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Abstract: Manufacturers are eager to replace the human inspector with automatic inspection systems
to improve the competitive advantage by means of quality. However, some manufacturers have
failed to apply the traditional vision system because of constraints in data acquisition and feature
extraction. In this paper, we propose an inspection system based on deep learning for a tampon
applicator producer that uses the applicator’s structural characteristics for data acquisition and uses
state-of-the-art models for object detection and instance segmentation, YOLOv4 and YOLACT for
feature extraction, respectively. During the on-site trial test, we experienced some False-Positive
(FP) cases and found a possible Type I error. We used a data-centric approach to solve the problem
by using two different data pre-processing methods, the Background Removal (BR) and Contrast
Limited Adaptive Histogram Equalization (CLAHE). We have experimented with analyzing the effect
of the methods on the inspection with the self-created dataset. We found that CLAHE increased Recall
by 0.1 at the image level, and both CLAHE and BR improved Precision by 0.04–0.06 at the bounding
box level. These results support that the data-centric approach might improve the detection rate.
However, the data pre-processing techniques deteriorated the metrics used to measure the overall
performance, such as F1-score and Average Precision (AP), even though we empirically confirmed
that the malfunctions improved. With the detailed analysis of the result, we have found some cases
that revealed the ambiguity of the decisions caused by the inconsistency in data annotation. Our
research alerts AI practitioners that validating the model based only on the metrics may lead to a
wrong conclusion.

Keywords: surface inspection; deep learning; industrial control; process automation; CLAHE; YOLO;
plastic injection molding

1. Introduction

Manufacturers have continuously tried to build competitive advantages by means of
quality. Quality Control (QC) is essential for business because customer trust relies on it.
The traditional method of manufacturers for managing quality is Optical Quality Control
(OQC) by human inspectors. Human inspection has the advantage that the inspector does
not require any equipment or manual setting. This characteristic of manual OQC guarantees
manufacturers flexibility, which is one of the most critical competitive advantages in mass
customization. Even though human inspection provides a competitive advantage by
means of flexibility, many manufacturers are eager to replace the human inspector with
automatic inspection systems. A major problem with manual OQC is its reliability. Human
inspection risks differences in accuracy that depend on the worker’s proficiency and
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condition, leading to market leakage of defective products. Manufacturers also have the
burden of continually training inspectors to maintain a consistent inspection quality and
of monitoring workers’ performance. The risk that threatens manufacturers mostly is
that the quality competitiveness of the company rests on the tacit knowledge of some
skilled workers. A lack of such skilled inspectors directly weakens the competitiveness
in quality. Many researchers have already addressed the problems of human inspection,
and various studies have suggested alternative inspection methods [1–4]. OQC by machine
and computer visual systems has already been the most common quality control technique
in various industrial fields [5]. An automatic visual inspection system can now detect
minor defects that human inspectors have not been able to control with the naked eye.
Additionally, the visual system ensures quality reliability by conducting inspections stably
without human error.

However, the traditional visual inspection system also has its limitations. Naturally,
applying a visual inspection system is possible only if image data for the product can be
generated. The visual inspection system is relatively easy to apply if the product’s shape,
size, and orientation are homogeneous and straightforward. However, data acquisition for
some products is challenging, for example, if the product is cylindrical with an ambiguous
beginning and end. In addition, there is the hassle of having to set up new equipment for
traditional visual inspection systems whenever the working environment and the reference
figures change. The traditional visual inspection system also does not respond to defects
with arbitrary shapes, sizes, and orientations, which people can see [6,7]. This limitation
reduces the inspection accuracy for various atypical types of defects. For these reasons,
many researchers have applied Deep Learning (DL) to the traditional visual inspection
system [8].

Our research team has found a manufacturer who suffers from the problems of human
inspection. The company produces the tampon applicator, a plastic case for protecting and
helping to insert the cotton absorbent core comfortably, as shown in Figure 1.

Figure 1. Components of tampons—absorbent core, cotton cord, and applicator.

The company uses plastic injection molding machines to produce more than 60,000
applicators a day. The tampon applicator is inserted into the body and must be hygienic.
Thus, the quality inspection of the tampon applicator is essential, but research into develop-
ing an inspection system for applicators has been insufficient. The applicator manufacturer
had tried to apply an automated visual inspection system to improve quality and pro-
ductivity. However, they failed because of constraints such as (1) data acquisition for a
cylindrical product that has an ambiguous beginning and end, and (2) arbitrary types,
sizes, and orientations of defects. The defects of the injected plastic products occur for
various reasons and are of different types, such as discoloration, burn marks, and short
shots [9], as shown in Figure 2.
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Figure 2. Common defect types of tampon applicators.

