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Abstract: Covering steel surfaces with suitable materials with the capacity to protect against corro-
sion represents a challenge for both research and industry, as steel, due to its paramount utility, is the
most recycled material. This study presents the realization of new sandwich type materials based
on 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin or 5,15-(4-carboxy-phenyl)-10,20-
diphenylporphyrin and MnTa2O6 designed to improve corrosion inhibition of steel in aggressive
media. The thin films, designed as single- or sandwich-type structures were obtained on carbon
steel through the drop-casting technique. Morphological investigations of thin films were carried
out by field emission-scanning electron microscopy (SEM) and atomic force microscopy (AFM). The
inhibition of a steel corrosion process was evaluated in an aggressive environment of 0.1 M HCl by
performing electrochemical investigations such as open circuit potential (OCP) and the potentiody-
namic polarization technique. The influence of variations in the cathodic Tafel slopes βc and anodic
Tafel slopes βa over the corrosion rates was discussed. The best corrosion inhibition efficiency of
91.76% was realized by the steel electrode covered with sandwich-type layers of 5,15-(4-carboxy-
phenyl)-10,20-diphenylporphyrin on the bottom layer and MnTa2O6 on the top. The effect of location
of the COOH groups in the cis or trans position on the tetrapyrrolic ring was also discussed to
understand the corrosion inhibition mechanism.

Keywords: porphyrins; oxide; corrosion inhibition; SEM; AFM; potentiodynamic polarization
technique; Tafel representation

1. Introduction

Carbon steel and its alloy derivatives play a vital role in many domains of engineering,
such as constructions, all kinds of machinery, petroleum refineries equipment, and pipes
due to their excellent resistance, and both physical and mechanical properties [1,2]. One of
the main drawbacks of using equipment made of carbon steel is its chemical resistance in an
acid environment [3–10]. Steel corrosion inhibitors bring significant benefits when used in
descaling or in oil-well-acidizing treatments and in cleaning procedures using acids [11–18].
Among commercially available acids, the most frequently used is hydrochloric acid. Carbon
steel and its alloys react very easily in acidic environments, producing large economic
losses [19]. The application of the corrosion inhibitors [8–12] leads to a significant reduction
in the corrosion of steel in an aggressive acid medium, increasing the feasibility and lifetime
of the equipment and installations. Several organic and inorganic compounds deposited as
protective layers on metallic surfaces have the desired effect of decreasing the corrosion
rate [20,21]. The adsorption of inhibitors on metallic surfaces to uniformly create covering
and adherent layers depends on certain physical–chemical properties of the inhibitor, as
follows: electronic structure of the whole molecule, nature of grafted functional groups
and the capacity to self-aggregate and generate supramolecular architectures [22,23].
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Regarding their mechanism for inhibiting corrosion [24], the inorganic inhibitors
usually act as anodic or passivation inhibitors or by diminishing the cathodic reaction
of the steel by restricting oxygen diffusion. Besides these two mechanisms, the organic
inhibitors act also through surface adsorption, thus providing a shield against the steel
corrosion [25]. Flat compounds that contain nitrogen atoms, as porphyrins do, can block
the corrosion sites with extensive π-bonds [26].

A large number of organic and inorganic materials were tested to evaluate their ca-
pacity as corrosion inhibitors. All these studies reveal that organic materials, especially the
highly versatile porphyrins and inorganic materials based on pseudo-binary oxides (ZnTa2O6,
ZnNb2O6, MgTa2O6, MgNb2O6), showed significant inhibition efficiency [15,27–31].

The main aim of the present study is to test the steel corrosion inhibition provided
by thin layers of two different A2B2 porphyrins, containing two COOH-functional groups,
namely: 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin or 5,15-(4-carboxy-
phenyl)-10,20-diphenylporphyrin(structures in Figure 1 a and b)in association with MnTa2O6
pseudo-binary oxide. In order to achieve a high impact, an acid environment of 0.1 M HCl
was chosen to perform the corrosion tests. The inhibiting single or sandwich type layers were
obtained by drop-casting technique on electrodes of carbon steel.

Figure 1. Structures of (a) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)–porphyrin; (b) 5,15-(4-
carboxy-phenyl)-10,20-diphenylporphyrin.

