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Abstract: The process of agricultural robot design is a complex system requiring the cooperation
and integration of agricultural, machinery, automation, and information technology. These demands
create great challenges for the innovative design of agricultural robots. Meanwhile, more than 95%
of the latest inventions and creations in the world are recorded in the patent literature. In order
to make effective use of the information and data resources of patents, shorten the design cycle,
and provide knowledge for the designers, according to the operation’s objectives, an agricultural
robot technology knowledge graph (TKG) was established for innovative designs. By analyzing
the patent information, a patent IPC co-classification network (IPCNet) for adaptive design process
recognition was put forward to meet the requirements of the different operation objectives and
operation links. Through the extraction of the technology keywords and efficacy keywords, based
on the word co-occurrence network (WCONet), a technology–efficacy map (TEM) was constructed.
Through the integration of the adaptive design process and the TEM, the agricultural robot design
TKG was constructed for determining technological recommendations for agricultural robot design.
The case of the citrus picking robot design was realized to implement the design process. With the
technology recommendation results, the moving system, body, and end-effector for the citrus picking
robot were designed to verify the results of the recommendation.

Keywords: knowledge graph; agricultural robot; technology recommendation; innovative design

1. Introduction

In response to the requirements of smart agriculture and intelligent agricultural equip-
ment, robotic technologies in agriculture are developing rapidly. Compared with traditional
agricultural machinery, agricultural robots have the characteristics of complex structures
and functions, comprehensive electromechanical control, and a complex industrial chain [1].
This creates great challenges to R&D for agricultural robots. In the past 30 years, the agri-
cultural robots that have been developed [2–4] include the complete systems [5–7] or the
subsystem of a mechanical system (i.e., the manipulator [8–10] and the end-effector [11,12],
guidance and navigation [13,14], and target recognition and localization [15–18] et al. The
design process for the agricultural robot is the determination of the degrees of freedom
(DOF), the numbers of arms, and the workspace [19], and the system design includes the
traveling platform, sensors, manipulations, end-effector, and the control system [2,3,20].

The working environment of agricultural robots is changeable and unstructured.
Therefore, the process of agricultural robot design needs to meet the agronomic demands
of the agricultural operation scene and the operation objective (i.e., the variation of objects
for fruit picking includes the position, size, shape, and reflectance, and the variation of
the sense includes the orchard, greenhouse, indoor, and open field [19]), as well as the
cooperation and integration of machinery, automation, and information technology. Those
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demands created great challenges for the designers of innovative agricultural robot designs.
Designers not only need to understand the relevant technologies, such as robot-related
mechanical systems, automatic control, sensors, and information processing, but also need
to understand the knowledge relevant to the agricultural robot operation scene and the
operation’s objectives [21,22].

Traditionally, the process of mechanical system design has mainly relied on experience
and knowledge. In order to improve the design efficiency, various methodologies have
been developed to aid design, such as knowledge reuse [23,24], TRIZ (theory of inventive
problem solving) [25–29], and infused design [30], to realize the use of knowledge from
the different domains. The reuse of design knowledge in a specific domain is a research
hotspot in the field of product design [23,31,32]. Modern product design needs knowledge
reorganization, transfer, and transformation in multi-disciplinary fields, such as machinery,
information, automation, and biology. More than 95% of the latest inventions and creations
in the world are recorded by the patent literature. In order to utilize the knowledge of the
patents, Trappey (2013) developed a novel knowledge management approach using an
ontology-based artificial neural network (ANN) algorithm to automatically classify and
search for the knowledge found in documents stored in huge online patent corpora [33].
An intelligent recommendation system was developed to enable timely and effective
patent searches prior to, during, and after design collaboration in order to prevent the
potential infringement of existing intellectual property rights (IPR) and to secure new
IPR for market advantages [34]. By combining the technological terms identified, the
potential technological topics captured, and the distribution and evolution patterns of the
technological topics analyzed in patents, the technical topics and the future R&D hotspots
in 3D printing were identified [35].

