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Abstract: The application of polymerization initiators in a process can improve reaction efficiency and
reduce energy loss. Azo compounds (azos) provide the required energy and promote polymerization
for construction due to the heat release in the decomposition reaction. However, the heat release
also brings related thermal hazards due to the lack of proper control. To reduce and avoid possible
future hazards, the new azo initiators, 2,2′-Azobis(2-methylpropionamide)dihydrochloride (AIBA)
is selected to explore the related thermal properties that are less studied by past literature. For the
chemical process, its chemical reaction mechanism is extremely essential. In addition to being an
influential foundation for process control, it is also used as a calculation basis for subsequent thermal
hazard parameters, which is suitable for evaluating the degree of thermal hazard and emergency
response. The assessment program includes kinetic model simulations and consecutive calculation
on thermal safety parameters, such as TMRad and TCL for process operations. This study combines
the thermogravimetric data with the nonlinear kinetics fitting on thermogram. The fitting results are
derived back to the analysis formula which corresponds to the reaction mode to obtain the elementary
reaction parameters and establish the kinetics process. The runaway mode and consequent thermal
hazard parameters can also be obtained.

Keywords: polymerization; construction; thermal hazard; thermal safety; kinetic

1. Introduction

Long-term technological improvements and related research in the polymer manu-
facturing industry have led to the application of various materials in the polymer area [1].
Azo compounds (azos) were originally used as the mainstream on applied solutions of
dye areas, which have relied on consideration from scientific research due to its highly
energetic properties.

The high energetic properties of azos facilitates the initiation of the polymerization
reaction. This property is attributed to the thermal decomposition of azo compounds
and the formation of radicals. Energy released helps to meet the threshold of reaction,
and the reactivity of the generated free radicals has a significant role in promoting the
polymerization of different types of monomers [2], such as to facilitate the fabrication of
plastics for construction and water-absorbent resins. The reaction characteristic of the
decomposition brings heat release accompanied by temperature rise and a large amount of
gas products, which may cause equipment deformation, and if the situation is ignited after
a leak occurs, it will cause a fire and explosion [3–5].

Reaction hazard characteristics [6] can be developed on the basis of real past cases; the
thermal hazard [7–9] that occurred on 12 May 2016 is one example. A warehouse storing
azo dyes caused a fire and damaged related facilities due to improper temperature and igni-
tion source control. There is a large amount of evidence that in the azo processing program,
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in the initial high temperature condition caused by mis-operation or cooling failure, even if
only a small part of the material generates a decomposition reaction due to its self-reaction
characteristics, the heat generated with the temperature rise is enough to induce the rest of
the surrounding materials to react. Therefore, temperature control to circumvent thermal
runaway is an essential basis [10] for avoiding similar process disasters, and relevant safety
studies should be performed. Although the thermal safety of azo compounds has been
discussed in the existing literature, the progress of the manufacturing process has resulted
in the pre-research of new azos for production and application. To improve the efficiency
and energy saving of the process, the new initiator focuses on the lower temperature to
start the polymerization reaction. However, the decomposition feature at low temperatures
represents low thermal stability, the thermal safety needs to be determined. The related re-
search on initiators that have recently been employed into practical processes is still lacking
and most of the reported research in the previous literature are concentrated on the appli-
cation of azo dyes. The azo initiators 2,2′-Azobis(2-methylpropionamide)dihydrochloride
(AIBA) as Figure 1 used for lower temperature range which generated the decomposition
reaction below 60 ◦C [9,11,12], represented hazardous feature, is selected for a pioneering
methodology to demonstrate the kinetics explanation in a real situation.
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Figure 1. The chemical structure of AIBA.

