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Abstract: By virtue of the steady societal shift to the use of smart technologies built on the increasingly
popular smart grid framework, we have noticed an increase in the need to analyze household
electricity consumption at the individual level. In order to work efficiently, these technologies rely on
load forecasting to optimize operations that are related to energy consumption (such as household
appliance scheduling). This paper proposes a novel load forecasting method that utilizes a clustering
step prior to the forecasting step to group together days that exhibit similar energy consumption
patterns. Following that, we attempt to classify new days into pre-generated clusters by making
use of the available context information (day of the week, month, predicted weather). Finally,
using available historical data (with regard to energy consumption) alongside meteorological and
temporal variables, we train a CNN-LSTM model on a per-cluster basis that specializes in forecasting
based on the energy profiles present within each cluster. This method leads to improvements in
forecasting performance (upwards of a 10% increase in mean absolute percentage error scores) and
provides us with the added benefit of being able to easily highlight and extract information that
allows us to identify which external variables have an effect on the energy consumption of any
individual household.

Keywords: pattern recognition; energy profiling; clustering; forecasting

1. Introduction

Over the years, our reliance on electrical appliances has been slowly increasing. As our
dependence on electrical appliances has increased, so too has our consumption of energy [1]
and, subsequently, our need for more sophisticated and advanced solutions that can
accommodate this growth. Thankfully, the convergence of multiple technologies—such as
machine learning, data mining and ubiquitous computing—has led to the rise of a solution
in the form of smart (electric) grids as well as smart environments and smart meters,
which are slowly but surely taking off in terms of their popularity and availability [2].
The resulting growth in the prevalence of smart grids has given us the opportunity to
both control and monitor the energy consumption of individual households on a real-
time basis [3], and, through the utilization of applications built using this framework, we
are capable of achieving an overall reduction in the amount of energy that we, as the
human race, consume. This opens up the possibility to alleviate some of the inherent
risks associated with the growth in energy consumption, whether that be our overall
environmental footprint on the planet or, on a much smaller scale, the financial impact on
both suppliers as well as consumers due to instabilities present in current, outdated power
grid systems [4].

Existing solutions developed under the increasingly popular smart grid framework,
such as the Home Energy Management System (HEMS) and Battery Energy Management
System (BEMS), aim to provide the end-user with the means to schedule, or otherwise
manage, daily appliance operations, taking into consideration external factors such as
weather conditions and utility tariff rates alongside any other personal preferences [3].
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To operate efficiently, these solutions rely on our ability to capably forecast future trends
in energy consumption at the individual household level. This information is required
to allow appropriate and sufficient control and to supply the correct energy load to the
end-user [5,6]. This has lead to a shift in interest within the realm of load forecasting,
whereby research has moved from a predominant focus at the large-scale, regional level [7],
where an amalgamation of available data spanning numerous households provides more
obvious patterns as a result of the underlying diversity between households being lost [8],
towards a focus at the individual household level. Furthermore, owing to the operational
characteristics of both HEMS and BEMS and similar applications, load forecasting in the
very short term (anywhere from a few minutes to a couple of hours), which is oftentimes
referred to as very short-term load forecasting (VSTLF), is more relevant than the sub-
stantially studied longer term horizons that are predominantly associated with long-term
network planning and operations [3].

When exploring energy consumption at the individual household level, the diversity
and complexity associated with human behavior leads to extremely dynamic, volatile
patterns that can prove to be highly dissimilar between households. In addition to this,
certain households exhibit no clear pattern in energy consumption due to a high level of
irregularity in the lifestyles of their occupants [8]. To account for this dissimilarity, current
state-of-the-art methods benefit from a precursory clustering step within the forecasting
pipeline [3,4,8]. This precursory clustering step serves to amalgamate days that exhibit a
measure of similarity in terms of their energy consumption patterns into the same cluster.
By training individual forecasting models on a per-cluster basis, we should, in theory, see
an improvement in the load forecasting performance, as each of the respective models
specializes in predicting future trends in energy consumption based on patterns present
within the energy profile associated with its unique cluster. This is the area of research that
this paper seeks to tackle—how can we best construct energy profiles out of historical data
that truly capture repeated patterns with regards to energy consumption, and what are the
effects of including a clustering step on the performance of a forecasting pipeline.

To attempt to solve the previously outlined VSTLF problem at the individual house-
hold level, we propose a novel solution that utilizes a combination of statistical knowledge
and machine learning techniques to generate energy profiles that provide us with some
measure of insight into the habits of a household’s occupants as well as forecast future
trends in energy consumption. A high-level overview of the steps pertaining to our pro-
posed model is presented in Figure 1.