Knowledge graphs (KG) are a methodology using mathematics, graphics and infor-
mation processing, and information visualization theory and methods, combined with
bibliometric citation analysis and co-occurrence analysis, to show the core technology, de-
velopment history, frontier fields, and overall knowledge structure of a research field. Thus,
by using topic analysis, relation rule mining, and NLP (natural language processing) to
extract the knowledge to the patent, the TKG was established. Brügmann (2015) developed
an operational prototype of a workbench for intelligent patent document analysis and
summarization that has five modules for the individual aspects of patent analysis (entity
recognition, lexical chain identification, invention composition derivation, segmentation,
and claim–description alignment) and a module for patent summarization [36]. Trappey
(2020) developed a hierarchical Latent Dirichlet Allocation (LDA)-based approach to dis-
cover topics and form a top-down ontology, namely a semantic schema, representing the
collective patent knowledge [37]. By applying the natural language process (NLP) and
patent mining, Ye (2021) provided a domain knowledge graph automatic building method,
and an approach to cross-domain knowledge discovery was established to assist with the
conceptual stage of the design process related to mechanical engineering [38] in order
to overcome the shortages in the query-driven patent search contexts by defining and
constructing a patent knowledge graph.

The technology knowledge graph (TKG) can provide the domain knowledge at the
level of terms (words or phrases) for agricultural robot design [39]. Hurtado (2015) pre-
sented an approach that automatically translated the hierarchies found in the patent
classification codes into concept hierarchies based on reclassification techniques and the
relationships between different application domains. This approach could realize the auto-
matic inference of implicit knowledge [40]. Deng (2021) defined and constructed a patent
knowledge graph to capture the semantic information between keywords in the patent
domain. By comparing the weighted graphs based on the graph edit distance measure,
a recommended patent approach was proposed to companies [41]. Liu (2020) provided
a patent knowledge query tool based on function, in which, by using a semi-supervised
learning algorithm, function information was automatically classified and labeled by the
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functional basis. The retrieved cross-domain patents could be purposefully recommended
to trigger designers’ creativity [42].

In order to meet the agronomic demands of the operation scene, the operation ob-
jective, and the operation link for the agricultural robot, and to make effective use of the
information of patents, shorten the design cycle, and provide knowledge for the designers,
the domain patents were collected to realize the path recognition and technology–efficacy
map construction for the robot design process, and the technology knowledge graph (TKG)
was established to realize the technology recommendation process for the innovative
agricultural robot design. In addition, a case study of a citrus picking robot design was
implemented to describe the process of innovative agricultural robot design.

2. Materials and Methods
2.1. Data Sources

Considering the technical background, the key technical points, and the technical
developments of the patents with the analyzed results for the agricultural robot patents [43]
about the keywords, the International Patent Classification (IPC), and the Derwent Manual
Code (MC), the query set was developed, as shown in Table 1. The patents from the
Derwent Innovations Index (DII) database in the WEB of Science (WoS) database were
searched. In total, 9042 patents related to agricultural robots were obtained.

Table 1. Agricultural robot patent query set, where TS is the topic terms in the Title and Abstract fields within a patent
record, MAN is the Derwent Manual Code(s) field within a patent record, and the IP is the International Patent Classification
(IPC) field within a patent record, * is the wildcard.

Query Set Search Results

((TS = (agriculture * or crop or crops or fruit or fruits or vegetable * or harvest * or seedling *) or MAN =
(X25-N * or X22-X11 or X22-P09 or Q19-G or T06-D01 * or A12-W04 * or X25-X02 *) or IP = (A01B* or

A01C * or A01D * or A01F * or A01G * or A01M-021 *)) AND (TS = (robot * or manipulator * or
“mechanical arm” or “mechanical arms” or “mechanical hand” or “mechanical hands”) or IP = (B25J *) or
MAN = (X25-A03E * or T06-D07B * or V03-U14 * or V04-M30R * or V04-Q30R * or V06-U05 * or V04-R04F1
* or X27-U * or S05-B07 *))) not (IP = (A01G-005 * or A01G-023 *) or MAN = (X25-N02 * or T06-D01C))

9402

2.2. Adaptive Design Process of Agricultural Robots Based on IPC Co-Classification Networks

Agricultural robots have different requirements regarding the operation objectives
and operation links. For example, a picking robot needs different end-effectors for its
operation objectives: the design of the body of the robot needs to consider the agronomic
requirements, and the moving mechanism needs to consider the topographic conditions;
however, for a mowing robot, the main considerations are the design and control of the
moving mechanism. Therefore, to realize the path selection of agricultural robot design
based on IPC co-occurrence network analysis, an adaptive design process for agricultural
robots with different operation objectives and operation links is needed.