2. Materials and Methods
2.1. Obtaining of bis-Carboxy-phenyl Substituted Porphyrins

Bis-carboxy-phenyl substituted porphyrins, namely: cis 5,10-(4-carboxy-phenyl)-15,20-
(4-phenoxy-phenyl)-porphyrin and trans 5,15-(4-carboxy-phenyl)-10,20-phenyl-porphyrin,
were synthesized by combinatorial Adler–Longo reactions by using two different substi-
tuted aldehydes and pyrrole in each condensation reaction, as previously reported [32–34].
In each synthesis, the mixture of the six porphyrin products was separated by optimized
HPLC on a Silicagel Preparative Nuleosil 100SI 10 µm 25 × 1.0, reverse-phase column chro-
matography, using, for the first case, a mixture of three solvents: ethyl acetate (99%, Merck,
Darmstadt, Germany): DMSO (98%, Sigma-Aldrich, St. Louis, MO, USA): propionic
acid = 96:3:1 (%Vol) (96%, Merck, Darmstadt, Germany). The retention time for cis 5,10-
(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin was 3.613 min. In the case of
5,15-(4-carboxy-phenyl)-10,20-phenyl-porphyrin the retention time was 3.093 min, by using
a preparative Kromasil column 100 Sil 25 × 0.4 µm and another mixture of eluents: acetone
(99%, Merck, Darmstadt, Germany): toluene = 50:50 (%Vol) (92%, Sigma-Aldrich, St. Louis,
MO, USA), at a rate of 1 mL/min.
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2.2. Obtaining of MnTa2O6

MnTa2O6 was obtained by solid-state synthesis. The precursors used to obtain
MnTa2O6 were tantalum (V) oxide—Ta2O5 (99.99%, Merck, Darmstadt, Germany) and
manganese nitrate tetrahydrate—Mn(NO3)2 × 4H2O (99.99%, Sigma-Aldrich, St. Louis,
MO, USA) while keeping the molar ratio 1:1. The oxide and the salt were milled and heated
in calcination furnace SNOL (Telecomed, Iasi, Romania) at 1100 ◦C for 3 h with a heating
and cooling rate of 5 ◦C/min.

2.3. Design of Structured Thin Film

All initial materials, 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin or
5,15-(4-carboxy-phenyl)-10,20-diphenylporphyrin and MnTa2O6 and MnTa2O6 pseudo-
binary oxide were deposited in single and sandwich layers by drop-casting method on
steel (OL) disks, with a diameter of 10 mm and a thickness of 2 mm. The compounds that
were deposited in different deposition orders on the steel electrodes (EPI SISTEM, Brasov,
Romania) are presented in Table 1.

Table 1. Drop-casting thin film depositions.

Electrode The Order of the Deposited Materials on Electrodes Deposition Mode

a MnTa2O6 Monolayer

b 5,10-(4-carboxy-phenyl)-15,20-(phenoxy-phenyl)-
porphyrin Monolayer

c 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin Monolayer

d MnTa2O6/5,10-(4-carboxy-phenyl)-15,20-(phenoxy-
phenyl)-porphyrin Sandwich

e 5,10-(4-carboxy-phenyl)-15,20-(phenoxy-phenyl)-
porphyrin/MnTa2O6

Sandwich

f MnTa2O6/5,15-(4-carboxy-phenyl)-10,20-bis-
phenylporphyrin Sandwich

g 5,15-(4-carboxy-phenyl)-10,20-bis-
phenylporphyrin/MnTa2O6

Sandwich

The chemical composition on OL (Mechel Campia Turzii, Romania, low content
carbon steel) is (wt. %): Fe = 98, Al = 0.0309, Cu = 0.311, Si = 0.339, Mn = 0.219, Cr = 0.18,
Co = 0.0138, C = 0.165, Ni = 0.179, Mo = 0.0339, Pb = 0.05, Nb = 0.0023, Ti = 0.005, Zr = 0.005,
V = 0.005, W = 0.05, P = 0.005 and S = 0.005. Before each thin film’s deposition, the surfaces
of (Ols) were finely polished with emery paper (NIKKEN, Tokyo, Japan) to obtain a mirror-
like surface, rinsed with double-distilled water and degreased with ethanol (99.6%, Merck,
Darmstadt, Germany).