Figure 1. High-level overview of the steps pertaining to our model.
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To summarize, our method consists of three steps: cluster, classify, and forecast. First,
historical days are clustered based on their similarity in terms of active power consumption.
Following that, new days are classified into one of the generated clusters, and finally, fore-
casts are generated based on models that are trained on a per-cluster basis. Our solution
takes advantage of modern techniques and algorithms, such as the uniform manifold ap-
proximation and projection algorithm (an extension to the well-received t-SNE algorithm)
as well as hierarchical density-based clustering algorithms and deep learning models,
which combine aspects of both convolutional neural networks as well as long short-term
memory networks, in an attempt to achieve improved forecasting accuracy results when
considering what has already been researched in the current literature. Furthermore, we
hope to gain some insight into energy consumption habits at the individual household
level by constructing unique energy profiles that outline factors that may influence energy
consumption. Our contributions to this field are based on measurement of the perfor-
mance observed when applying our selection of algorithms and networks to publicly
available datasets that contain information regarding the active power consumption of
individual households (out of the two datasets on hand, one contains directly comparable
results [9,10]).

2. Related Work

Energy management systems, such as the previously introduced HEMS and BEMS,
are designed with the intent to both optimize and control the smart grid energy market. As
previously stated, to be able to do this, these demand-side management systems require
a priori knowledge about the load patterns, and, as a result of this, the field of designing
computationally intelligent load forecasting systems has expanded quite rapidly in recent
years with over 50 research papers related to the subject having been identified in existing
literature [11]. In this chapter, we explore a compiled subset of this literature that specifically
tackles the problem of energy profile construction as well as load forecasting. This is done
to establish a baseline for understanding what has already been done within the field in
terms of the two focal points of our forecasting pipeline: the precursory clustering step
and the state-of-the-art forecasting models. Furthermore, by doing so, we are able to
position our paper with respect to the current state-of-the-art models and highlight the key
differences in our approach.

2.1. Clustering and Energy Profile Creation

The main issue that this paper seeks to address is that of creating interesting profiles
in terms of recurrent patterns of energy consumption. To do this, we make use of clustering
algorithms that seek to partition our data into a number of clusters so that each of these
clusters exhibits some metric of similarity or goodness. However, a measure of goodness can
inherently be seen as quite subjective with Backer and Jain [12] noting that, “in cluster anal-
ysis, a group of objects is split up into a number of more or less homogeneous subgroups
on the basis of an often subjectively chosen measure of similarity (i.e., chosen subjectively
based on its ability to create “interesting” clusters), such that the similarity between objects
within a subgroup is larger than the similarity between objects belonging to different
subgroups.” We explore papers in the existing literature that present different takes in
terms of how they define similarity as well as in their chosen clustering methodologies.

Kong et al. [8] attempted to justify observations made by Stephen et al. [13] by
using a density-based clustering technique known as Density Based Spatial Clustering of
Applications with Noise (DBSCAN) [14] to evaluate consistency in short-term load profiles.
They reported the benefits of using DBSCAN, stating that, as it does not require the number
of clusters in the data to be known ahead of time and as it contains the notion of outliers, it
is an ideal clustering technique to identify consumption patterns that repeat with a measure
of noise akin to what is loosely defined by Practice Theory. Their findings are that the
number of clusters as well as the number of outliers vary greatly between households, with
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some households exhibiting no clearly discernible patterns and some households (mostly)
following fairly consistent daily profiles.

Yildiz et al. [3] expanded on traditional load forecasting techniques, such as the
Smart Meter Based Model (SMBM), that they had previously presented [15] and presented
their own take in the form of a Cluster-Classify-Forecast (CCF) model. In traditional
SMBMs, a chosen model, whether a statistical variant or one from the plethora of existing
machine learning models, learns the relationship between target forecasted loads when
presented with some input data which, in our case, consist of some historical lags in terms
of energy consumption, weather data, and temporal information such as the time and
calendar date. The CCF takes this a step further by making use of both K-means and
Kohonen’s Self-Organizing Map [16] to identify group profiles that are most similar to
each other. After obtaining and validating the output of their chosen clustering techniques,
the relationship between the clustering output and other temporal variables, such as the
weather, is investigated by using a Classification and Regression Tree [17].