2.2.1. IPC Co-Classification Network (IPCNet)

The International Patent Classification (IPC) was established by the Strasbourg Agree-
ment in 1971 [44]. The IPC provides a hierarchical system of language-independent symbols
for the classification of patents and utility models according to the different areas of technol-
ogy to which they pertain [45]. Thus, each patent has an IPC classification. When a patent
applies to two technology classifications simultaneously, it has the corresponding IPC
classifications, which produce a link due to such IPC classifications. When the number of
patent applications and classifications is sufficient, a patent IPC co-class network (IPCNet)
is formed [46]. Patent co-classification is a suitable approach used in patent bibliographi-
cal studies for analyzing technology flows, trends [47], evolution [48], and development
directions [49].
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2.2.2. Path Recognition of IPCNet

When a new design demand is put forward for a certain operation objective, the
IPC classification for the operation objective or operation link will be determined. Thus,
an agricultural robot design process needs to be constructed. IPCNet can be used for
technology flows. According to this consideration, the SPLC (search path link code) was
used to identify the main path of the IPCNet. The IPC of the operation objective was
defined as the starting IPC; the ending IPC refers to the IPC with only one connection with
another IPC. After calculation of the sum of the occurrences of each edge in all paths of the
starting IPC and the ending IPC, the largest path for SPLC is the main path [50].

2.3. Agricultural Robot Technology Knowledge Graph Based on Patents

The TKG comprises the domain technology at the levels of terms (words or phrases).
To establish the domain TKG for agricultural robot design, patents and domain knowledge
were collected.

2.3.1. Patent TKG

A patent document includes an application and its published information, such as
the application ID, the inventor, the applicant, the title, the content, and claims. The
information can be retrieved from the DII database. Figure 1 shows the entity-relationship
description of the patent knowledge graph.

Figure 1. Patent TKG.

2.3.2. Robot Component TKG

According to the technical characteristics of agricultural robots, a robot mainly in-
cludes mechanical system, sensing system, and control system, and the mechanical system
includes a moving system, a body, an end-effector, a navigation and control system, and a
target detection and recognition system. The robot component TKG is shown in Figure 2.

Figure 2. Robot component TKG.
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2.4. Domain Technology–Efficacy Map Based on TKG
2.4.1. Construction Process of the Technology–Efficacy Map Based on the TKG

According to the characteristics of the patent, the construction process of a technical
efficacy map includes knowledge extraction and construction of a technology–efficacy
map (TEM), shown in Figure 3. Knowledge extraction includes acquisition, domain term
analysis, and entity-relationship extraction. By extracting the knowledge from the patent,
the domain TKG and knowledge base (KB) can be established. With the TKG and KB,
the domain’s technical words library and efficacy words library can be built. Through
matching the technical words and efficacy words of the patent, a TEM can be established.

Figure 3. Construction process of the technical efficacy map based on the patent TKG.

2.4.2. Technical Word Library

The domain term corpus has been established for NLP, such as Wikipedia, Project
Gutenberg, etc. In order to establish the agricultural knowledge graph, AgriKG was
established to automatically recognize agricultural entities from unstructured text and link
them to form a knowledge graph [51]. However, there is no library for agricultural robots.
With the unstructured text of agricultural robot patents, the TF-IDF (term frequency–inverse
document frequency) model was used to extract the words from the patent document [52].
According to the robot components, TKG classified the patents as first-level technology.
Through a combination of expert interviews, patent analysis, and manual tagging, the
technology terms were constructed for the domain of agricultural robots. The construction
process of the agricultural robot KG is shown in Figure 4.

Figure 4. Construction process of the domain’s technical word library.
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2.4.3. Efficacy Word Library

In the field of intelligence and information research, efficacy words mainly focus
on the advantages of using the technology, such as reducing the cost and improving the
efficiency. These efficacy words can only be defined as first-level effects in the design
process. In the design of agricultural robots, in order to obtain data on the efficacy of
the technology, we needed to obtain details of the efficacy of the robots, such as reduced
damage, obstacle overpass, etc. In this research, we established the efficacy word library
by using the WCONet of the technology. The process of constructing the efficacy words
library is shown in Figure 5. From the results of the word extraction based on TF-IDF, using
the WCONet technology combined with expert interviews, patent analysis, and manual
tagging, the efficacy word library was constructed.