In this paper we propose a DL-based inspection system that can solve the problems
mentioned above. The main contributions of this paper can be summarized as follows:

1. We propose a DL-based inspection system for moving applicators. Our inspection
system uses the structural characteristics of the applicator, allowing it to roll during
the inspection interval, which is critical for data acquisition. For defect inspection,
we have tested the state-of-the-art object-detection and instance-segmentation mod-
els, You Only Look Once version 4 (YOLOv4) and You Only Look At CoefficienTs
(YOLACT), respectively. We describe the system configuration, including hardware,
network, software specifications, and inspection mechanisms.

2. By applying the object-detection model (YOLOv4) on site, we have experienced some
malfunctions that detected the conveyor and light as defects. We used a data-centric
approach to solve the problem. Instead of the micro-adjusting the model, we have
applied different data pre-processing techniques to overcome the malfunction. To val-
idate the performance of the data pre-processing methods, we have conducted an
experiment that compares the different combinations of data pre-processing tech-
niques based on the validation metrics such as Accuracy, F1-score, Precision, Recall,
and Average Precision. We generated a dataset of 1534 normal and 908 NG (No Good)
images for the experiment, labeled with skilled inspectors’ help.

The rest of this paper is organized as follows. Section 2 focuses on the former studies
that have inspired our system. In Section 3, we describe the configuration and inspec-
tion mechanism of the proposed system. Section 4 presents the experimental setup for
comparing various models with different data pre-processing methods. The metrics, hy-
potheses, dataset, parameter setting, and the performance analysis based on the data-centric
approach are delivered as well. Section 5 provides our conclusions.

2. Related Work
2.1. Tampon Inspection Unit

An automated inspection system for half-finished tampons with absorbent core and
cotton cord without applicators was proposed in 2004 [10]. The proposed inspection system
consisted of a visual inspection system equipped with three cameras mounted at angles of
120°, as shown in Figure 3.
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Figure 3. Schematic of the inspection unit.

The main reason for applying three vision cameras was the transport system that
handled the tampons with wire-hooks made of spring steel, as shown in Figure 4.

Figure 4. Hook-based transport system for tampons.

The hook-based transport system guaranteed stability for image processing by posi-
tioning the tampons at the correct distance from the cameras. However, since one camera
can observe only a third of the body, three cameras are required for successful 360° inspec-
tion, which leads to higher inspection costs. Furthermore, the hook-based transport was
designed based on the material characteristics of the cotton absorbent core, hence it cannot
be applied for slippery plastic applicators.

For the inspection system, traditional rule-based vision inspection techniques were
used. Tatzer et al. [10] made the best use of the heuristic assumption for object detection.
They assumed that the object is the tampon if the length and width of the white pixels are
within the measurement tolerances because the tampon is light, and the background is dark.
For inspecting the tampon body, they developed an algorithm based on the automatic white
balance correction. The algorithm assumes that a significant part of the detected object is
white, and that only a small part should be colored. Given this characteristic, the white
balance correction values were calculated. The proposed rule-based algorithm using
the heuristic assumption should work robustly for absorbent-core inspection. However,
the automatic white balance correction method is hard to implement for plastic products
that reflect light. In addition, it does not guarantee the accuracy for various atypical types
of defects caused by any working environment or reference figures that change because
engineers extract the features manually.

2.2. AI Technologies Applied for Industrial Applications

The inspection process using machine vision is divided into (1) image acquisition, (2)
digitalization, (3) processing, (4) analysis, and (5) interpretation. For the traditional visual
inspection system, experts teach the features and the inspection rules manually. Studies for
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surface-defect detection based on traditional machine vision have been conducted actively.
The textural defect detection methods can be categorized into (1) statistical, (2) structural,
(3) filter-based, and (4) model-based [11]. The statistical and filter-based methods are
commonly used in industrial applications [5]. However, they have limitations in that they
cannot generate discriminative features [12], and often must be applied as an ensemble
in order to work well [13–15]. For this reason, the model-based defect detection method
has been actively researched, and has become more popular thanks to the development of
high-performance computers and Artificial Intelligence (AI).