The analysis is based on the experimental data obtained by thermogravimetric analysis
and the nonlinear fitting method which is used to conform with the experimental curve.
The data points corresponding to the curve can be substituted into the formula to obtain the
basic parameters and establish the corresponding kinetic analysis mode to connect the heat
transfer of the reaction simulation. The thermal hazard of a substance is directly related
to the acquisition of reaction kinetics [13]. The description of the reaction mechanism and
the comprehension of parameter values [14] will be used to calculate the heat exchange
between the substance itself and the external environment. The characterization of the
reaction kinetics depends mostly on the activation energy (Ea), pre-exponential factor
(A), and the reaction equation (f (α)) [15]. The heat release mode of the substance that
confirms the safety temperature parameters is then calculated, which is used to evaluate
the efficiency of the cooling system and the response time for emergency measures [16].
The overall research process is shown in Figure 2.
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2. Materials and Methods
2.1. Samples

AIBA samples were obtained as 99.0 mass % white powdery solid from ACE Chemical
Corp., Shanghai, China. The samples were refrigerated at a low temperature and kept dry
to prevent self-reaction from decomposition and deliquescence.

2.2. Thermogravimetric Analyzer

The Thermogravimetric analysis (TGA) from Mettler Toledo is a quantitative analysis
technique that derives the transformation, kinetics, and mechanism of the overall process of
the reaction through changes in sample quality under isothermal or non-isothermal heating
environments. For reactive substances, combining with software technology can monitor
and record changes in the quality of the sample affected by the temperature program over
time. The overall testing program consisted of a furnace chamber as 0.5, 1.0, 2.0, 4.0, and
8.0 ◦C/min [17,18] from 25.0 to 400.0 ◦C for a heating rate which vented with nitrogen
(50 mL/min) and a microbalance. The microbalance recorded the mass changes of the
samples (3.0 ± 0.1 µg) on the balance through the programmer and controller.

2.3. Basic Theory of Kinetic Model

The Ea and A have a variety of widely recognized methods under the verification of
various empirical formulas and studies. However, it is relatively complicated to establish
the f (α) [19], especially for substances with multi-stage reactions. To evaluate the f (α) and
make the calculated results consistent with the experimental results as much as possible
and simplify the calculation hypothesis, the fitting model [20] is considered the reaction
process (a) as it is a variable which can substitute various reaction equations for calcula-
tions to obtain the specific reaction rate (da/dt) as a characterization. The experimental
reaction mass loss (TG) and the specific mass loss rate (dTG) caused by the reaction can be
manifested as a nonlinear fitting process between the curve calculated by the numerical
method and the experimental data line in the actual calculation [21]. The thermal safety
software [22] combined with kinetic analysis was used to determine the decomposition
characteristics of thermal hazard parameters. The thermal safety software performed
nonlinear fitting TGA data based on kinetic model to calculate the hazard parameters
corresponding to reaction rate under adiabatic conditions.

The reaction mode can be divided into single stage or multi-stage reaction [16,23,24].
The basic reaction mode can be expressed as:

dα

dt
= k exp(− E

RT
) f (α) (1)

The basic f (α) can be characterized by nth and autocatalytic reactions:

f (α) =
{

(1− α)n

(1− α)n1(αn2 + z)
nth model

autocatalysis model
(2)

Exploring the multi-stage reaction can generalize the mode that does not affect each
other (A→ B→ C) or opposite (A→ B + . . . or A + B→ 2B), which can be expressed as
Equations (3) and (4), respectively:

dα1

dt
= k1 exp(− E1

RT
) f1(1− α);

dα2

dt
= k2 exp(− E2

RT
) f2(α− α2) (3)

dα

dt
= k1 exp(− E1

RT
)(1− α)n1 + k2 exp(− E2

RT
)αn2(1− α) (4)

2.4. Extending from the Analysis of Material Dynamics to the Thermal Balance of the System

Reaction kinetics can continue to be extended to the thermal equilibrium of systems
containing substances, such as vessels. For the accumulation of many substances with
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self-reaction characteristics, the self-decomposition heat from a small part of the substances
cannot release to outside systems, which results in temperature rise. If this phenomenon
can be diluted by the heat conduction on the surface of the system, it can be avoided
that other unreacted substances in the system are introduced into the reaction by high
temperature. Otherwise, many substance reactions are triggered to form the runaway
reactions. This situation of rapid temperature rise in a short time must be avoided in
hazard control. The basic system heat conduction equation can be expressed as:

ρCp
∂T
∂t

= div(λ(grad(T)) + W) (5)

where ρ is the density, Cp is the specific heat capacity, λ is the thermal conductivity
coefficient, T is the temperature, and W is the heat generation due to reaction.