Figure 5. Construction process of the domain’s efficacy words.

2.5. Agricultural Robot Design TKG

According to the key technologies identified for agricultural robots, the field of agri-
cultural robots needs to consider the integration of agricultural machinery and agronomy,
as well as the operation objectives, the operation scene, and the operation links. Thus, the
words need to be classified as relating to the operation objectives, the operation sense, and
the operation link of the agricultural robot according to each functional link of the robot, in
combination with the opinions of experts in the field of agricultural robots. For operation
scenarios, technologies, functions, and other categories, the generation module constructs
the same or a different co-occurrence word matrix. The agricultural robot design TKG is
shown in Figure 6. This TKG includes:

• Technology–operation objective and technology–operation scene (link) relationships
to identify technology for matching the demands of the operation objective and the
operation scene (link);

• Efficacy–operation objective and efficacy–operation scene (link) relationships to de-
scribe the key problems (efficacy) to be solved for the operation objective, operation
scene, and operation links;

• Technology–efficacy relationships to describe how the problem (efficacy) can be solved
with the technology;

• Technology–technology combination relationships to describe when the technology
has been improved and which technologies need to be improved accordingly, and to
find the potential technology chains and how improving them can achieve efficacy
(e.g., reduced costs or improved efficiency).
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Figure 6. The agricultural robot design TKG.

2.6. Technology Recommendation Process for an Agricultural Robot Design Based on TKG

Figure 7 shows the technology recommendation process for an innovative agricultural
robot design based on TKG. When the design task was determined, with the KB for
operation objective, operation scene, and operation links, the efficacy words for the design
demands could be obtained through the technology–efficacy map. Matching between
the efficacy and the technology can be implemented to obtain the technology, and the
corresponding patent can be obtained from the patent TKG.

Figure 7. Technology recommendation process for agricultural robot design based on a technology efficacy diagram.
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3. Results
3.1. Adaptive Design Process for an Agricultural Robot Based on IPCNet
3.1.1. Patent IPCNet of the Agricultural Robot Domain

The results of the query regarding agricultural robots revealed 6632 IPC classifications.
Figure 8 shows the IPCNet for the agricultural robot patents, along with the occurrence
(frequency) of more than 50 IPC nodes. The top IPCs were mainly distributed in the
fields of A01C (planting, sowing, and fertilizing), A01D (harvesting and mowing), B25J
(manipulators, and chambers provided with manipulation devices), G05D (systems for con-
trolling or regulating non-electric variables), A01G (horticulture; cultivation of vegetables,
flowers, rice, fruit, vines, hops, or seaweed; forestry; or watering). The results show that
the agricultural robot technologies are mainly about the manipulators and their controlling
or regulating systems for agricultural production (planting, sowing, fertilizing, spraying,
harvesting, and mowing, etc.).

Figure 8. IPC co-classification network (IPCNet) of the agricultural robot patents.

3.1.2. Path Recognition of the Design Process

Table 2 shows the nodes with a connection frequency of more than 50 in the IPCNet.
Thus, the technology domains involved in agricultural robots include the integration of
agricultural production (A01), manipulators (B25), and controlling and regulation systems
(G05); in other words, the technological developments of agricultural robots include the
integration of agricultural machinery and agronomy, and the integration of electromechani-
cal control. The technology flow is from different operation objectives (such as horticultural
crops, vegetables, fruits and vegetables, and flower cultivation (A01G)) and operation
processes (such as planting, sowing, and fertilization (A01C); harvesting or picking (A01D-
046/30); mowing (A01D-034/00); mobile irrigation (A01G-025/09)) through to the mobile
manipulator (B25J-005/00), the end effector (B25J-015/00), its controller (B25J-011/00),
the sensing device (B25J-019/02), the program control method (B25J-009/16), the position
control (G05D-001/00), and the automatic moving control (G05D-001/02) of the robots’
operation process.

