedman

Value
Normalized

Value Rank

DE 37 1.76 4 DE 38.5 1.64 4
PSO 41 1.95 6 PSO 40 1.7 5
BBO 38 1.81 5 BBO 42.5 1.81 6
ABC 62 2.95 7 ABC 58 2.47 7

TLBO 32 1.52 3 TLBO 28.5 1.21 3
HTS 21 1 2 HTS 23.5 1 2

MHTS–TR 20.2 0.91 1 MHTS–TR 22.3 0.93 1
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Due to the appropriate trade-off between exploitation and exploration, our method
was carried out by integrating different search mechanisms. The proposed method could
alleviate the probability of local optima stagnation, and finally converge to a global feasible
solution. Hence, it achieved the global optimum solution for more test problems compared
to the original HTS method and the rest of the other competitive methods.

5.3. Further Discussion

To further analyze the advantages of the MHTS–TR algorithm in handling COPs, a
comparison between the basic HTS and MHTS–TR on the test problem C10 was conducted.
This comparison was carried out by counting the number of feasible solutions during the
optimization course. To facilitate the comparison, the population size of both approaches
was set at 100, and the maximum number of iterations was set to 1000.

Figure 5 shows the number of feasible solutions obtained by both approaches in
1000 iterations. It can be seen that both algorithms found feasible solutions in the 10th
iteration, and the number of feasible solutions was increased to the maximum value
around the 100th iteration. In the later stage of calculation, the number of feasible solutions
obtained by the HTS algorithm accounted for about 50% of the total number of members,
and keptdecreasing at the later stages of the calculation. By contrast, the number of
feasible solutions obtained by the MHTS–TR algorithm accounted for almost 70% of the
total number of members, and was relatively stable. This implies that the improvements
on the proposed MHTS–TR approach could greatly increase the population density and
diversity, and improve the exploration and exploitation capabilities of the population in
the feasible region.

Figure 5. The number of feasible solutions obtained by the original HTS and MHTS–TR algorithms
on benchmark function C10.

6. Application to Chemical Constrained Process Optimization

In this section, we further assessed the overall performance of the MHTS–TR approach
by applying it to a real-world chemical COP, which was the simplified alkylation process.
Moreover, we compared the experimental results obtained by the MHTS–TR approach
for this problem with those of other optimization approaches such as the α-based branch
and bound method (αBB) [32], the constrained ant colony system (CACS) [33], cultural
algorithm with evolutionary programming (CAEP) [34], branch and reduce optimization
navigator (BARON) [35] and the basic HTS algorithm. Here, BARON version 21.1.13
with default options was used. The first three methods were tested on this chemical
COP previously in the literature; hence, they were employed for comparison with the
new variant. To be consistent with the considered competitors, the maximum number of
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iterations (maxIter) was set to 1000, and the population size (NP) was set at 50. A detailed
description of this chemical process is given in the subsequent sub-section.

6.1. Problem Description

The simplified alkylation process was firstly discussed in detail by Bracken and
McCormick [36]. The flowsheet of this process is shown in Figure 6. In this process, an
olefin feed of 100% butane, a 100% isobutane make-up stream, and a pure isobutane recycle
were infused into a reactor. Then, these components reacted with an acid catalyst, and
some spent acid was discharged out of the reactor. Moreover, the product in the reactor
was transported into a fractionator, and separated into isobutane and alkylate products.

Figure 6. The flowsheet of the simplified alkylation process.

Bracken and McCormick [36] proposed an optimizing model for the alkylation process,
and the objective was to maximize the profit. Dembo [37] transformed this process into a
model with 7 variables and, subsequently, a slightly modified version of this model was
proposed by other researchers in the literature [32]. The variables of this process are listed
in Table 6.

Table 6. The variables in the profit-maximization problem of the alkylation process.

Variable Variable Description Unit

x1 Olefin feed rate Barrel/Day
x2 Acid addition rate Kilopound/Day
x3 Alkylate yield Barrel/Day
x4 Acid strength %
x5 Motor octane number -
x6 External isobutane-to-olefin ratio %
x7 F−4 performance number -
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The profit-maximization problem for this process takes the form as follows [32]:

Pro f it = −min(1.715x1 + 0.035x1x6 + 4.0565x3 + 10.0x2 − 0.063x3x5)

s.t.