The basic assumption is that the initial temperature inside the system is evenly dis-
tributed with the setting of boundary conditions:

1st kind: Ts = Te

2nd kind: − λ ∂T
∂X

∣∣∣s = qe

3rd kind: λ ∂T
∂X

∣∣∣s = U(Ts − Te)

(6)

where x is the outer unit normal on the boundary, subscripts s and e denote the surface and
environment, respectively, and U is the heat transfer coefficient.

2.5. Safety Operation and Related Evaluation Parameters of Actual Manufacturing Process

The reaction rate is always a crucial factor for efficiency in the chemical process. How-
ever, the reaction rate still has its limits due to safety considerations. Process deviations,
such as incorrect operations causing the process temperature to exceed the tolerance limit,
and the rapid increase in reaction rate, drives a large amount of heat release with tem-
perature rise and will eventually lead to process equipment damage, leakage, and even
fire and explosion. In the above-mentioned classic thermal runaway scenario chemical
process, if the initial heat can be effectively ventilated or cooled by the process staff or
system which can appropriately respond by adequate time, the process can be adjusted in
normal operation. Sufficient respond time also means that if heat accumulation is formed
in the initial stage, under safety measures, the hazard can still be eliminated in the early
stage. Therefore, the reaction process and time efficiency related parameters are extremely
significant in the normal operation and the emergency response process, which can be char-
acterized by the current time required for the estimated substance to reach the maximum
reaction rate (TMRad And TMRiso).

TMRad and TMRiso can be obtained through adiabatic and isothermal experiments,
but the experimental equipment is expensive, and the procedures are complicated. To
improve the efficiency in industrial applications, the TGA, which is convenient and widely
approved by research, can be analyzed by the changes in pattern of reactions with time to
the actual process situation from numerical methods. TMRad was discussed by Kossoy and
Akhmetshin’s thermodynamic measurement [25] where the influence of reaction rate on
hazard was evaluated. As seen in Wang et al. [26], TMRad can provide a basis for initiating
emergency measures to reduce the rate of thermal runaway reactions. Therefore, TMRad
is a useful indicator for determining response time. TMRad can be evaluated from the
following calculation modes [27]:

When a substance is decomposed or reacted in a batch reactor, the heat balance can be
conveyed as Equation (7).

•
Qin −

•
Qout +

•
Qr =

∆Q
∆t

(7)
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The thermal equilibrium of the exothermic reaction obtained by calorimetry from
Equation (7) is derived as Equation (8).

UA(Te − Ts) + Ms(−∆Hd)
dα

dt
= MsCp,s

dTs

dt
+ McCp,c

dTc

dt
(8)

where U, A, Te, Ts, Tc, Ms, Cp,s, and Cp,c are heat transfer coefficient, wetted surface
area, environment temperature, sample temperature, test cell temperature, sample’s heat
capacity, and test cell’s heat capacity, respectively.

Equation (9) indicates that the sample and the test cell are in thermal equilibrium.

dTc

dt
=

dTs

dt
=

dT
dt

(9)

Assume that the value of λ of the sample generating heat in adiabatic environment
is equal to 0. The relationship between time and temperature in adiabatic system is
constructed by integrating Equations (8) and (9).

dT
dt

=
MsCp,s

McCp,s + MsCp,s

−∆Hd
Cp,s

dα

dt
(10)

In addition, the phi value (Φ) and ∆Tad can read as Equations (11) and (12).

Φ =
MsCp,s + MsCp,s

McCp,s
(11)

∆Tad =
−∆Hd

Cp,s
(12)

Then, Equation (11) can be rearranged as Equation (13).

dT
dt

=
1
Φ

∆Tad
dα

dt
(13)

Therefore, when the initial temperature and Φ are defined, the numerical integration
of dT/dt can be used to predict TMRad.