2.4. Method for Electrode Preparations

The electrochemical investigations of the capacity of the realized thin films to protect
against corrosion were performed on a Voltalab Model PGZ 402 potentiostat, equipped
with an electrochemical cell, made of a working electrode (consisting in bare (OL) for con-
trol or drop-casted modified steel disks), a counter-electrode of platinum wire (Metrohm
Analytics Romania SRL, Bucharest/Romania) and a saturated calomel reference electrode
(SCE) (Metrohm Analytics Romania SRL, Bucharest/Romania). All potentials were ref-
erenced to the standard hydrogen electrode (SHE) (Metrohm Analytics Romania SRL,
Bucharest/Romania). The potentiodynamic polarization measurements were recorded at
23 ◦C ± 1 ◦C, by sweeping the potential in the - 1.3 V ÷ - 0.6 V domains at a scan rate of
1 mV/s. The corrosive environment was a solution 0.1 M HCl (0.1 N, Merck, Darmstadt,
Germany). The open circuit potential (OCP) of the protected electrodes was monitored
around 30 min before polarization. The electrodes were fixed into a Teflon (SC NEAGOE
FLUOROPOLIMERI SRL, Brasov, Romania) body to obtain a precise active surface of
0.28 cm2. The measured parameters, such as corrosion potential (Ecorr), corrosion current
density (icorr), polarization resistance (Rp), corrosion rate (νcorr), the anodic (βa) and the ca-
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thodic Tafel slope (βc), were calculated using VoltaMaster 4 v. 7.09 software. The inhibition
efficiency (IE%) was calculated based on the previously reported equation [35].

2.5. Apparatus

The morphologic characteristics of the single- and sandwich-deposited layers were
analyzed by field emission-scanning electron microscopy—(SEM)/EDAX (Model INSPECT S)
(FEI Company, Hillsboro, OH, USA) with two types of signal-detecting backscattered electrons
and secondary electrons (EDS detector), using a low vacuum at a magnification = 100×,
high voltage = 25.00 KV and weight distance = 10.6 mm and atomic force microscopy
(AFM) apparatus (Nanosurf®EasyScan2, Liestal, Switzerland) using the non-contact mode
cantilever (image scan size of 1.1 µm × 1.1 µm, time/line = 1 s, points/line = 1024).

Using the previously reported equations [36] and the Nanosurf®EasyScan 2 soft, the
values of average roughness Sa and the mean square root roughness Sq were calculated
for each sample. The thickness of the layers (Sy) was also calculated for each deposited
layer before and after the corrosion tests. The electrode surface had an area of 1.326 pm2.
Particle size analysis was performed with the AFM software.

A Voltalab Model PGZ 402 potentiostat (Radiometer Analytical—Copenhagen, Den-
mark) with VoltaMaster 4 software v.7.09 was used for the electrochemical tests.

3. Results and Discussion

2D AFM images of the surfaces for each of the covering layers deposited on OL
electrodes, taken before and after corrosion tests, using a non-contact mode cantilever, are
presented in Figure 2.
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(a) MnTa2O6; (b) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin; (c) 5,15-(4-carboxy-
phenyl)-10,20-bis-phenylporphyrin; (d) MnTa2O6/5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-
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The particle dimensions and nano-roughness of the surfaces are presented in Table 2.

Table 2. Surface particle dimensions and the nano-roughness.

Electrode Area (pm2)
Sa before/after

(nm)
Sq before/after

(nm)
Sy before/after

(nm)

Particles
Dimension

(nm)

OL
1.326

0.3/73.98 2.37/81.52 - -
a 3.38/60.37 4.02/71.67 22.38/435.73 23
b 4.1/56.99 4.95/63.41 31.40/416.99 28
c 5.65/51.79 7.33/62.53 56.53/384.53 30
d 8.15/48.53 10.40/59.66 66.77/251.42 33
e 11.39/40.52 14.56/56.73 90.61/212.52 35
f 16.19/36.57 20.07/51.73 108.7/193.93 38
g 23.47/33.51 30.69/47.44 165.42/189.8 45

As in Table 2, MnTa2O6 single layer had the smoothest surface, characterized by the
smallest roughness value and, in the case of sandwich layers, higher values were obtained
(the highest values are for sandwich layers composed of trans 5,15-(4-carboxy-phenyl)-
10,20-bis-phenylporphyrin/MnTa2O6). AFM measurements data provided particle sizes
(Table 2) that vary between 23 and 45 nm, with the last value being obtained for the
sample with the highest roughness value. As can be observed from Table 2, the differences
obtained before and after the corrosion tests for Sa, Sq and Sy are considerably smaller
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in the case of steel covered with a sandwich layer consisting of 5,15-(4-carboxy-phenyl)-
10,20-bis-phenylporphyrin/MnTa2O6, meaning that the layer was sufficiently stable in the
aggressive medium [37].

Figure 3 shows the most significant morphological aspects of the deposited thin films f
and g after performing the corrosion tests. These features (Figure 3a,b) were examined by
SEM, and recorded at a magnification of 100×. The sandwich structures present a larger
density of particles at the surface. There is a strong relationship between the SEM images
aspect and the values for rugosity in the two samples. The non-uniform-type architectures
of sample a have a higher value of rugosity [38] than that of sample b, which uniformly
displays crystals organized in multiple layers.