From the node connections of the IPCNet, based on the SPLC algorithm, the results
regarding path recognition for the agricultural robot are shown in Figure 9. For agricultural
robots with different operation objectives or operation links, the path is different. For
robotic picking devices (A01D-046/30), the end-effector (B25J-015/00) is the key technology,
and the technology domains include the moving system (manipulators mounted on wheels
or on carriages (B25J-005/00) and the position control (G05D-001/02)), manipulators (B25J-
011/00), sensing devices (B25J-019/02), and control or regulating systems (B25J-019/16).
For mowing robots (A01D-034/00), the technology domains only include the moving
system (B25J-005/00) and position control (G05D-001/02). Therefore, the agricultural robot
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design process needs to combine the operation objectives and operation links to adaptively
establish a design process based on the IPCNet analysis.

Table 2. The nodes with a connection frequency of more than 50 in the IPCNet.

ID IPC 1 IPC2 Connection Frequency

1 A01D-034/00 G05D-001/00 50
2 A01D-034/00 G05D-001/02 260
3 A01D-046/30 B25J-015/00 54
4 A01G-025/09 A01G-025/16 52
5 B25J-005/00 B25J-009/16 74
6 B25J-005/00 B25J-011/00 114
7 B25J-005/00 G05D-001/02 56
8 B25J-009/00 B25J-009/16 51
9 B25J-009/16 B25J-019/02 64
10 B25J-011/00 A01D-046/30 80
11 B25J-011/00 B25J-009/16 134
12 B25J-011/00 B25J-015/00 53
13 B25J-011/00 B25J-019/00 50
14 B25J-011/00 B25J-019/02 72
15 G05D-001/02 G05D-001/00 105

Figure 9. Key technology path recognition results based on IPCNet analysis.

3.2. Agricultural Robot TEM Based on WCONet
3.2.1. Agricultural Robot TEM

Figure 10 shows the keywords of recognition, detection, and location in the agricultural
robot. According to the results of the extraction and the cluster analysis, the terms and
their distributions in the field of recognition, detection, and location in agricultural robots
are shown in Figure 10. The results show that the terms for the recognition, detection,
and location of agricultural robots involve the recognition, detection, and location of the
operation objectives (fruits, vegetables, apples, orange, tea, strawberries), operation links
(weeding, spraying, irrigation, sowing, picking, harvesting), and the operation scenes
(greenhouse, orchard). The adopted technologies include images (image, vision), video,
laser, and RFID tags to realize the recognition, location, navigation, and obstacle avoidance
of agricultural robots’ operation objectives.
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Figure 10. Keywords of recognition, detection, and location of agricultural robots.

3.2.2. Design TKG Based on WCONet

Figure 11 shows the keyword co-occurrence matrix of vision positioning technology in
fruit picking robots. The operation objective is fruit; the operation link is picking/harvesting;
the technology words are “image”, “vision”, and “laser”; and the efficacy words are “target
detection” and “position”. It can be seen from the figure that image and vision technologies
have more advantages than the laser scanning method in the fruit target recognition and
positioning of the picking robot. From the frequency of co-occurrence words, there is relatively
more work on detection and positioning based on vision and laser. Based on the WCONet
analysis, the terms for the agricultural robot design TKG are shown in Table 3.

Figure 11. Keyword co-occurrence matrix of position for a fruit harvesting robot.
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Table 3. Terms for the agricultural robot design TKG.

TKG Node Terms

Operation objective Apple, orange, tea, strawberry . . .
Operation sense Greenhouse, orchard, indoor, open field . . .
Operation link Weed, spray, harvest . . .

Technology Image, vision, video, laser, RFID, tag . . .
Efficacy Location, navigation, and obstacle avoidance . . .

4. Case Study of a Citrus Picking Robot
4.1. The Design Demands of the Citrus Picking Robot

In order to pick citrus, according to the citrus growth conditions and the characteristics
of the citrus tree, and due to the fact that the patents are mainly referred on the system and
structure innovation, especially in the agricultural robot patents, the design of the citrus
picking robot is mainly focused on the mechanical system, i.e., the moving system, the
body and arm, and the end-effector, etc. The key problems to be solved for each functional
component of the citrus picking robot and the efficacy words are shown in Table 4. Citrus
is mainly grown on sloping terrain in hilly and mountainous areas, and the ground often
has obstacles. Thus, for the moving system, the designer needs to realize movement in
these conditions. According to the IPC classification, the citrus is the fruit, so the starting
IPC of the IPCNet for the citrus picking robot is A01D-046/30. The citrus picking robot
design process is presented in Figure 9.