A Convolutional Neural Network (CNN) is based on the structure of ImageNet de-
veloped by LeCun [16] in 1989. In this research, LeCun proposed data augmentation
and dropout to solve the overfitting problems. Since AlexNet was presented in 2012,
which dominated other algorithms in image classification [17], CNN has gained tremen-
dous popularity in academia. Using locality, shared weight, and multiple layers with
pooling operations, CNN can automatically learn features from the data and classify
images without separate manual feature-extraction tasks. Given this advantage, many
researchers have applied CNN in quality inspection to overcome the limitations of the
traditional visual inspection system. Wen et al. [12] used CNN for inspecting wafer semi-
conductors, and Yang et al. [18] suggested a USB defect inspection system based on CNN.
Zhong et al. [19] proposed a CNN-based algorithm for detecting catenary split pins in
high-speed railways.

CNN can classify objects well but has trouble in locating objects. R-CNN is a model
with the addition of a box-offset regressor that improves the accuracy and localization [20].
Fast R-CNN is a model derived from R-CNN that applies Region of Interest (RoI) pooling
and softmax classification to compensate for R-CNN’s shortcomings. Fast R-CNN enables
Single Stage Training and Backpropagation to improve object-detection performance [21].
Faster R-CNN uses a Region Proposal Network (RPN) to diversify the anchor-box size by
using a feature map to detect objects independently. Furthermore, Faster R-CNN leverages
a Feature Pyramid Network (FPN) to detect small objects by rescaling feature maps to
different sizes. The algorithm proposed by Ren et al. [22] has been tested on COCO and
PASCAL VOC datasets and requires complements to be used for manufacturing inspection.
The Mask R-CNN proposed by He et al. [23] added a Fully Convolutional Network (FCN)
to Faster R-CNN, offsetting the shortcomings of having location information disappear
from the Fully Connected layers (FC). Mask R-CNN also applies RoI-alignment to improve
the problem with the discrepancy that Faster R-CNN with RoI pooling forces objects of
different sizes to specific values. The mask prediction and class prediction work separately.

The object-detection algorithm is actively being studied for inspecting defects. Faster
R-CNN is a model with high accuracy among object-detection algorithms and is being
studied in the industrial field. For example, Liyun et al. [24] conducted a study to detect
defects in automobile engine blocks and heads using Faster R-CNN and detected surface
defects with a 92.15% probability. Wang et al. [25] also tested 175 defects in turbo blades
entering automobile engines by using Faster R-CNN. Oh et al. [26] used Faster R-CNN
to detect welding defects automatically. On the other hand, Mask R-CNN is also actively
researched in the fields that require object segmentation. Attard et al. [27] studied a method
for automatically inspecting cracks in buildings using Mask R-CNN. Zhao et al. [28]
conducted a study to examine the cable bracket of an aircraft using Mask R-CNN.

The above-mentioned R-CNN-based models extract sub-images by generating thou-
sands of regions by means of selective search algorithms. Then, the features are extracted
while these sub-images pass through CNN. This complex image processing method may
guarantee accuracy, but it is slow. To overcome the shortcoming in speed, Redmon et al. [29]
presented a new object-detection algorithm called YOLO, which is a one-stage detector
that executes regional proposal and classification at once, which means that the single
neural network predicts bounding boxes and class probabilities directly from the image.
YOLO uses non-max suppression to decide regions. The architecture of YOLO is shown
in Figure 5.



Processes 2021, 9, 1895 6 of 22

Figure 5. Architecture of YOLO.

Since YOLO was presented in 2016, it has been improved continuously. In 2017,
YOLOv2 was introduced by Redmon et al. [30] with image classification significantly
improved by applying batch normalization, direct location prediction, and multiscale
training. As a result, YOLOv2 can detect more than 9000 object categories, which exceeds
YOLO with the capability of detecting 20 objects. In 2018, Redmon et al. [31] improved the
algorithm by increasing the network up to 106 layers. Bochkovskiy et al. [32] presented
YOLOv4, which was improved in accuracy by increasing the training and inference cost
with the help of the Bag-of-Freebies and Bag-of-Specials methods of object detection during
the detector training. As a result, YOLOv4 outperforms YOLOv3 by approximately 10%,
and allows one to train, test, and deploy the model with a single GPU.