g1 = 0.0059553571x2
6x1 + 0.88392857x3 − 0.1175625x6x1 − x1 ≤ 0,

g2 = 1.1088x1 + 0.1303533x1x6 − 0.0066033x1x2
6 − x3 ≤ 0,

g3 = 6.66173269x2
6 + 172.39878x5 − 56.596669x4 − 191.20592x6 − 10, 000 ≤ 0,

g4 = 1.08702x6 + 0.32175x4 − 0.03762x2
6 − x5 + 56.85075 ≤ 0,

g5 = 0.006198x7x4x3 + 2462.3121x2 − 25.125634x2x4 − x3x4 ≤ 0,

g6 = 161.18996x3x4 + 5000.0x2x4 − 489, 510.0x2 − x3x4x7 ≤ 0,

g7 = 0.33x7 − x5 + 44.333333 ≤ 0,

g8 = 0.022556x5 − 0.007595x7 − 1 ≤ 0,

g9 = 0.00061x3 − 0.0005x1 − 1 ≤ 0,

g10 = 0.819672x1 − x3 + 0.819672 ≤ 0,

g11 = 24, 500.0x2 − 250.0x2x4 − x3x4 ≤ 0,

g12 = 1020.4082x4x2 + 1.2244898x3x4 − 100, 000x2 ≤ 0,

g13 = 6.25x1x6 + 6.25x1 − 7.625x3 − 100, 000 ≤ 0,

g14 = 1.22x3 − x6x1 − x1 + 1 ≤ 0,

1500 ≤ x1 ≤ 2000, 1 ≤ x2 ≤ 120, 3000 ≤ x3 ≤ 3500,

85 ≤ x4 ≤ 93, 90 ≤ x5 ≤ 95, 3 ≤ x6 ≤ 12, 145 ≤ x7 ≤ 162.

(15)

6.2. Simulation Results and Discussion

The best values of the profit objective obtained by each approach are displayed in
Table 7. The mean execution times of the original HTS and the MHTS–TR approaches on
this problem were as follows: the original HTS algorithm spent 12.38 s, and the MHTS–
TR approach spent 14.21 s to get these results. It can be observed from Table 7 that the
optimization result obtained by the MHTS–TR approach was better than those of the
basic HTS, BARON, CACS (δ = 5 × 10−6), and CACS (δ = 0) methods. Moreover, the
results obtained by the αBB, CAEP, and CACS (δ = 5 × 10−4) methods were superior
to that of the MHTS–TR, but the MHTS–TR method did not violate any constraint. The
violations of constraints for the best solutions generated by all algorithms are listed in
Table 8. It can be observed from the results table that the αBB, CAEP, CACS (δ = 0),
and CACS (δ = 5 × 10−4) approaches violated at least one of the constraints, whereas
the CACS (δ = 5 × 10−6), BARON, HTS, and MHTS–TR approaches did not violate any
constraints. In comparison with the original HTS, BARON, and CACS (δ = 5 × 10−6)
methods, the maximum profit obtained by the MHTS–TR approach was superior. Figure 7
plots the convergence graphs of the optimization results generated by the original HTS
and MHTS–TR algorithms. It can be seen from Figure 7 that the proposed MHTS–TR
approach showed a superior profit objective compared to the basic HTS method. In the
convergence process, due to the appropriate trade-off between exploration and exploitation
in our approach being performed by integrating different search mechanisms, the MHTS–
TR algorithm converged to a feasible optimum very rapidly, meaning that the overall
performance of the MHTS–TR approach was enhanced through the proposed modifications.
In summary, the experimental results obtained by the MHTS–TR algorithm on this problem
were better than those of the original HTS algorithm and the other competitors. Therefore,
we can conclude that the MHTS–TR algorithm is applicable for solving real-world COPs.
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Table 7. The comparison results obtained by the αBB, CAEP, CACS, BARON, HTS, and MHTS–TR methods.

Method x1 x2 x3 x4 x5 x6 x7 Best

αBB 1698.180 53.660 3031.300 90.110 95.000 10.500 153.530 1772.8
CAEP 1699.8 53.321 3033.1 90.225 95.000 10.485 154.53 1777.1
CACS
(δ = 0) 1698.8 54.178 3031.5 90.137 94.992 10.535 153.51 1763.1

CACS
(δ = 5 × 10−4) 1700.4 53.360 3034.7 90.183 94.999 10.322 153.66 1776.6

CACS
(δ = 5 × 10−6) 1700.6 54.346 3033.2 90.183 94.999 10.510 153.53 1763.8

BARON 1698.256 54.274 3031.357 90.190 95.000 10.504 153.535 1766.3
HTS 1701.43 57.81 3031.99 90.23 94.40 10.812 153.72 1592.5

MHTS–TR 1698.11 54.323 3031.3 90.197 95.000 10.497 153.54 1766.4

Table 8. The violations of constraints for the αBB, CAEP, CACS, BARON, HTS, and MHTS–TR methods.

