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Abstract: This paper presents the development of a new Aerodynamic Ball Levitation Laboratory
Plant at the Center of Modern Control Techniques and Industrial Informatics (CMCT&II). The entire
design process of the plant is described, including the component selection process, the physical
construction of the plant, the design of a printed circuit board (PCB) powered by a microcontroller,
and the implementation of its firmware. A parametric mathematical model of the laboratory plant
is created, whose parameters are then estimated using a nonlinear least-squares method based on
acquired experimental data. The Kalman filter and the optimal state-space feedback control are
designed based on the obtained mathematical model. The designed controller is then validated using
the physical plant.

Keywords: aerodynamic levitation; experimental identification; system state estimation; linear
optimal control; noise filtration; motor control

1. Introduction

The core principle of aerodynamic levitation is based on suspending an arbitrary
object in the air using airflow. The practical use-case of this phenomenon can be seen in
applications where physical contact between objects must be avoided. It is usually utilized
on a microscopic scale to prevent oxidation or crystal formation upon object contact with
its container. This method allows studying materials under unusual conditions and even
allows the formation of new glass materials [1].

The goal of our design of an Aerodynamic Ball Levitation Plant is to levitate a ping-
pong ball inside a tube using the stream of air produced by a fan. From a control engi-
neering aspect, this model is interesting for its simplicity of modeling and its low price.
Similar to the Magnetic Levitation Plant, which uses a magnetic force to levitate a steel
ball [2], the Aerodynamic Levitation Plant could also be a part of control engineering
courses provided by the Center of Modern Control Techniques and Industrial Informatics
(CMCT&II) at the Department of Cybernetics and Artificial Intelligence (DCAI), Faculty of
Electrical Engineering and Informatics (FEEI), Technical University of Košice (TUKE). As
the commercial availability of such plant types is limited, we opted to construct one. The
main advantage of the Aerodynamic Levitation Plant over the Magnetic Levitation Plant
is its slower dynamics. It allows the use of a larger sampling period and consequently
more computationally expensive control algorithms. This model also provides a wider ball
position operation range that makes experimental identification simpler.

Several world scientists have already worked on a similar Aerodynamic Ball Levitation
Plant. The authors of [3] focused mainly on the physical construction of the plant, the choice
of the most suitable sensor for measuring the ball’s position, and its analytical modeling.
Apart from the physical construction, the authors of [4] focused more on controller design
based on the experimentally identified Autoregressive model with Exogenous Variable
(ARX model) in the input–output form. In this case, an Arduino Mega equipped with
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an ATmega2560 microcontroller was used as an analog-to-digital interface of the control
computer. Others contributed mainly to the application of a nonlinear modification of
the Proportional-Integral-Derivative (PID) controller in the context of the Aerodynamic
Levitation Plant [5]. Papers [6–8] were more focused on making this type of plant available
in virtual and remote laboratories and used classical controllers like the PID controller. The
authors of [9] had taken a more experimental approach in the controller design and utilized
a simple switched controller inspired by the sliding window controller. Although the noise
filtration and proper state estimation are purposefully left out in this design method, the
designed control algorithm performed well in the simulation and on the real plant. Up to
this point, all authors used airflow to levitate a ball inside a tube. A different approach was
used in [10–12], where the ball was not placed inside a tube. This arrangement is more
challenging in terms of both measuring the ball’s position and the power requirements.
On the other hand, the plant is inherently stable from a control engineering aspect, as the
airflow speed gradually decreases over distance. The authors of [13] presented a model-free
based control algorithm design for a similar plant (the Magnetic Levitation Plant). This
method uses an experimental approach to fine-tune controller parameters for a target
application. Another option is to use a nonlinear state-space controller as in [14]. This
controller provides the robustness needed for systems with varying parameters. From our
own experience [2] with a similar magnetic levitation plant, we decided to start with a
linear state-space controller instead of a PID controller. Although linear controllers are
not as robust as their nonlinear counterparts, they are easier to design. The authors of [15]
used the exact linearization approach to design a controller for the Magnetic Levitation
Plant. This method combines linear controller synthesis with nonlinear compensation. A
notable drawback of this method is finding a suitable mathematical transformation that
transforms the nonlinear system model into a linear one.