YOLO has the strength of detecting objects in real-time, so it is being studied actively
to apply it to quality inspection. Qiu et al. [33] developed object-detection models opti-
mized for small-sized defects of wind turbine blades by modifying YOLO. They made
a dataset of 23,807 images for the research, including labeling with three different types
of defects. According to their performance analysis, the YOLO-based model achieved an
average accuracy of 91.3%, which is better than that of traditional CNN-based and Machine
Learning (ML)-based methods. Adibhatla et al. [34] applied YOLO for quality inspection of
Printed Circuit Boards (PCB). They also generated a dataset with 11,000 images, including
the defects images labeled by skilled inspectors. The suggested YOLO-based inspection
model achieved an accuracy of 98.79%. Wu and Li [35] improved YOLOv3 by applying
anchor boxes cluster analysis to detect electrical connectors’ defects. According to their
performance analysis, the presented algorithm works better than does Faster R-CNN by
achieving an accuracy of 93.5%. In addition to the quality inspection in manufacturing,
YOLO is also being studied in various fields such as infrastructure management [36,37].

YOLACT is the real-time instance-segmentation model presented by Bolya et al. [38],
inspired by YOLO’s real-time object-detection capabilities. Instance segmentation is the task
of detecting and explaining each object of interest that appears in the image. The former
instance-segmentation models are the two-stage detectors that do instance segmentation
by feature localization and masking prediction. YOLACT skips the feature localization
stage, and instead, it generates the prototype mask dictionary for the whole image and
predicts per-instance linear combination coefficients. Finally, the model creates the instance
masks by linearly combining the prototype with the mask coefficients. The architecture of
YOLACT is based on RetinaNet using ResNet101 and FPN, as shown in Figure 6. YOLACT
is the first real-time instance-segmentation algorithm and achieved a 29.8 mean Average
Precision (mAP) on the MS COCO dataset at over 30 fps.
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Figure 6. Architecture of YOLACT.

Research on applying YOLACT to industrial uses is still insufficient. Guo et al. [39] sug-
gested an instance-segmentation model with new backbone architecture such as YOLACT-
Res2Net-50 and YOLACT-Res2Net-101 to inspect the track components of the railroad.
Their performance analysis showed that their algorithm exceeds both original YOLACT
and Mask R-CNN models by achieving 59.9 bounding box mAP and 63.6 masking mAP.
Pan et al. [40] used Mask R-CNN, and YOLACT combined to detect surface scratches for
architectural glass panels.

The abovementioned state-of-the-art models such as YOLO and YOLACT have proved
their performance and robustness based on many experiments. However, more and more
AI practitioners emphasize that the key success factor for real-world AI applications is data
quality. The survey conducted by Google Research reveals that data is an under-estimated
and de-glamorized aspect of AI [41]. Andrew Ng, the cofounder of DeepLearning.AI,
Coursera, and LandingAI, launched a campaign for data-centric AI [42]. A data-centric
based approach stresses that the consistency of data is needed for successful AI develop-
ment. Reflecting this trend, more and more AI studies, especially in the industrial field,
are focusing on data acquisition. Tang et al. [43] use X-ray images to detect defects for
castings. By means of the casting defect detection system, the authors enable the generation
of high-quality data. Zhou et al. [44] proposed a machine vision apparatus to inspect the
glass-bottle bottom and successfully created high-quality data. The contribution of both
teams in developing new AI methodology to outperform the prevalent methods should be
praised. However, the fact that the experimental results of the prevalent methods already
deliver adequate performances may support the effectiveness of the data-centric approach
in AI development.

3. A Surface-Inspection System Based on Deep Learning
3.1. System Architecture

In this paper we propose a surface-inspection system based on deep learning that
automatically transports, inspects, and stores tampon applicators produced by plastic
injection molding machines. It consists of a fully automated transport system and a
visual inspection system. The components of the automated transport system are a steel
container, incline conveyor, bowl feeder, supply belt, photosensors, and Programmable
Logic Controller (PLC). The visual inspection system consists of a camera, lens, and an
Edge Computing Device (ECD) for operating both the visual system and AI inference.
The layout of the whole system, and the closer view of the inspection station are shown in
Figures 7 and 8, respectively.
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Figure 7. Layout of the surface-inspection system based on deep learning.

Figure 8. Closer view of inspection station.