C αBB CAEP CACS
(δ = 0)

CACS
(δ = 5 × 10−4)

CACS
(δ = 5 × 10−6) BARON HTS MHTS–TR

g1 1.650 × 10−2 −1.1375 −3.266 × 10−1 −2.4301 −1.9938 0.000 −29.118 −9.3367 × 10−5

g2 −60.341 −59.098 −59.965 −57.700 −58.150 −60.324 −60.322 −21.356
g3 4.7521 −9.854 × 10−1 5.72 × 10−2 9.7923 −6.43 × 10−2 −33.372 −1.1823 × 10−3 −9.8021 × 10−4

g4 −1.8903 −1.8577 −1.8632 −1.9198 −1.8628 −1.863 −1.8633 −1.7981
g5 −2588.610 −1138.5 −2561.4 −2551.0 −2571.3 −2579.163 −3067.8 −2579. 2
g6 1727.870 −2.2415 × 105 −4909.4 1357.8 −2154.9 −7.45058 × 10−8 −29.749 −5.155 × 10−1

g7 −1.7670 × 10−3 3282 × 10−1 −3.6700 × 10−4 4.210 × 10−2 −7.6700 × 10−4 0.000 −1.0018 × 10−5 −8.4807 × 10−6

g8 −2.320 × 10−2 −3.080 × 10−2 −2.330 × 10−2 −2.430 × 10−2 −2.330 × 10−2 −2.30 × 10−2 −2.4016 × 10−2 −2.30 × 10−2

g9 3.0000 × 10−6 2.9100 × 10−4 −1.8500 × 10−4 9.6700 × 10−4 −4.8000 × 10−5 0.000 −1.0440 × 10−7 −5.5867 × 10−8

g10 −1638.5 −1639.0 −1638.2 −1640.1 −1638.5 −1638.525 −1636.7 −1638.5
g11 −1.6731 × 105 −1.7002 × 105 −1.6675 × 105 −1.6940 × 105 −1.6734 × 105 −1.6743 × 105 −1.3972 × 105 −1.6744 × 105

g12 −9.7548 × 104 −8.7936 × 104 −1.0010 × 105 −9.0511 × 104 −9.8542 × 104 −9.7747 × 104 −2.1014 × 105 −9.7758 × 104

g13 −1057.0 −1113.6 −642.32 −2815.0 −791.24 −1.1282 × 104 −2.0265 × 104 −1091.2
g14 −1.5830 × 104 −1.5821 × 104 −1.5896 × 104 −1.5549 × 104 −1.5872 × 104 −1.5837 × 104 −1.5824 × 104 −1.2962 × 104

Figure 7. Convergence graph of the original HTS and MHTS–TR algorithms for the simplified
alkylation process.

7. Conclusions

Many real-world COPs are defined by complex mathematical equations with different
constraints, and simply finding a feasible solution for such problems is not a straightfor-
ward task. Thus, to handle COPs efficiently, a novel approach with two search phases
called MHTS–TR was proposed in this paper. The feasible search phase (the leader phase)
ensured an intensified optimum in a relevant feasible region using the heat transfer search
(HTS) algorithm, whereas the infeasible search phase (the follower phase) was used to



Processes 2021, 9, 1961 19 of 20

introduce more diversification into the feasible search phase using the moving mechanism
of the tandem running (TR) strategy.

To demonstrate the ability of the proposed MHTS–TR approach on handling different
COPs, it was applied to a set of 24 constrained benchmark functions of CEC 2006, which
involved different types of functions, such as, non-linear, linear, quadratic, polynomial,
and cubic. Moreover, the simulation results were compared with those of the original
HTS and other comparative algorithms. The obtained results showed that the proposed
MHTS–TR approach markedly outperformed the other comparative algorithms. Finally, to
validate the applicability of the MHTS–TR approach in solving real-world COPs, it was
applied to handle a chemical COP, which was the simplified alkylation process. Moreover,
the simulation results existing in the literature were introduced to be compared with the
results obtained by our approach. The MHTS–TR algorithm demonstrated a superior result
on the profit value compared to the original HTS method and some other competitors.
Moreover, it showed competitive results in satisfying the constraints; therefore, we can
conclude that the MHTS–TR approach is applicable for handling real-world COPs. The
priority of each MHA is providing good solutions for specific problems, and therefore may
not be as effective in providing solutions for some other problems. Thus, the considered
application is intended for use on small-scale problems, and may not indicate towards the
usefulness of the proposed approach for large-scale problems.

The future paths of research contain the application of the HTS-based optimization
method for handling complex chemical engineering problems, such as multi-objective
optimization problems involving a larger number of objectives and constraints. Moreover,
to further check the robustness and suitability of the proposed method, it can be extended
for solving other engineering processes, including single and multi-objective problems.
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