While facing the task of experimental identification, most authors have chosen linear
approximations of a mathematical model, such as the ARX model [4,5,7,16]. From the
control design aspect, this is not an issue, since they proved the ARX model to be sufficient
for this application. The main limitation seen in this approach is that the nonlinear mathe-
matical model obtained from analytical identification is more suitable for the controller
verification in a simulation environment. This is the reason why the authors of [17] opted
for nonlinear parameter estimation. Their focus was to create an open-source design that
can be adopted by others. Although filtration is mentioned in figures, no more information
about the used filtration method is provided. Considering that noise is the natural phe-
nomenon of all physical systems, room for improvement is present. Only [16] utilized a
low-pass filter to reduce sensory noise. There are a few papers [5,7,16] that included dy-
namics of a fan in the mathematical model, but they did not utilize state-space control. The
goal of this paper is to solve presented open problems, mainly the parameter identification
of the mathematical model, noise filtration, and utilization of the state-space control.

In this paper, we present the improved Aerodynamic Ball Levitation Plant with a fan
speed sensor. We consider the addition of this sensor important for better plant control as it
enables the use of more sophisticated control and state estimation algorithms. Furthermore,
the additional sensor helps with the experimental estimation of the mathematical model’s
parameters. The proposed methodology of the Aerodynamic Ball Levitation Plant modeling
and control design is incorporated in the entire paper layout. This includes subtasks in the
following order: mathematical modeling, creation of physical plant, experiment design,
data acquisition, nonlinear parameter estimation, design of Kalman filter, controller design,
validation in the simulation environment, and validation on the real plant. Methodology
verification is presented in this paper using sets of experiment and their results.

The paper consists of several sections. Section 2 deals with the construction of the
Aerodynamic Ball Levitation Plant, whereas Section 3 describes the analytical modeling
and parameter identification of the mathematical model using the nonlinear least-squares
method. Section 4 deals with the design and validation of the Kalman filter and the optimal
state-space controller with integrator (Linear-Quadratic-Integral control—LQI). Finally,
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Section 5 describes the inclusion of the laboratory plant into the Distributed Control System
(DCS) architecture at the CMCT&II.

2. Hardware Design

The main reason for the construction of a custom plant over buying one was to reduce
costs and to adjust all its aspects to our needs. Components like enclosure and connection
fittings were designed in Fusion 360 (a 3D modeling software) and later 3D printed using a
PLA filament. Our goal was to create a portable laboratory plant that can be easily moved.

Besides the already mentioned basic principles of the plant, there are a few design
considerations that one needs to take into account. A sensor must be placed inside the tube
to determine the ball’s position. There is also a need to dynamically adjust the fan speed to
achieve the desired effect of levitation. The rest of this section is designated to present the
plant’s physical, electrical, and firmware design.

2.1. Physical Construction of the Plant

Firstly, the type of ball for levitation had to be selected. From all available options, a
ping-pong ball was chosen due to the strict standardization of its parameters. Regarding
the tube selection, two constraints were considered—transparency of its walls and inner
diameter to be slightly larger than the ball’s diameter. A slightly larger inner diameter of the
tube will allow the ball to move freely in the vertical direction while avoiding unnecessary
horizontal movement. In our case, the inner diameter is about 4 mm wider than the ball. In
a fan selection process, a computer fan was considered at the first, since it can be controlled
using a pulse-width modulated (PWM) signal and often includes a tachometer to measure
its speed. However, modern computer fans are optimized for silent operation using higher
static pressure and lower air velocity. As low air velocity is undesirable for our application,
we opted for a fan extracted from a hairdryer. It is powered by a 24 V DC motor and its
diameter is close enough to the diameter of the tube. Additionally, it provides sufficient
output air velocity to push the ball up in the tube. Because of the missing tachometer on
the fan, we attached a Pololu 20D magnetic encoder to its back shaft. This modification
enables the possibility to directly measure the fan’s angular velocity. To power the fan, we
decided to use a 19 V DC laptop charger to keep the plant portable. Finally, we added a
VL53L0X laser rangefinder to measure the ball’s position within the tube. This choice was
motivated by the sensor’s accuracy and simple interface, similar to the solution described
in [3].

A simple user interface is added to the plant so that it can be used without an addi-
tional computer. This includes a 4-digit 7-segment display and a rotary encoder with a
push-button that allows the user to change parameters on the fly. Additionally, a scale was
engraved onto the tube with an LED backlight to easily determine the ball’s position. The
final 3D assembly of the plant is shown in Figure 1.