The inspection workflow of the system is as follows:

1. Drop of the applicators from the plastic injection molding machine to the steel con-
tainer.

2. Transport of the applicators from the steel container to the bowl feeder with the incline
conveyor.

3. Transport of the products from the bowl feeder to the supply belt.
4. The supply belt shoots each applicator to the inspection conveyor.
5. The tray-based conveyor transports the applicators to the inspection station.
6. Data acquisition of the rolling applicators by the vision camera.
7. Data transfer from the vision camera to the ECD for AI inference.
8. Data pre-processing and defect inspection by AI.
9. Position values of the trays captured by the photosensors are sent to the PLC.
10. Discharge of the defective products by the NG rejector.

The network configuration of the system is presented in Figure 9. It consists of four
networks for the communication between (1) PLC and ECD, (2) ECD and the vision camera,
(3) ECD and the server, and (4) PLC and the photosensors. Since the maker of the applied
PLC, LS Electric, does not provide the protocol for Python language, we created a new pro-
tocol called pylsprotocol, which can be downloaded with a single command, and it provides
read and write functions for both discrete and continuous data. The protocol is publicly
accessible online (at https://pypi.org/project/pylsprotocol, accessed on 20 October 2021).
For the connection between the ECD and the vision system, we used the Software Develop-
ment Kit (SDK) and Python Package (PP) provided by the vision maker, Lucid. The ECD is

https://pypi.org/project/pylsprotocol
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connected with the server for AI training via the internet. The photosensors for perceiving
the tray’s position value are connected to PLC with Input/Output (I/O) communication.

Figure 9. Network configuration of the proposed system.

The hardware and software specifications of the ECD for AI inference and the server
for AI training are as described in Table 1.

Table 1. Hardware and Software Specification.

Edge Computing Device Server

H/W
Intel® Core™ i9-10900 @ 2.80 GHz Intel® Core™ i9-10900X @ 3.70 GHz

32 GB RAM 128 GB RAM
1/Nvidia Geforce RTX2080(Ti) GPU 4/Nvidia Geforce RTX2080(Ti) GPU

S/W

Ubuntu LTS 18.04.1 Ubuntu LTS 18.04.1
Python 3.6.9 Python 3.6.9

Tensorflow 2.3.1 Tensorflow 2.3.1
Docker 19.03.12 Docker 19.03.12

3.2. Inspection Mechanism

The inspection algorithm of the system is presented in Figure 10. The whole inspection
process can be divided into four steps as follows:

1. Data Acquisition (in black)
2. Data Pre-Processing (orange)
3. Model Optimization and Inference (green)
4. Machine Control (blue)

Data Acquisition. To create the dataset for training and validating the AI models, we
installed and operated the system on site, as shown in Figure 11.

Unlike the inspection system that Tatzer et al. [10] proposed that conveys the product
with the wire hook, as explained in Section 2, our system carries the tampon applicator
in trays. As shown in Figure 12, a friction plate is installed in the middle of the rail to
enable the applicator to roll with the friction force. The camera takes six images of the
rolling applicator. The conveyor was designed to have each applicator roll twice during
the inspection interval.
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Figure 10. Inspection algorithm of the proposed system.

Figure 11. Acquisition of normal and abnormal data by operating the system on site.



Processes 2021, 9, 1895 11 of 22

Figure 12. Design of tray conveyor with friction plate for data acquisition.

We used a web-based image annotation tool, COCO annotator, to create the annotation
data in COCO format. The defects are labeled with both the bounding boxes and masks
with the support of the skilled inspectors. Figure 13 presents an example of data annotation
with the image segmentation masks.

Figure 13. Example of data annotation with image segmentation masks.

Data Pre-Processing. For AI model training, we augmented data with Random Crop,
and Flip Rotate methods. We did not consider adjusting the brightness, as is commonly
used for data augmentation, because the factory has constant illumination by blocking
light from outside. In addition, we divided the acquired images into several sub-images
for inspecting a single applicator, because the height of the vision camera was set to a
photography maximum of six applicators simultaneously. For this purpose, we marked
a blue boundary line on the tray conveyor and developed a crop logic for image slicing,
as shown in Figure 14. The crop logic finds a slicing boundary by calculating the difference
between blue and red values of RGB from each pixel.
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Figure 14. Image slicing by crop logic.

During the trial test on site, we have experienced some malfunctions of the object-
detection model. For example, the boundary for image slicing, the conveyor in the
background, and the reflected light on the product were detected as defects, as shown
in Figure 15.