Table 4. Key problems to be solved for each functional component of the citrus picking robot and the corresponding efficacy
words.

Functional Component of the Robot The Problem Needing to Be Solved Efficacy Word

Moving system Moving on the sloping terrain of hilly and
mountainous areas and overpassing obstacles

Hilly and mountainous, slope terrain, obstacle
overpass

Body Vertical large-scale canopy operation of citrus
trees Vertical, large-scale

End-effector Prevent clamping damage to fruits Spherical, clamping damage

4.2. Technology Recommendations for the Moving System and the Body of the Picking Robot

According to the efficacy words for the citrus picking robot design, based on the TKG
of the agricultural robot, the technology recommendation results are shown in Table 5. The
moving systems for the sloping terrain of hilly and mountainous areas include wheels,
crawlers, and fixed track systems. The fixed track system is mainly used for picking
under specific structural conditions. In the recommendations for the robot body, the main
structure is the multi-joint manipulator. Mainly, picking robots that operate on hills and
slopes adopt a crawler structure to pass over obstacles. Moreover, to meet the demands of
the vertical large-scale canopy operations of citrus trees, the shear forklifting mechanism
can be used to expand the working space of the manipulator in the vertical direction.
Therefore, a combination of the crawler moving mechanism and the shear forklifting
mechanism meets the demands of the citrus picking robot.

4.3. Technology Recommendations for End-Effector

Citrus fruits are typically spherical fruits, and the end-effector needs to avoid clamping
damage to the fruit. Using “spherical fruit” and “clamp damage” as the efficacy words,
and end-effector as the first-level technology, the technology recommendation results for
the end-effector are shown in Table 6. The end-effector for circus fruit picking needs to both
cut the stem and clamp the fruit. The stem cutting technologies include shearing, twisting,
laser cutting, etc. Fruit clamping technologies include two fingers, multiple fingers, suckers,
straws, tube swallowing, etc.
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Table 5. Technical scheme of the moving system and the body of the citrus picking robot and related patents.

Technology Words Efficacy Words Title Patent Number Diagram

Crawler

Hilly

Mountain orchard double-cantilever telescopic picking machine, which has fork angle
adjusting hydraulic cylinder connected with hydraulic station through fork angle

adjusting electromagnetic valve, and fork lifting hydraulic cylinder connected with
hydraulic station

CN212413887U
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Hilly

Apple picking robot, which has effector installed with camera, infrared position sensor,
and apple picking pressure sensor, and picking machine arm connected to servo motor to
drive picking machine arm picking pressure sensor, and picking machine arm connected

to servo motor to drive picking machine arm

CN105746092A

Fixed track system Hilly
Orbital tea picking robot for use in hilly mountainous area, which has mechanical arm
that is mounted on lifting device, and picking hand that is mounted on output end of

mechanical arm
CN108555921A
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Table 5. Cont.

Technology Words Efficacy Words Title Patent Number Diagram

Wheels Hilly
Picking device for hilly and mountainous areas, which has oil cylinder mounting

support that is connected to fixed end of oil cylinder, where installation direction of oil
cylinder is set perpendicular to ground

CN111201889-A

Shear forklifting

Hilly, vertical
Hill mountain orchard picking platform posture adjusting mechanism, which has left

long side frame formed with square groove, and longitudinal adjusting hydraulic
cylinder whose lower end is connected with vertical adjusting frame

CN207491561-U

Large-scale
Horizontal driving elastic auxiliary starting device for scissors lifting platform, which

has spring rod whose upper part is connected at inside of spring cap, where lower part
of spring rod is connected to spring base through hole

CN106800254-B

Hilly, large-scale
Adjustable flat mountain orchard fruit picking platform that has inner arm and top end
of outer arm that are fixedly connected with bottom end of telescopic ladder, and baffle

arm that is mounted on enclosure
CN104067780A
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Table 5. Cont.

Technology Words Efficacy Words Title Patent Number Diagram

Arm

Large-scale

Apple picking robot, which has effector installed with camera, infrared position sensor,
and apple picking pressure sensor, and picking machine arm connected to servo motor to
drive picking machine arm picking pressure sensor, and picking machine arm connected

to servo motor to drive picking machine arm

CN105746092-A

Large-scale
Vegetable and fruits picking robot for vegetable and fruit picking system, which has

chassis fixed with camera that is electrically connected with main control circuit board,
where end of slide way is connected with fruit storage basket

CN211931423-U

Table 6. Grabbing and cutting modes for spherical fruits.