2.2. Design of Electronic Components

To make the plant operational on its own, a microcontroller was needed. For this
task, the Arduino Nano development board with an ATmega328P microcontroller was
chosen. Since no microcontroller can handle currents large enough to power a DC motor,
additional components were necessary. As connecting all components using jumper wires
is impractical, we decided to create a plant control unit—a printed circuit board (PCB)
designed in the Autodesk EAGLE software. This PCB interconnects a 5 V regulator
(LM7805), an NPN BJT transistor (BC547) used as a MOSFET driver, an n-channel MOSFET
(IRF530) to drive the fan, and a number of JST XH connectors. Connectors are used to
connect other components (motor, motor speed sensor, 7-segment display, rotary encoder,
and ball position sensor) that cannot be placed onto the main PCB. To futureproof our PCB
design, we added several connectors of various interfaces in case more sensors or actuators
are added in the future. The Arduino Nano development board is directly soldered onto
the control unit. The PCB design is shown in Figure 2.
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Figure 1. Component assembly of the Aerodynamic Ball Levitation Laboratory Plant.

Figure 2. PCB design of plant’s control unit.

2.3. Firmware Design

Our firmware design comprises four modules, as shown in Figure 3. All information
exchanged between these modules is preprocessed and uses standard units where applica-
ble. The firmware itself is implemented in the C++ language and is compiled using the
Arduino IDE.

The communication module is used as a communication interface between a computer
and the plant using a Universal Asynchronous Receiver–Transmitter (UART) serial link.
For this task, a simple packet-based communication protocol was created that uses the most
significant bit of each byte to control communication. In addition, a 28-bit fixed-precision
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data type was proposed to allow the exchange of real numbers using this protocol. The
communication interface running on the computer that handles this protocol is written in
the Python programming language. It is easier to work with binary data in Python than in
Matlab while keeping the interface platform-independent.

The driver module is used as an interface between the plant and peripherals such as sen-
sors and actuators that require the use of timers or interrupts. Its interface is programmed
to work with physical units to prevent information misinterpretation. It allows for easier
hardware changes as the hardware-specific code is isolated.

The UI module handles user input from the rotary encoder and the push-button to
allow parameter changes without the need for a computer. It enables a user to enter/exit
parameter editor by long button push and to change currently selected parameter using
a short push. Rotation action is handled by selected parameter type: for example, a
BoolParameter switches its state, whereas a FloatParameter increments or decrements its
value according to rotational speed.

The control module estimates and filters values of the state vector using the Kalman filter.
It also implements polynomial and LQI controllers, whose parameters can be changed
using the mentioned communication protocol. Both implemented control algorithms
inherited from the AbstractController interface making it easier to implement different
control algorithms in the future.

Figure 3. Firmware design diagram.

3. Mathematical Modeling

In research papers [4,9,16], a mathematical model of the Aerodynamic Ball Levitation
Plant is presented as a single-input and single-output (SISO) system, with input being
the fan’s voltage u(t) and output the ball position x(t). Even though this representation
does not affect the mathematical model itself, it is problematic during the experimental
parameter estimation task. This is due to a high number of parameters and insufficient
insight into internal system states. To overcome this limitation, our plant includes a fan
speed sensor that enables us to model the system as a single-input and multiple-output
(SIMO) system. To make the modeling task simpler, we are going to model two main
subsystems (a fan and a ball in the tube) separately according to the diagram shown in
Figure 4.
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Figure 4. Diagram of subsystem interaction of Aerodynamic Ball Levitation Plant.

Since our fan is driven by a DC motor, we can create its mathematical model using
the kinematic equation for the rotational motion and Kirchhoff’s second law. Ignoring all
nonlinearities, the resulting mathematical model is described by two first-order differential
equations (Equation (1)). State variables of this model are an armature current i(t) and an
angular velocity ω(t) [18].

Jω̇(t) + blω(t) = KMi(t)

L
di(t)

dt
+ Ri(t) + Keω(t) = u(t)

(1)

where: J - rotor’s moment of inertia [kg.m2]
ω̇(t) - rotor’s angular acceleration [rad.s−2]
bl - rotor’s friction constant [N.m.s]
ω(t) - rotor’s angular velocity [rad.s−1]
KM - motor’s torque constant [N.m.A−1]
i(t) - armature current [A]
L - armature inductance [H]
R - armature resistance [Ω]
Ke - motor’s back electromotive force constant [V.rad−1.s−1]
u(t) - motor’s input voltage [V]

To be able to use the proposed mathematical model (1) of the fan for the parameter
identification task, it is crucial to measure both of its state variables (i(t) and ω(t)). Having
sensors to measure both state variables (armature current i(t) and rotor’s angular velocity
ω(t)), it would be possible to use state-space control algorithms to control this subsystem.
However, our hardware design does not include a current sensing circuit, so a slight model
modification is needed. An approximation of the fan model in form of a linear first-order
differential equation (Equation (2)) was chosen for this task. Such a model has only one
state variable (ω(t)) that can be measured with a rotary encoder included in our hardware
design. Limitations of this approximation include slightly different system dynamics, the
merger of system parameters, and the use of input–output based control algorithms. The
parameter merging poses a problem if the physical interpretation of parameter value is
required. This is not a problem as long as we intend to create a stabilizing controller.