Figure 15. Error cases found in the trial test.

To solve the Type II error (False-Negative: FN), we used the data-centric approach,
which stresses the significance of data quality over model architecture and tuning. We have
applied three different data pre-processing techniques to improve data quality.

For the light reflection problem, we used Contrast Limited Adaptive Histogram Equal-
ization (CLAHE), a derivative of Adaptive Histogram Equalization (AHE), that uses a
contrast limit to resolve the noise amplification. The light reflection can cause Type I
errors as well because the model cannot detect the defects in the reflected area. The Type
I error, also known as the producer’s risk, is critical for the manufacturer, because the
False-Positive (FP) means that the consumers are exposed to the danger of using defective
products. By modifying the tile grid size, we adjusted the intensity of histogram equaliza-
tion. The pseudo-code of CLAHE is described in Algorithm 1, and the result after reflection
removal is shown in Figure 16.
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Algorithm 1 CLAHE.

Input: Original Image I;

1. Resizing I to M x M; Decompose I → (n) tiles; (n)← MxM
mxm

;

2. Hn ← histogram(n); // histogram of a m x m tile;

3. Clip limit: CL← NCL x Navg; // Navg←
NxxNy

Ngray
; // Ngray→ number of gray levels

in the tile; // Nx, Ny → number of pixels in the x, y dimensions of a tile; // Ncl ←
0.002 // normalized contrast limit;

4. Clipping of Hn using CL; // For gray levels greater than CL; let N ∑cl pixels are
clipped;

5.
N ∑cl
Ngray

→ Ncp pixels→ distribution over the remaining pixels; // contrast limited

histogram of each tile after pixel distribution;
6. CLAHE(n)← Equalization of contrast limited tile histogram using (1);
7. Ic ← bilinear interpolation of CLAHE processed n tiles; // combining neighbor-

hood tiles
return CLAHE processed Image Ic;

Figure 16. Diluting light reflection by Contrast Limited Adaptive Histogram Equalization.

The background, such as the conveyor and blue boundary for image slicing, were occa-
sionally detected as defects, which harms the accuracy of the inspection model. To improve
the precision of the model, we removed the background by extracting the object’s outline
using the contour technique. The result of the Background Removal (BR) is presented
in Figure 17.

Figure 17. Background removal by contouring.

After image slicing, the image was reduced to 80 × 320 pixels, which is small enough
to deform the feature, deteriorating the accuracy and sensitivity. Additionally, the applied
object-detection model, YOLOv4, requires a square image. To reduce the possible feature
deformation and for applying YOLOv4 we resized the image to 320 × 320 pixels with
padding. The result of resizing is presented in Figure 18.
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Figure 18. Image resizing by padding.

Model Optimization and AI Inference. For defect inspection, we used YOLOv4 and
YOLACT, the state-of-the-art algorithms for object detection and instance segmentation,
respectively. For YOLACT, we considered two different backbone networks, ResNet-50,
and ResNet-101. The feature extractor was fixed for FPN. To accelerate the inference
time of instance segmentation, which is a critical success factor for industrial applications
that demand an inspection cycle time of 0.5 s per product, we used TensorRT, the SDK
for high-performance DL inference. By applying the optimizers and runtime engines
of TensorRT, we optimized the feature backbone, FPN, Protonet, and prediction head
separately, as shown in Figure 19.

Figure 19. Optimization of instance-segmentation model with TensorRT.

With the image segmentation model (YOLACT), we did not experience any unusual
inspection errors as in the object-detection model (YOLOv4). However, the instance-
segmentation model did now work well enough to meet the industrial requirement.
The manufacturer wanted to detect defects whose diameter was bigger than 0.5 mm.
To meet the quality standard, the inspection model needed to predict the defect size more
precisely than in the trial test, whose results are presented in Figure 20.
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Figure 20. The examples of instance segmentation.

Machine Control. The inspection result is sent to PLC, which stores the position
value of the tray captured by the photosensor in the queue. An NG rejector discharges the
defective products as soon as it receives the signal from PLC. The NG rejector, a pneumatic
piston, is presented in Figure 21.

Figure 21. NG outlet and rejector.