2.6. Thermal Stability on Storage Condition

Based on the assessment of the reactive hazard of the substance, the subsequent deter-
mination of storage and transportation hazard can be observed. According to the United
Nations standard “Recommendation on the Transport of Dangerous Goods” (TDG) [28],
the packaging of a substance is related to its heat sensitivity and stability. The evaluation
method can be based on self-accelerating temperature on decomposition for process con-
trol and emergency. However, the test methods proposed by TDG [29] all have their use
consideration requirements and a large cost [30]. Combining the material dynamics and
the system heat exchange model, the temperature parameters, which the additional actual
evaluation measures is not required, can be constructed [31–34]:

dT
dt

=
λ

ρCp

(
∂2T
∂x2 +

g
r

∂T
∂x

)
+
−∆Hd

Cp

dα

dt
(14)

where Cp is the sample heat capacity, λ is the thermal conductivity, ρ is the density of
AIBA, x is the package radius, and g is a geometry factor that varies by the type of
packaging. ∆Hd and dα/dt are described by TGA and kinetics model [30,32], respectively.
The thermal hazard on runaway reaction and enhancement process can be defined by
the possible hazardous properties corresponding to changes in the temperature range
by decomposition [30]. When the temperature exceeds the decomposition temperature
at the initial stage of runaway reaction, the temperature increases continuously with the



Processes 2021, 9, 1934 6 of 11

release of reaction heat, which is not suitable for storage and transportation. As more
substances participate in the reaction, the temperature increases in a short time and shows
a sharp upward trend of the inflection point on the temperature versus time curve, which is
required for emergency measures to deal with possible thermal hazards. In addition, from
the impact of reaction rate on process hazards, if a large number of substances decompose
in a short time, the possibility of process hazards will increase. When the reaction consumes
the reactant within a specific temperature range, use the estimated time (TCL) to consume
a certain amount of material as the basis for evaluating the thermal hazard.

3. Results
3.1. Experiment Data Curve Fitting and Derivation of Related Reaction Kinetic Parameters

The experimental data curve is non-linearly fitted by applying reaction kinetic simula-
tion. The fitted scenario is divided into TG and dTG signal curve and the calculated result is
shown in Figure 3. From the mass loss shown by the experimental curve, it can be seen that
AIBA has three stages of reaction, caused in different intervals of material consumption
where the reaction temperature is listed in Table 1. On this foundation, the reaction kinetics
is deduced, and the experimental curves are fitted by the multi-stage model. Comparing
the calculated values with the actual experimental results and gradually optimizing the
degree of fitting, the evaluation results are beneficial to determine the operation mode of
the process and the temperature control. The reaction parameters, such as reaction rate
and activation energy, can be used as the basis for verifying the actual operation and as
the source for estimating the mode of the overall reaction system, which are shown in
Figures 4 and 5 and Table 2.
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Table 1. Non-isothermal data by TGA tests for 98 mass % AIBA at 0.5, 1.0, 2.0, 4.0, and 8.0 ◦C /min.

AIBA

β (◦C/min) T0 for 1st Reaction
(◦C)

T0 for 2nd Reaction
(◦C)

T0 for 3rd Reaction
(◦C)

0.5 146 158 276
1.0 150 166 289
2.0 152 180 306
4.0 156 181 308
8.0 158 186 319
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Table 2. Thermokinetic parameters evaluation results of the AIBA.

Substance Reaction Form
Parameter ln (k0) Ea n1 n2 TG

Units ln (1/s) kJ/mol Dimensionless %

AIBA Auto
1st stage 47.43 ± 0.1 188.32 ± 0.03 1.70 ± 0.01 0.69 ± 0.01 17.92 ± 0.5
2nd stage 36.42 ± 0.1 155.17 ± 0.03 7.35 ± 0.01 7.18 ± 0.01 34.81 ± 0.5
3rd stage 21.18 ± 0.1 122.73 ± 0.03 0.75 ± 0.01 0.08 ± 0.01 46.35 ± 0.5

3.2. Thermal Hazard Evaluation

The safety characteristics of storage, transportation, and reaction are shown in Figure 6.
From the change of TCL value, when the temperature is >110 ◦C, the consumption of AIBA
is >60% due to reaction within 1 day. In the actual storage process operation, the awareness
of external fire prevention and firefighting measures should be taken, but additional cooling
or rigorous temperature control are less needed.