ω̇(t) + bmω(t) = Kmu(t) (2)

where: bm - fan’s damping factor [s−1]
Km - motor constant [rad.s−2.V−1]

The ball in the tube subsystem shown in Figure 5 can be modeled using Newton’s
second law if all forces acting on the ball are identified. To make it simpler, we consider
only two major forces—a force of aerodynamic drag Fo(t) and a gravitational force Fg that
can be calculated using Formula (3).
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Fg = mgg (3)

where: Fg - gravitational force [N]
mg - ball’s weight [kg]
g - gravitational acceleration [m.s−2]

The aerodynamic drag force depends on a ball’s drag coefficient Cg, ball’s cross section
area Sg, density of the air ρv, and square of ball’s relative velocity as in (4). The relative
velocity is defined as a difference between air velocity vv(t) and ball’s velocity ẋ(t).

Fo(t) =
1
2

CgSgρv(vv(t)− ẋ(t))2 (4)

where: Fo(t) - aerodynamic drag force [N]
Cg - ball’s drag coefficient [−]
Sg - ball’s cross section area [m2]
ρv - air density [kg.m−3]
vv(t) - air velocity [m.s−1]
ẋ(t) - ball’s velocity [m.s−1]

Figure 5. Simplified diagram of Aerodynamic ball levitation plant.

Since air velocity vv(t) in the tube is relatively low, all mentioned factors except the
relative velocity can be combined into a single constant bv as in (5).

bv =
1
2

CgSgρv (5)

where: bv - ball’s drag factor [kg.m−1]

According to the diagram in Figure 5, both acting forces have opposing direction of
the effect (6).

F(t) = Fo(t)− Fg (6)

where: F(t) - force acting on the ball [N]

During normal operation, the aerodynamic drag force Fo(t) is always acting in op-
posite direction to the gravitational force Fg. To make its direction of influence physically
correct under all conditions, we added the sign function to the model Equation (7).

mg ẍ(t) = bv(vv(t)− ẋ(t))2sgn(vv(t)− ẋ(t))−mgg (7)
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where: ẍ(t) - ball’s linear acceleration [m.s−2]
sgn(...) - sign function

Finally, it is needed to find a link between the fan’s angular velocity ω(t) and air
velocity vv(t). According to our experiments shown in Figure 6, the air velocity vv(t) has
linear dependency on the fan’s angular velocity ω(t) as in (8). A constant term is added to
compensate for nonlinear behavior around zero.

Figure 6. Air velocity vv(t) as a function of fan’s angular velocity ω(t).

vv(t) = Kvω(t) + Cv (8)

where: Kv - fan’s coefficient [m.rad−1]
Cv - fan’s constant [m.s−1]

The complete mathematical model of the Aerodynamic Ball Levitation Plant is shown
in (9). Since this model contains several unknown parameters (bm, Km, bv, Kv, Cv) that
cannot be measured directly, we are going to estimate their values by means of experimen-
tal identification.

ω̇(t) + bmω(t) = Kmu(t)

ẍ(t) =
bv

mg
(Kvω(t) + Cv − ẋ(t))2sgn(Kvω(t) + Cv − ẋ(t))− g

(9)

3.1. Experimental Identification and Model Validation

Experimental identification techniques can be divided by the type of resulting model
into two major groups—grey-box and black-box model identification [19]. As quite a few
authors [4,5,7,16] have already put their effort into black-box model estimation [20], we
decided to focus on the first option and identify parameters of the plant model (9) to create
a grey-box model. The general schema of the identification topology is shown in Figure 7,
where in our case the approximation model is replaced with the analytical model (9). Then
an optimization algorithm is used to tune the model’s parameters to minimize the quadratic
cost function (10). This topology can be used for both online and offline identification tasks.
Due to the fast dynamics of our plant, we opted for the offline variant.