Figure 3. SEM images for the depositions with the following structures after corrosion tests: (a) MnTa2O6/5,15-(4-carboxy-
phenyl)-10,20-bis-phenylporphyrin (optical microscopy); (b) 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin/MnTa2O6

(optical microscopy); (c) is the steel disk electrode (OL), 10 mm diameter and a thickness of 2 mm (macropicture obtained
with a Nikon camera, Tokyo, Japan).

The evolution of the OCP versus time measurements (Figure 4) were performed for
the bare and modified carbon-steel disk electrodes in 0.1 M HCl solution for 30 min. As
can be seen in Figure 4, an initial analysis of these curves shows that, in all cases, including
bare electrode, a 30 min exposure time leads to a shift in the free potential toward more
negative values. The OCP measurements (Figure 4) showed that the covered electrodes
stabilize at around 400–500 s, while the uncoated electrode stabilizes at around 1700 s. This
result provides preliminary information on the nature of the processes occurring at the
interfaces between metal/thin film and the electrolyte. The OCP is a qualitative indicator
of the state of corrosion of the steel substrate in acid medium and helps to determine the
immersion time required to reach the steady state [39].

Figure 5 are shows the Tafel plots of the investigated OL electrodes recorded after
30 min OCP in 0.1 M HCl solution. The slopes were determined in the Tafel region
of the anodic and cathodic curves before and after reaching the corrosion potential (U).
The Tafel parameters, which were calculated using VoltaMaster 4 v. 7.09 software, are
presented in Table 3. The degree of inhibition efficiency IE (%) was calculated using the
following equation [34].

In Table 3, where the calculated parameters from the Tafel plots are summarized,
the corrosion potential (Ecorr) of the OL electrode is −406.3 mV and the corresponding
corrosion current density (icorr) is 0.9548 mA/cm2. All the thin films deposited in single or
sandwich structures on electrodes display significantly lower corrosion current densities in
comparison with the OL disk.
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Figure 4. The OCP of the covered electrodes after 30 min immersion in 0.1 M HCl as it fol-
lows: OL (bare electrode); (a) MnTa2O6; (b) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-
porphyrin; (c) 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin; (d) MnTa2O6/5,10-(4-carboxy-
phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin; (e) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-
porphyrin/MnTa2O6; (f) MnTa2O6/5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin; (g) 5,15-(4-
carboxy-phenyl)-10,20-bis-phenylporphyrin/MnTa2O6.

Figure 5. Tafel polarization curves recorded in 0.1 M HCl for the studied electrodes:
OL (bare electrode); (a) MnTa2O6; (b) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-
porphyrin; (c) 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin; (d) MnTa2O6/5,10-(4-carboxy-
phenyl)-15,20-(4-phenoxy-phenyl)-porphyrin; (e) 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-phenyl)-
porphyrin/MnTa2O6; (f) MnTa2O6/5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin; (g) 5,15-(4-
carboxy-phenyl)-10,20-bis-phenylporphyrin/MnTa2O6.
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Table 3. The Tafel parameters calculated for the protected electrodes immersed in 0.1 M HCl medium
for 30 min.

Electrode E (I = 0)
(mV)

Rp
(Ω × cm2)

icorr
(mA/cm2)

βa
(mV)

βc
(mV)

νcorr
(mm/Y)

IE
(%)

OL −406.3 101.35 0.9548 256.9 −423.7 3.256 -
a −410.3 104.87 0.3781 175.7 −253.7 2.320 60.40
b −412.9 107.03 0.2690 143.8 −205.1 1.893 71.82
c −416.9 119.23 0.1602 115.9 −189.3 1.761 83.22
d −417.2 120.69 0.1349 108.2 −139.6 1.653 85.87
e −417.7 122.74 0.1289 52.7 −106.2 1.621 86.52
f −420.3 128.21 0.1028 43.2 −73.5 1.439 89.17
g −423.5 131.64 0.0790 39.5 −70.7 1.392 91.76