2.2. Forecasting Models

Numerous studies have been conducted with the intent to forecast energy consump-
tion using methods ranging from multiple linear regression, as assessed by Fumo and
Rafe Biswas [18], to the novel deep pooling Recurrent Neural Network introduced by
Shi et al. [19]. The majority of these forecasting models, whether statistical, machine learn-
ing, or deep learning based, can be classified into two main categories: single technique
models, in which only a single, heuristic algorithm (e.g., a Multi-Layer Perceptron or Sup-
port Vector Machine) is used as the primary forecasting method, and hybrid methods that
encapsulate two or more algorithms [11], such as the Convolutional Neural Network Long
Short-Term Memory (CNN-LSTM).

Kong et al. [8] employed a Long Short-Term Memory (LSTM) network, as it is
generally ideal when attempting to learn temporal correlations within time series datasets;
however, their final results were not very promising, boasting a mean absolute percentage
error (MAPE) of approximately 44% over variable time steps. This could have been a result
of poor hyperparameter tuning, as they stated that, “tuning 69 models for each of the candidate
methods is very time-consuming for this proof-of-concept paper”. This leads us to believe that
there is definitely room for improvements to be made on the core concepts of their work.

Yildiz et al. [3] used the clusters they formed, as previously described, alongside
their assignments to build SMBMs through the use of a Support Vector Regression model,
and they found that, alongside improvements to the load forecasting accuracy, they were
able to reveal vital information about the habitual load profiles of the households they
were exploring. Unfortunately, they do not indicate any potential reasoning as to why
they chose to use K-means and Kohonen’s SOMs in place of potentially more effective
clustering methods, citing only that K-means is the most popular clustering technique [17]
and that SOMs is generally used as an extension to neural networks for the purposes of
clustering. Additionally, their results only include values that are indicative of their chosen
technique’s performance on their specific dataset. They presented performance metrics
such as the normalized root mean square error (NRMSE) and normalized mean absolute
error (NMAE), rendering us unable to compare the performance of their proposed method.

Kim and Cho [9] presented a more modern take on load-forecasting by proposing a
hybrid CNN-LSTM network that is capable of extracting both temporal and spatial features
present in the data. The use of convolutional layers within the realm of load forecasting is
brilliant as it allows the network to take into account the correlations between multivariate
variables while minimizing noise that can eventually be fed into the LSTM section of the
network that finally generates predictions. Their paper proposes such a network and cites
that the major difficulties with such an approach mainly boil down to hyperparameter
tuning, which can be remedied through a variety of means including genetic algorithms or
packages such as Keras Tuner, which is maintained by O’Malley et al. [20]. Furthermore,
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Kim and Cho [9] did not explore the possibility of implementing a precursory clustering
step which could have lead them to substantial improvements in their final MAPE.

3. Dataset Description

At our disposal are a number of publicly available datasets that contain historical
energy consumption data. These include data collected by the Engineering and Physical
Sciences Research Council via the project entitled “Personalised Retrofit Decision Support
Tools for UK Homes using Smart Home Technology (REFIT)” [21], which is a collaboration
among the Universities of Strathclyde, Loughborough and East Anglia, as well as the

“Individual Household Electric Power Consumption” dataset [10], which is part of the University
of California, Irvine Machine Learning Repository and which is henceforth acronymized as
the “UCI data set (UCID)”. This section briefly describes the main aspects of each of these
individual dat sets so that we may be better able to draw comparisons between them and
highlight any key differences. Additionally, we aim to append meteorological features
(e.g., temperature, wind speed, cloud coverage, precipitation) to each of our respective
datasets. An overview of this process and the data utilized is also presented in this section.

3.1. REFIT

The REFIT Electrical Load Measurements dataset [21] includes cleaned electrical
consumption data, in watts, for a total of 20 households labeled House 1- House 21 (skipping
House 14), located in Loughborough, a town in England, over the period of 2013 through
early 2015. The electrical consumption data were collected at both the aggregate leveland
the appliance level, with each household containing a total of 10 power sensors comprising
a current clamp for the household aggregate, labelled Aggregate in the dataset, as well
as nine individual appliance monitors (IAM)m labelled Appliance 1-Appliance 9 in the
dataset. The appliance list associated with each of the IAMs differs between households
and includes a measure of ambiguity, as applicants may have switched appliances around
during the duration of the data collection and because the installation team responsible
for setting up the power sensors did not always collect relevant data associated with the
IAMs. The consequences of this are, of course, that we do not know with 100% certainty
whether an appliance or set of appliances associated with an IAM remained the same
throughout the entirety of time covered by the dataset. Additionally, some labels are
inherently ambiguous, for example, the television site label, which could includeany number
of appliances including televisions, DvD players, computers, speakers, etc. Finally, the
makes and models of the appliances that were meant to be collected by the installation
team are not always present, further compounding the previously mentioned uncertainties.