J(φ) =
1
N

N

∑
k=1

(
eT(k, φ)W(φ)e(k, φ)

)
(10)

where: J(φ) - quadratic cost function
φ - vector of model’s parameters
e(k, φ) = y(k)− ŷ(k, φ) - output prediction error vector
W(φ) - weighting matrix
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Figure 7. General schema for experimental parameter identification driven by output prediction error.

Like the modeling, the parameter identification task can be also split into two parts
according to the model subsystems. From the control engineering aspect, the fan subsystem
is stable, and thus the identification can be performed in the open-loop using a pseudo-
random rectangular input signal with varying amplitude. Because the ball’s presence
affects airflow inside the tube, it was fixed inside the tube during the experiment. Obtained
experimental data were used to estimate parameter values (bm, Km) of the fan’s model
using tfest function in MATLAB. The normalized root mean squared error of this model
is 12.55% (the lower the better) and the adjusted R-squared value of this fit is 98.42%.
Graphical model validation is shown in Figure 8.

(a) (b)
Figure 8. Fan’s mathematical model validation. (a) Real plant compared to modeled fan angular
velocity ω(t); (b) fan’s input voltage u(t).

Parameter identification of the ball in the tube subsystem is a bit more challenging
because this subsystem is inherently unstable [5]. To overcome this issue, a closed-loop
feedback controller must be used to avoid the ball’s position saturation at its physical
limits. Instead of designing a full-fledged controller, we decided to go with a simple rule-
based algorithm. This algorithm oscillates the ball around the center point by switching
input value between ±10% of equilibrium value. The time at which the input value is
switched is always random to prevent harmonic oscillations. The parameters (bv, Kv, Cv) of
mathematical model (9) are estimated by nonlinear least-squares method using a nlgreyest
function in MATLAB.

Results in Figure 9 do not look promising at the first glance since the ball’s position
of the identified model does not follow the position of the real ball precisely. This can be
caused by a slight deviation in the value of some parameters and since the system behaves
as an integrator, this error accumulates quickly over time. From the control engineering
aspect, this should not be an issue in controller design as controllers must be robust enough
to cope with system uncertainty. Values of estimated parameters are shown in Table 1.
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(a) (b)
Figure 9. Validation of the ball in tube subsystem. (a) Real plant compared to modeled ball position
x(t); (b) fan’s input voltage u(t).

Table 1. Estimated model parameters.

Label Name Value Unit

bm fan’s damping factor 2.491 s−1

Km motor constant 203.270 rad.s−2.V−1

bv ball’s drag factor 9.202 × 10−3 kg.m−1

mg ball’s weight 2.700 × 10−3 kg
Kv fan’s coefficient 1.979 × 10−3 m.rad−1

Cv fan’s constant 0.369 m.s−1

3.2. Linearization and Discretization

The mathematical model (9) is not suitable for designing a discrete LQI controller,
because this method is based on a linear discrete model in state-space form. To get the
correct form, the model (9) must be linearized first and then discretized. To make the
notation of state vector cleaner, a substitution (11) is proposed.

x(t) =
[
ω(t) x(t) ẋ(t)

]T
=
[
x1(t) x2(t) x3(t)

]T (11)

where: x(t) - system’s state vector
x1(t) = ω(t) - fan’s angular velocity [rad.s−1]
x2(t) = x(t) - ball’s position [m]
x3(t) = ẋ(t) - ball’s speed [m.s−1]

The mathematical model (9) can be rewritten accordingly (12).

ẋ1(t) = −bmx1(t) + Kmu(t)

ẋ2(t) = x3(t)

ẋ3(t) =
bv

mg
(Kvx1(t) + Cv − x3(t))2sgn(Kvx1(t) + Cv − x3(t))− g

(12)

In our case, the nonlinear model (9) is linearized at a operating point selected in the
center of the tube, while other values are calculated by substituting all derivatives (9) with
zero. Finally, the operating point can be defined by (13).

OP =
[
x10 x20 x30 u0

]
=
[
670.819 0.25 0 8.222

]
(13)
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where: OP - linearization operating point vector
x10 - operating point fan’s angular velocity [rad.s−1]
x20 - operating point ball’s position [m]
x30 - operating point ball’s linear velocity [m.s−1]
u0 - operating point fan’s input voltage [V]

Linearization at the operating point OP can be performed by expanding nonlinear
model (12) into first order approximation using Taylor series as shown in (14), where y(t)
denotes output vector of a linear model [21].