The analysis result between reaction rate and time is shown in Figure 6. In the actual
process, there needs to be a trade-off between the reaction rate to improve efficiency and
the balance between the safe control process. The higher reaction rate speeds up the
process, while contrarily, the temperature and pressure rise caused by the heat and gas
products released by the reaction in the system must be restrained to a certain extent
to avoid runaway reactions. In addition, corresponding safety measures must be taken
at the development stage of potential hazards, such as: excessive reaction rate, large
amounts of substances participating in the reaction, and the resulting rapid temperature
rise. According to TMRad analysis, when the temperature is >119 ◦C, the TMRad of AIBA
is shorter. If the process can be kept in a temperature environment with a long TMRad,
it means that there is enough time to modify and stabilize the process, and to define the
conditions for the influence of instability or thermal runaway on the process.
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3.3. Runaway Reaction of AIBA

The description of kinetics combined with the calculation of the system’s external
heat exchange is used to evaluate the heat release behavior of a substance at a specific
external temperature. The setting scenarios of the external environment were divided
into process temperature that were high or the fire source was far away, and 120, 140, and
160 ◦C when the process temperature continued to rise or the heat source was connected
until temperatures reached the onset temperature. The temperature parameter evaluation
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mode can be used for the hazard analysis of the process reaction, which was used to ensure
safe process conditions and establish the safety system design of the process. The basic
parameters of AIBA and external packaging are described in Table 3.

Table 3. Physical parameters of AIBA and packages for AIBA.

Material Size (cm)
Shell

Thickness
(mm)

Filling
Height (cm)

Density
(g/cm)

Specific Heat
Capacity
(J/(g K))

Thermal
Conductivity
Coefficient
(W/(m K))

Heat
Transfer

Coefficient
(W/(m2·K))

AIBA - - - 0.735 2.0 0.95 10

25 kg Box L ×W × H
29 × 39 × 46 5.0 35 0.75 1.7 0.3 2.2

AIBA under different temperature circumstances from the set external environment
temperature due to heat transfer to the inside of the system caused the temperature to
continue to grow and eventually caused the temperature change when runaway reaction
was shown in Figure 7. When the temperature exceeded 120 ◦C, the decomposition reaction
led to the occurrence of runaway reaction. However, AIBA did not produce runaway
reactions at temperatures <100 ◦C. The simulation showed that the packaging form has
little effect on the thermal safety of AIBA, and the environmental temperature had a deeper
influence on the thermal safety. In the actual process, the storage of AIBA did not require
additional cooling, but fire alarms need to be guarded to prevent heat from promoting
uncontrolled reactions. The AIBA had the characteristics of active decomposition reaction
for high temperature environment which the temperature monitoring required for the
reaction process. The fast reaction speed will still cause AIBA to generate thermal runaway
when the temperature changes slightly. The time required for thermal runaway in high
temperature environments is reduced. In the actual production process, AIBA recommends
refrigeration and prevention of deterioration. The active decomposition reaction process
in the chemical industry is usually carried out in a high-temperature environment. If the
progress of the reaction is not adequately monitored, due to the extremely fast reaction
speed, even slight temperature changes may cause thermal runaway.
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4. Discussion

The non-isothermal TGA experiment pointed out the potential reaction mode of AIBA
and used it as a basis for numerical analysis. The nonlinear fitting calculation kinetic model
curve is compared with the experimental data of AIBA, and the kinetic parameters are
inversely deduced to predict the exothermic behavior of large-scale substances and the
related heat transfer. Simulation analysis is aimed to reduce tedious and expensive experi-
ments. Calculating the reaction behavior of substances in different external environments
in simulation is completed by the prediction of thermal hazards which provided safety
measures in actual situations.

Mathematical methods to analyze the thermal decomposition parameters of AIBA,
such as TCL and TMRad show that if the temperature reaches 110 ◦C the thermal stability of
AIBA will be affected, and when it exceeds 100 ◦C the thermal stability of storage condition
will further decrease. Therefore, it is a necessary measure and equipment requirement for
AIBA to deal with fire protection during application.
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