Technology Words Efficacy Words Title Patent Number Diagram

Two fingers Clamp, shearing
Clamp shearing strength integrated meter picking robot end actuator that has

double-screw bolt that is passed through fixing plate, and is screwed on left clamping
surface

CN103004374A
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Table 6. Cont.

Technology Words Efficacy Words Title Patent Number Diagram

Multiple fingers Spherical, clamp
Grab spherical fruit and vegetable picking robot end effector with integral cutting

function, which has flexible shaft that passes through limit hole of base while two ends
are, respectively, connected to driving servo motor

CN107041210-A

Suckers Spherical, clamp
Six-degree-of-freedom robot end effector for grasping spherical fruit, which has guide

rail located in mounting shell, sliding block connected to clamping sucker driving plate
through bolt, and another guide rail located above clamping sucker driving plate

CN213214398-U

Suckers Spherical, clamp
End effector of melon and fruit picking robot that has clamping mechanism that is
installed at right end of electric push rod transmission mechanism and time delay
mechanism whose left end is connected with upper portion of rear support plate

CN111937592-A

Tube swallowing Spherical, damage
Swallowing fruit and vegetable picking robot, which comprises an intelligent mobile

platform, a bionic swallowing transport device, a robot body, and an industrial computer,
while bionic swallowing transport device is installed through robot body

CN111972127A
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4.4. Design of the Citrus Picking Robot

With the technology recommendation results of the citrus picking robot, we designed
the picking robot shown in Figure 12. The main structures of the system include the
components described in the sections below.

Figure 12. Citrus picking robot with a crawl moving system and a shear forklifting and arm manipu-
lator: 1, crawler; 2, shear forklift; 3, 2-DOF arm manipulator; 4, end-effector.

4.4.1. Crawl Moving Mechanism

The JaugarV4 (Dr. Robot Inc., Markham, ON, Canada) platform was used as the mov-
ing system. The JaugarV4 is designed for indoor and outdoor applications requiring robust
maneuverability and terrain maneuverability. The platform has four articulated arms
that could convert the robot into various optimal navigation configurations to overcome
different terrain challenges. For light crawlers, it has a slope crawling capacity of more
than 55 degrees and a good soft ground driving and obstacle climbing capacity, which
can suit the ground traffic demands of hilly and sloping orchards. At the same time, it
integrates outdoor GPS and 9 DOF IMU (Gyro/Accelerometer/Compass) to obtain the
accurate real-time three-dimensional position and attitude for autonomous navigation [53].

4.4.2. Shear Forklifting and Manipulator of the Robot Body

According to the demands of both vehicle body passing and space coverage in a
closed citrus orchard, the technical combination of an electric multistage scissor lift with a
manipulator with fewer degrees of freedom was designed. In order to meet the demands
of the small body and the large vertical operation space of the robot, transverse electric
multi-stage shear fork and elastic-assisted starting mechanisms were used for the shear
forklifting mechanism to resolve the problem of the excessive initial starting torque in the
shear fork of the transverse motor. In addition, a horizontal rotation degree of freedom
was added between the base of the 2-DOF manipulator and the lifting platform to meet the
demands of a flexible attitude change during picking.

4.4.3. End-Effector

According to the demands of picking citrus with a flat stem and reduced clamp dam-
age, the technologies required for citrus clamping mainly include double spherical finger
structures (CN213214398-U), airbag grasping (CN111937592-A), and pipeline swallow-
ing structures (CN111972127A). From this technical combination, a robot end-effector for
picking fruit with a flat stem was created. Its structure is shown in Figure 13. The new
end-effector is composed of two spherical finger mechanisms, a knife swing mechanism, a
pipeline airbag sucker structure, and a fruit delivery hose.

• The two spherical finger mechanisms are composed of a relatively symmetrical 1/4
spherical holding finger and a single-motor symmetrical transmission mechanism.
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The two spherical fingers are symmetrically installed above the tube and driven to
open and close by the motor in order to clamp the fruit;

• The knife swinging mechanism is a semicircular narrow knife, which is also installed
above the tube, and swung upward and reset by the motor. The rotation axis is
perpendicular to the rotation axis of the spherical finger, and the inner diameter of the
semicircular narrow blade is consistent with the outer diameter of the sphere after the
two spherical fingers have closed;

• An annular airbag is installed on the inner lower side of the tube body to swallow the
fruit;

• The pipeline is connected to the hose for delivering the fruit under the airbag.