∆ẋ(t) =

−2.491 0 0
0 0 1

0.023 0 −11.565

∆x(t) +

203.270
0
0

∆u(t)

∆y(t) =
[

1 0 0
0 1 0

]
∆x(t)

(14)

where: ∆x(t) = x(t)− x0
∆u(t) = u(t)− u0

Based on the sampling period Tsp of the ball’s position sensor (Tsp = 0.04 s), the linear
model (14) is discretized using the same sampling period value. The linear discrete model
in state-space form is shown in (15). This model is used to design an LQI controller.

∆x(k + 1) = Ad∆x(k) + Bd∆u(k)
∆y(k) = Cd∆x(k)

(15)

where: Ad - discrete linear state matrix
Bd - discrete linear input matrix
Cd - discrete linear output matrix

4. Controller Design and Verification

Thanks to the integrated fan speed sensor of our plant, a wide range of control
algorithms can be utilized. Since plenty of previously mentioned authors have already
worked on control algorithms based on the input-output model, the state-space control
based on LQI has been selected.

Even with the addition of the fan speed sensor, it is not possible to measure the ball’s
speed x3(k). To overcome this limitation, some kind of estimation is needed. The simplest
solution is to estimate the ball’s speed x3(k) using the difference of its position x2(k). Since
data from the position sensor is quite noisy, the Kalman filter is used as both an estimator
and a noise filter.

4.1. Noise Filtration

The Kalman filter uses a discrete linear model (15) of the system with the addition
of a system noise (w(k)) and a sensory noise (z(k)) (16). System noise (w(k)) is used as
the result of ignored or approximated parts of the physical system’s dynamics, whereas
sensory noise (z(k)) is caused by the sensor itself or by the ADC conversion. It is expected
that both system and sensory noise have a zero mean value and noise covariance matrices
(QE, RE) are known. The extended Kalman filter is a modification that allows noise filtering
of non-linear systems, as system matrices (Ad(k), Bd(k), Cd(k)) are being updated in every
step [22]. From the perspective of the model (12), it is sufficient to use the Kalman filter
(not its non-linear variant) as the change in the ball’s position does not affect the linearized
model, and the ball’s velocity is expected to have near-zero value.

x(k + 1) = Adx(k) + Bdu(k) + w(k)
y(k) = Cdx(k) + z(k)

(16)
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where: Ad - discrete state matrix
Bd - discrete input matrix
Cd - discrete output matrix

Each iteration of the Kalman filter algorithm is divided into two phases—prediction
and correction [22]. During the prediction phase, a new system state is predicted using the
system’s model, the previous state, and the value of the input (17). The second phase uses
measurements to correct the predicted states to get an estimate of the real system state (18).

x̂−(k) = Ad x̂+(k− 1) + Bdu(k− 1)

P−(k) = AdP+(k− 1)AT
d + QE

(17)

where: x̂−(k) - predicted value of the state vector
x̂+(k) - corrected value of the state vector
P−(k) - predicted value of error covariance matrix
P+(k) - corrected value of error covariance matrix
QE - covariance matrix of the system noise

KE(k) = P−(k)CT
d

(
RE + CdP−(k)CT

d

)−1

x̂+(k) = x̂−(k) + KE(k)
(
y(k)− Cd x̂−(k)

)
P+(k) = (I − KE(k)Cd)P

−(k)

(18)

where: KE(k) - Kalman gain matix
RE - covariance matrix of the measurement (sensory) noise
y(k) - measured system output
I - identity matrix

The discrete linear model (15) was used to design a Kalman filter. Noise covariance
matrices (QE, RE) were fine-tuned using an experimental approach, so that measured noise
is reduced while not affecting the dynamics of the physical plant. Exact values used are
shown in (19).

QE =

1 0 0
0 10 0
0 0 10

; RE =

[
90 0
0 30

]
(19)

In Figure 10, one can see the application of the Kalman filter in the task of noise
filtration of the ball’s position x(k) measurement. The visible noise reduction will have a
positive effect on the control of the plant.

Figure 10. An application of Kalman filter in task of ball’s position x(k) estimation.
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4.2. LQI Controller

The LQI controller is a variant of the standard Linear-Quadratic Regulator (LQR)
that includes the integral term. The design of such controller starts with a discrete linear
model (15) of the plant. This model is firstly converted into its extended form (20) that
adds at least one state variable. How many state variables are added depends on how
many state variables require zero error. Each added state variable resembles an integral of
the error of the target state variable. This requires modification of the dynamics matrix Ad
and input matrix Bd according to (21).