4. Experimental Setup

We have conducted the experiments to analyze the effects of the data pre-processing
on the inspection errors of the object-detection model.
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4.1. Metrics and Hypotheses

Metrics. We evaluated the image at two different levels. Defect inspection is a typical
classification task; hence the model had to be tested at the image level. The object detection
based on the bounding box also had to be analyzed to evaluate the model.

Accuracy, the common metric for evaluating classification models, is the ratio of
correct predictions of the model to the total number of predictions. However, Accuracy had
to be interpreted very carefully, because we had a class-imbalanced dataset. The equation
of Accuracy is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

To analyze the performance of different approaches, we calculated Average Precision
(AP) for the bounding box. The AP is one of the most powerful evaluation metrics for object
detection. It is calculated from the area under the Precision-Recall (PR) curve. The equation
of AP is as follows:

AP =
∫ 1

0
p(r) dr (2)

AP is often used with Intersection over Union (IoU), which measures the overlap
between the predicted area and the ground truth, depicted as follows:

IoU =
Area of Overlap
Area of Union

(3)

Generally, IoU has a number that indicates the threshold for validation. If IoU has a
threshold of 0.5, it means that the model’s prediction is validated as correct if the overlap
between the predicted area and the ground truth is over 50%.

Precision is the ratio of the number of correct decisions of the classifier to the number
of all detections. The equation of Precision is as follows:

Precision =
TP

TP + FP
(4)

Recall is the ratio of the correct decisions of the model to all ground truths. The metric,
also known as Sensitivity, can be expressed as follows:

Recall(Sensitivity) =
TP

TP + FN
(5)

The F1-score is the harmonic mean of Precision and Recall, and can be expressed
as follows:

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

Hypotheses. We examined mainly three hypotheses about the correlation between the
data pre-processing methods and the model performance. The hypotheses are as follows:

Hypothesis 1. CLAHE will increase Recall at the image level.

After applying CLAHE, the model should detect the hidden defects covered by
reflected light better and so decrease FN.

Hypothesis 2. Background removal will increase Precision at the bounding box level.

The misdetection of the conveyor and boundary line as a defect should be prevented
by background removal, which then decreases FP.

Hypothesis 3. CLAHE will increase Precision at the bounding box level.
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The misdetection of reflected light as a defect should be prevented by removing light
reflection, which decreases FP.

4.2. Dataset and Parameters

Dataset. Like other manufacturers, the applicator producer also has the class-imbalance
problem and suffered from a relatively high defect rate (3–6%), not because of the frequent
production of defectives, but because of massive production of defectives once they oc-
curred. We received 150 defective products with burn marks and discoloration, which the
manufacturer had gathered in two weeks. By operating the system, we have generated
908 sub-images that skilled inspectors have labeled. We used 800 and 108 images of the
defective products for the training, and the test dataset, respectively. We adjusted the
quantity of normal images intending to keep the ratio of defectives to OK at (6.5%) for the
test. Table 2 depicts the distribution of data for the training and test.

Table 2. Dataset for training and test.

Normal Defect Total

Total Data 1534 (62.8%) 908 (37.2%) 2442 (100%)
Training Data 0 (0%) 800 (100%) 800 (100%)

Test Data 1534 (93.5%) 108 (6.5%) 1642 (100%)

We used NG images only for model training, because we defined the inspection as
object-detection and instance-segmentation tasks. The models are supposed to learn the
labeled defect as an object; so the images of regular applicators without labels did not play
a role in the model training. The normal dataset was used only for analyzing the model at
the image level.

Parameters. To find the effective combination of the data pre-processing techniques
that effectively resolved the malfunction, we have trained YOLOv4. The network was
trained and tested on the dataset. The training parameters are presented in Table 3.

Table 3. Hyperparameters for model training.

Backbone Batch Input Optimizer Learning Rate Beta1 Beta2

CSPDarknet53 8 320 × 320 Adam 0.001 0.9 0.999

We trained the network on CSPDarknet53, which partitions the feature map of the
base layer into two parts and then combines them by means of a cross-stage hierarchy. We
applied the Adaptive Moment Estimation (Adam) optimizer, and set the learning rate and
beta values to the default as proposed by Kingma and Ba [45].

4.3. Results

We first analyzed the effect of the data pre-processing techniques at the image level,
in which the model carries out the image classification task. The effects of the data pre-
processing methods are presented in Table 4 and in Figure 22.

Table 4. Experimental results at the image level.