Figure 13. Structure of the new end-effector for a citrus picking robot meeting the demands of the
spherical fruit and clamp damage reduction: 1, tube; 2, swing knife; 3, motor; 4, spherical finger; 5,
motor; 6, airbag.

The airbag mechanism and the two spherical finger mechanisms can realize the rapid
and flexible stem clamping of citrus fruit, and the combination of two spherical fingers
and the semicircular narrow strip swing knife can realize the picking of the flat stem.
Based on the combination of multiple technologies, the innovation can be realized, which
can effectively meet the demands of flat stem picking in actual production. Meanwhile,
the end-effector system is simple, reliable, and easy to control, which provides a greater
possibility for practical production and application.

4.4.4. Discussion

With the technology recommendation results based on the TKG, a citrus picking robot
was designed, where the system includes a crawl moving system, a shear forklifting system,
a 2-DOF arm manipulator, and a new end-effector with a flat stem. By using the Realsense
sensor, the identification of on-branch citrus fruit [54] and hand-eye coordination planning
for the fruit picking robot was realized for the sensing and control function [55].

Recently, the citrus pick robot is mainly focused on the key component design and
vision-based target recognition, etc. In the greenhouse, the robot was moved by the
wheels [7] or a fixed track system [6], whereas, in the open field, the moving system was
mainly based on the tractor [56] or unmanned vehicle [3]. However, on hilly and sloped
terrain, especially in orchards, the structure of the tractor or unmanned vehicle is too large,
and the function of the obstacle climbing is lacking. Therefore, a crawl moving system was
used to both reduce the size of the robot and improve the ability of obstacle avoidance,
and the shear forklifting system was used to meet the demands for the distance of the
citrus tree.
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In fact, for the specific nature of work in agriculture, robots have different design
requirements [19,57], which are related to the shape of the fruit, the different degrees of
ripeness, the ease of damage to the fruit, etc. [2,56,58]. In this research, the TKG mainly
refers to the mechanical system, and the knowledge regarding the sensing and control
system (target recognition, navigation, and control) for the agricultural robot is mainly
published by the literature. Therefore, it is necessary to create a multi-source knowledge
graph fusion for innovative agricultural robot design [17,59].

5. Conclusions

Traditionally, the design of innovative robot systems relies on the expertise or intuition
of the designer, and faces high uncertainty [39]. In particular, agricultural robot design
needs knowledge about agricultural cultivation, the electromechanical system, automatic
control, etc. To inform and overcome design uncertainty, and provide multidisciplinary
knowledge, in this study, a TKG for an agricultural robot design was established from
patent information in order to realize the technology recommendations for the design of an
agricultural robot.

(1) According to the IPC co-classification network of the agricultural robot patents, the
path recognition method realized the design process of the different operation objectives
and the operation scene;

(2) Through the TF-IDF keywords extraction model, the keywords of the patent
document were revealed. Through the word co-occur network analyses, manual tagging,
and expert interviews, the technological word library and the efficacy word library were
constructed to establish the technology–efficacy map;

(3) To meet the demands of the agricultural robot’s design, the patent TKG, the
robot component TKG, and the design TKG were established to realize the technology
recommendation process for the innovative agricultural robot design;

(4) The case of an innovative citrus picking robot design was realized to describe
the design process. From the technology recommendation results based on the agricul-
tural robot TKG, the moving system, body, and end-effector were designed to verify the
recommendation results.

Although the technology recommendations for the agricultural robot design based on
the patent TKG were realized, in this study, the patent documents were collected by manual
retrieval, the technology and efficacy words were extracted by the TF-IDF model, and the
recommendation process was only based on the TKG. NLP, machine learning, intelligent
reasoning, and other intelligent artificial methods could be used for the agricultural robot
TKG analyses and the technology recommendations [60–62]. In addition, published papers
would be another scientific literature data source for the construction of the domain
TKG and KG [63]. In the future, a multi-source knowledge graph fusion for innovative
agricultural robot design is a possibility.
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