∆xi(k + 1) = Ai∆xi(k) + Bi∆u(k) (20)

where: Ai - discrete linear state matrix of model in extended form
Bi - discrete linear input matrix of model in extended form

Ai =

[
Ad 0[

0 −Tsp 0
]

1

]
; Bi =

[
Bd
0

]
(21)

where: Tsp - sampling period [s]

The LQI controller is designed in the same way as the standard LQR controller [23] by
minimization of quadratic cost function (22), which is modified according to the LQI needs.

J(x, u) =
∞

∑
i=0

(
xT

i (i)QCxi(i) + uT(i)RCu(i)
)

(22)

where: J(x, u) - quadratic cost function
QC - state weighting matrix
RC - input weighting matrix

QC and RC weighting matrices are set according to (23).

QC =


0.1 0 0 0
0 10 0 0
0 0 10 0
0 0 0 105

; RC =
[
0.1
]

(23)

To get an optimal control algorithm based on cost function (22), the Riccati algebraic
Equation (24) must be solved [24].

QC + AT
i SAi − S− AT

i SBi

(
BT

i SBi + RC

)−1
BT

i SAi = 0 (24)

where: S - solution of Riccati algebraic equation

Finally, controller (25) in form of the feedback gain KC can be calculated using the
solution S of Equation (24).

∆u(k) = −R−1
C BT

i S∆xi(k) = −KC∆xi(k) (25)

where: KC - feedback gain

Before we apply the newly designed controller (25) onto the real plant, its effectiveness
needs to be verified in a simulation environment. For this task, a nonlinear mathematical
model (12) implemented in MATLAB/Simulink was used. The general schema for the
verification of the LQI controller is shown in Figure 11.
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Plantxref(k)

x(k)

xi(k)
−KC

Figure 11. General schema of LQI controller.

From the simulation results shown in Figure 12, it can be concluded that the designed
controller is sensitive to noise, but the regulation period is satisfactory. In this simula-
tion, the Kalman filter was not applied while sensory noise was modeled as a standard
Gaussian noise.

(a) (b)
Figure 12. Simulation verification of LQI controller in Matlab/Simulink environment. (a) Ball
position x(t) tracking the reference signal xre f (t); (b) fan’s input voltage u(t).

After successful simulation controller verification, the controller (25) was applied on
the real plant with results shown in Figure 13. The deviation of the ball’s position x(k) from
a reference trajectory xre f (k) near the zero time is caused by different initial conditions
between simulation and real experiment. In the case of the real laboratory plant, the initial
position of the ball must be at its topmost position within the tube. This prevents the ball
from being stuck near the fan due to highly turbulent airflow at its close proximity.

(a) (b)
Figure 13. Verification of LQI controller on real physical plant. (a) Ball position x(t) tracking the
reference signal xre f (t); (b) fan’s input voltage u(t).

We also conducted position tracking experiments with a polynomial controller de-
signed using the pole placement method and a discrete PID controller with trapezoidal
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integral approximation. Results shown in Figure 14 depict a comparison of these control
algorithms with the previously presented LQI control algorithm. The following parameters
were used in the design of these controllers:

• Polynomial controller using pole placement method (poles in continuous time):
s =

[
−1 −1.5 −2 −3± 0.5i −6

]
• Discrete PID using Naslin method: δmax = 5%→ α = 2

Figure 14. Comparison of various control algorithms applied on real plant.

A quantitative comparison of the selected set of control algorithms is shown in Table 2.
Metric J(∆e) quantifies how well the ball position x(t) tracks the reference position xre f (t)
and its formula is in (26). Metric J(∆u) quantifies how stable is the fan’s voltage u(t) and
its formula is in (27). The regulation time is the timespan it takes the ball position to reach
±5% of reference the reference signal from the start of the experiment.

Table 2. Quantitative comparison of various control algorithms on simulation and real plant.