Data Pre-Processing Precision Recall F1-Score Accuracy

Without 1 0.75 0.86 0.98
BR 0.82 0.75 0.78 0.97

CLAHE 0.76 0.76 0.76 0.97
BR + CLAHE 0.49 0.74 0.59 0.93
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Figure 22. The confusion matrix at the image level.

At the first look, it seems as if the data pre-processing techniques deteriorated the
model’s performance, because both F1-score and Accuracy have fallen. However, the in-
clined metrics are driven by the sharp decrease of Precision caused by the increasing FP.
The rise of FP indicates that the model tends to predict the image as defective even though
it is OK in the ground truth class. The intriguing point is that CLAHE has slightly increased
Recall by 0.1. At a closer look, we could find that the two false-negative cases, which are
presented in Figure 23, were detected after we used CLAHE. These cases may support our
Hypothesis 1 , that CLAHE may improve the sensitivity of the inspection model.

Figure 23. Two FN cases detected by CLAHE.

The combination of BR and CLAHE worsened not only Precision but also Recall
at the image level, perhaps because the data pre-processing methods distorted the im-
ages excessively.
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The effects of the data pre-processing methods on the inspection model at the bound-
ing box level are presented in Table 5.

Table 5. Experimental results at the bounding box level.

Data Pre-Processing Precision Recall AP50

Without 0.49 0.56 40.39
BR 0.55 0.53 38.75

CLAHE 0.53 0.50 36.16
BR + CLAHE 0.53 0.52 37.43

The decrease of AP50 shows that the use of data pre-processing worsened the model’s
overall performance. However, both BR and CLAHE have improved Precision by 0.06
and 0.04, respectively. The results may support our Hypotheses 2 and 3 that the data
pre-processing methods may improve Precision by preventing misinspection. The point
that BR has more effect on Precision than does CLAHE may reflect that there are more cases
in which the model detects the conveyor and boundary line as defects than there are cases
in which the model detects the reflected light. Figure 24 depicts some intriguing cases.

Figure 24. Analysis of object-detection cases.

In the first case, the model detected one tiny fleck as a defect even though it was not
labeled. Whether the fleck is a defect or not will vary depends on the inspectors. This case
may alarm us that we should interpret the FP and Precision very carefully, and find out
whether it relies on a model or ambiguous human decision in data annotation. The second
case shows an example in which the combination of BR and CLAHE detects one burn mark
that was neglected without the data pre-processing and BR. The third and last case also
reveals the ambiguity of the human decision in data annotation. In both cases, the model
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interprets the fleck that were not labeled as defects, from which it is hard to tell that the
model predicted incorrectly.

5. Discussion and Conclusions

After applying the inspection model with BR and CLAHE on site, we empirically
confirmed that the malfunctions described in Section 3 were solved. Furthermore, we did
not experience any degradation of inspection quality, even though there was a dramatic
decrease in F1-score and Accuracy in the experiment, perhaps because the inspection
of each applicator consists of the six sub-inspections. That is, six images are taken for
each applicator, and if one of the six images is detected as NG, the whole applicator is
rated as defective; even if the other five images are OK. Thus, the false inspection of the
applicator is possible only if the model made mistakes for all six sub-inspections. Therefore,
the probability of the wrong inspection is very low. Another explanation is that there is no
actual degradation of the inspection, unlike the experimental results. The metrics are also
exposed to human error, and it seems that the model even corrects the wrong decisions of
people in some cases. This situation alerts AI practitioners that validating the model by
using only the metrics may lead to a wrong conclusion. We will focus on the validation
methods of the AI model for industrial applications in future research.

In this paper, we propose a DL-based inspection system for moving applicators with
details about the system configuration and inspection mechanisms. During the trial test of
the system on site, we have experienced some malfunctions in which the model detected
the conveyor and light as defects. We used a data-centric approach to analyze the problem
and to find solutions. Instead of improving the model network, we applied different
data pre-processing techniques to overcome the malfunction. Based on the experiment
with the generated dataset, we could find some experimental results that support the
positive effect of the data pre-processing on inspection quality. However, we found some
cases that revealed the limitation of metrics and that enlighten us on the importance of
data consistency and the detailed analysis for the AI validation. In order to accurately
assess the size of the defects, we are studying not only instance-segmentation models,
such as YOLACT, but also semantic-segmentation models such as UNet++. Furthermore,
we will also continue to study unsupervised learning models, which can solve the class-
imbalance problem.
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