The polarization resistance (Rp) increases from 101.35 Ω × cm2, which is charac-
teristic of bare OL, to 131.64 Ω × cm2 in the case of 5,15-(4-carboxy-phenyl)-10,20-bis-
phenylporphyrin/MnTa2O6. Table 3 presents the recorded Tafel slopes βa and βc. The
cathodic Tafel slopes βc are found to increase more significantly than the decreases in
the anodic Tafel slopes βa. The anodic reaction can be presumed to be dependent on
activation polarization. Nevertheless, the cathodic reaction cannot be neglected, resulting
in further polarization. As βa is decreasing at a slower rate than the βc is increasing, the
difference in potential between the anodic and cathodic regions is also decreasing and,
thus, a lower corrosion rate occurs, as is visible in our case (see Table 3) [36]. The values of
the corrosion inhibition efficiencies are influenced by the thickness of the protective layers.
The highest inhibition efficiency of 91.76% was found in the case of the OL protected with
the 5,15-(4-carboxy-phenyl)-10,20-bisphenylporphyrin/MnTa2O6 successive layers; this
also presented the smallest difference before and after the corrosion tests for Sa, Sq and Sy,
meaning that the layer was sufficiently stable in the aggressive medium (see Table 2). This
result can also be correlated with SEM image (Figure 3b) that reveals the uniform coverage
of the particles over the steel surface.

Analyzing the variation in corrosion potential and corrosion current as the inhibition
efficiency is increasing (Table 3), it can be noted, as expected, that the corrosion current is de-
creasing proportionally to the corrosion rate, and the corrosion potential is shifted to more
cathodic values. If a cathodic reaction is involved in the corrosion process, the corrosion
potential becomes more negative, as noted in our case. The deposited couple of por-
phyrin/oxide inhibitors generate a barrier over the metal, thus limiting the contact between
the steel and the corrosive acid medium, and finally decreasing the corrosion rate [40].

Another significant but expected result is that the porphyrin 5,15-(4-carboxy-phenyl)-
10,20-bisphenylporphyrin, with a smaller steric hindrance and the possibility of creating
more continuous supramolecular aggregates, due to the presence in trans of two COOH
groups, offered the best corrosion protection of the steel surface [31]. Therefore, the trans-
COOH porphyrin proved to be better suited to our purpose than the porphyrin with the
COOH groups in cis vicinal position.

The mechanism by which the inhibitors hinder the corrosion of the carbon steel is
presumed to be simply based on the physical protection effect caused by the compact
and adherent layers of the two bis-carboxyl-substituted porphyrins. These form large
supramolecular architectures that are chemically resistant to acids (see Figure 6), thus
avoiding direct contact between the acid and the steel [41]. This mechanical barrier effect is
because the compact layers of triangular building blocks aggregated both in J and H-type
processes is more pronounced in the case of trans-porphyrin (Figure 6a) that in the cis-
derivative case (Figure 6b). The cis-porphyrin is helicoidally aggregated in small rings that
join together but leave space for little pores and large voids (Figure 6b), which can form
places of contact between acid and metal and points at which pitting corrosion begins [42].
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Figure 6. AFM images showing better coverage realized by trans 5,15-(4-carboxy-phenyl)-10,20-
diphenylporphyrin (a) in comparison with cis structure, 5,10-(4-carboxy-phenyl)-15,20-(4-phenoxy-
phenyl)-porphyrin (b).

As can be seen from the SEM images of the cross-sectional sandwich f sample,
MnTa2O6/5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin (Figure 7), there is no cleav-
age between the steel surface and the covering layers, so it can be expected to have very
good mechanical protection against the aggressive HCl medium.

Figure 7. SEM images of the cross-sectional sandwich a sample, MnTa2O6/5,15-(4-carboxy-phenyl)-
10,20-bis-phenylporphyrin.

4. Conclusions

The drop-casting deposition of single and sandwich coatings consisting of MnTa2O6
pseudo-binary oxide nanomaterials in association with 5,10-(4-carboxy-phenyl)-15,20-(4-
phenoxy-phenyl)-porphyrin or 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin on car-
bon steel electrodes were realized. The AFM analysis reveals that the main morphological
features present in the single layers are preserved in the sandwich layers. Correlating
the results obtained from corrosion tests with the features revealed by AFM analysis, it
can be concluded that the corrosion inhibition degree increases with the decreasing dif-
ference obtained for Sa, Sq and Sy roughness, before and after performing the corrosion



Processes 2021, 9, 1890 11 of 13

tests. The best value for corrosion inhibition was exhibited by the OL covered with a
mixed layer of 5,15-(4-carboxy-phenyl)-10,20-bis-phenylporphyrin and MnTa2O6 on top,
i.e., 91.76% inhibition efficiency. Another significant but expected result is that the por-
phyrin 5,15-(4-carboxy-phenyl)-10,20-bisphenylporphyrin with a smaller steric hindrance
and the possibility to create—due to the presence in trans of two COOH groups—more
continuous supramolecular aggregates, offered the best corrosion protection on the steel
surface. Therefore, the trans-COOH porphyrin proved to be better suited to our purpose
than the porphyrin with the COOH groups in cis vicinal position.
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