Control Algorithm
Regulation Time [s]

(Lower Is Better) Samples J(∆e)
(Lower Is Better)

J(∆u)
(Lower Is Better)

Simulation Real Simulation Real Simulation Real Simulation Real

LQI 3.44 5.44 1251 1251 2.04 2.87 13,493.94 1177.73
PID (Pole placement) 3.24 5.80 1251 1251 1.66 4.77 775.35 1767.94

PID (Naslin) 2.20 6.12 1251 1251 1.92 5.80 56,660.30 4738.40

J(∆e) =
N

∑
n=1

(
x(i)− xre f (i)

)2
(26)

where: x(i) - i-th sample of ball position
xre f (i) - i-th sample of ball reference position

J(∆u) =
N

∑
n=2

(u(i)− u(i− 1))2 (27)

where: u(i) - i-th sample of fan voltage

5. Implementation of the Laboratory Plant within the DCS at CMCT&II

The newly created laboratory plant is implemented into a Distributed Control System
(DCS) [25] at the CMCT&II. The hierarchical model of the DCS architecture shown in
Figure 15 is divided into five layers of which the first three layers are currently applied to
this plant. Implementation of the remaining two topmost layers of the pyramidal model is
the subject of further research.
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Figure 15. Pyramidal model of the DCS architecture at CMCT&II.

The ball’s position sensor, the fan speed sensor, the fan, and the whole plant’s physical
construction represent the zero layer of the architecture. The plant’s control algorithms
implemented in the ATmega328P microcontroller are part of the first layer. The second
layer implements the simulation validation of control algorithms and the Human–Machine
Interface (HMI) in form of the rotary encoder and the 7-segment display. The goal of this
interface is to allow the user to change control parameters without the need for a computer.
The schematic diagram in Figure 16 shows an implementation of mentioned layers of the
DCS architecture.

Figure 16. Implementation of the DCS architecture for the Aerodynamic Ball Levitation Labora-
tory Plant.

The presented hierarchical architecture is used by the CMCT&II in the ALICE (A Large
Ion Collider Experiment) CERN (European Organization for Nuclear Research) research
project [26,27]. The created laboratory plant is used to validate the generality of proposed
solutions and further validate the concept of the DCS at the CMCT&II.
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6. Conclusions

The main goal of this paper is to present obtained experimental results from the newly
created Aerodynamic Ball Levitation plant. This includes the design and verification of
a methodology for modeling, identification, control, simulation, and implementation on
the real nonlinear laboratory plant. Additionally, details about hardware and software
implementations are provided with the emphasis on design improvements. The main
improvement of our design is the addition of the fan speed sensor that enabled us to
use a broader range of available control algorithms. These control algorithms can be
easily validated on the simulation model that acts as a digital twin for the real plant. The
digital twin can be used for predictive control algorithms or to generate training data for
AI-based controllers.

Another improvement was made in the use of the Kalman filter to filter the sensory
noise, which in turn reduced the fluctuation of the control voltage. Lastly, the onboard
control mechanism was added in form of the display and the rotary encoder with a push-
button to control the plant without the need for a computer. Obtained results are presented
in visual form supplemented with quantitative evaluation. The laboratory plant can be
further improved, e.g., with the addition of a current sensing circuit. This circuit can
improve the results of the experimental identification especially in the case of the fan
subsystem. Additionally, a different set of control algorithms such as Model Predictive
Control, Model Reference Adaptive Control, or Robust Tracking Control can be evaluated
on this plant.

The newly created laboratory plant will be used in the education process during
control engineering courses provided by CMCT&II, for example, Basics of Automatic
Control, Optimal Control of Hybrid Systems, or Control and Artificial Intelligence. The
plant creates a solid foundation for standard control engineering tasks, such as analytical
modeling, parameter identification, and design of various types of controllers. It also
enables the members of the CMCT&II to implement the laboratory plant into similar DCS
architecture that is used at the CERN.
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The following abbreviations are used in this manuscript:

ADC Analog to Digital Converter
ALICE A Large Ion Collider Experiment
ARX Autoregressive Model with Exogenous Variable
CERN European Organization for Nuclear Research
CMCT&II Center of Modern Control Techniques and Industrial
DCAI Department of Cybernetics and Artificial Intelligence
DCS Distributed Control System
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FEEI Faculty of Electrical Engineering and Informatics
HMI Human–Machine Interface
LQI Linear Quadratic Integral (regulator)
LQR Linear-Quadratic Regulator
PCB Printed Circuit Board
PID Proportional-Integral-Derivative (regulator)
PLA Polylactic Acid (popular material used for 3D printing)
PWM Pulse-Width Modulated (signal)
SISO Single-Input Single-Output (system)
SIMO Single-Input Multiple-Output (system)
TUKE Technical University of Košice
UART Universal Asynchronous Receiver–Transmitter
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of the center of modern control techniques and industrial informatics. In Proceedings of the 2016 IEEE 14th International
Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 21–23 January 2016; pp. 279–285.
[CrossRef]
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