The documentation associated with the dataset states that active power was collected
and subsequently recorded at intervals of 8 s; however, a cursory glance at the data
demonstrates that this was not always the case. A potential reason for this could be the
fact that the aforementioned power sensors were not synchronized with the associated
collection script which polls within a range of 6 to 8 s, leaving a margin for error in the
intervals between recorded data samples. Moreover, the dataset is riddled with long
periods of missing data, making it exceptionally difficult to work with. All of that said, the
data collection team made an attempt to pre-process or otherwise clean the dataset by

1. Correcting the time to account for daylight savings in the United Kingdom;
2. Merging timestamp duplicates;
3. Moving sections of IAM columns to correctly match the appliance they were recording

when that appliance was reset or otherwise moved;
4. Forward filling NaN values or zeroing them depending on the duration of the

time gap;
5. Removing spikes of greater than 4000 watts from the IAM values and replacing them

with zeros;
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6. Appending an additional issues columns that was set to 1 if the sum of the sub-
metering IAMs was greater than that of the household aggregate—in this case, data
should either be discarded or, at the very least, the discrepancy must be noted.

3.2. UCID

The UCID dataset [10] contains a total of 2,075,259 measurements gathered from a
single house located in Sceaux, a commune in the southern suburbs of Paris, France. The
data within this dataset were recorded over a duration of 47 months spanning the period
between December 2006 and November 2010. Measurements were made approximately
once per minute and consisted of the minute-averaged active power consumption, in
kilowatts, within the entire household as well as three energy submetering measurements,
corresponding to the kitchen, which included a dishwasher and microwave; the laundry
room, which included a washing machine and tumble dryer; and the combination of both
an electric water-heater and an air-conditioner. The UCID dataset is not without fault either,
containing approximately 25,979 missing measurements, which make up roughly 1.25%
of the entire dataset; however, given the extensive range covered as well as the immense
number of total measurements available, these missing values could easily be disregarded
and subsequently discarded during the preprocessing stage of our forecasting pipeline.

3.3. Meteorological Data

As an addendum to both the REFIT and UCID datasets, we incorporated meteoro-
logical data provided by Solcast [22], a company based in Australia that aims to provide
high quality and easily-accessible solar data. For the purpose of this master’s thesis project,
we requested meteorological data with variable time resolutions (5, 10, 15 min) for both
the Loughborough area in the United Kingdom for the REFIT dataset and the Sceaux
commune in the southern suburbs of Paris, France for the UCID dataset. The relevant
periods were 16th September 2013 up to and including 11 July 2015 and 1 December 2006
up to and including 30 November 2010 for each dataset, respectively. The provided data
was extensive, covering a wide range of parameters that are listed and described in detail
in Table 1.

Table 1. List of meteorological parameters available to us from the Solcast datasets.

Parameter Description

Air Temperature The air temperature (2 m above ground level). Units
are degrees Celsius.

Albedo Average daytime surface reflectivity of visible light, expressed as a
value between 0 and 1. 0 represents complete absorption. 1 represents
complete reflection.

Azimuth The angle between a line pointing due north to the sun’s current
position in the sky. Negative to the East. Positive to the West. 0 at due
North. Units are degrees.

Cloud Opacity The measurement of how opaque the clouds are to solar radiation in
the given location. Units are percentages.

Dewpoint The air dewpoint temperature (2 m above ground level). Units are
degrees Celsius.

Direct Normal Irradiance Solar irradiance arriving in a direct line from the sun as measured on
a surface held perpendicular to the sun. Units in W/m2.

Direct (Beam) Horizontal Irradiance The horizontal component of Direct Normal Irradiance. Units
are W/m2.
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Table 1. Cont.

Parameter Description

Global Horizontal Irradiance The total irradiance received on a horizontal surface. It is the sum
of the horizontal components of direct (beam) and diffuse irradiance.
Units are W/m2.

Global Tilted Irradiance–Fixed The total irradiance received on a surface with a fixed tilt. The tilt is
set to latitude of the location. Units are W/m2.

Global Tilted Irradiance–Horizontal Single-
Axis Tracker The total irradiance received on a sun-tracking surface. Units

are W/m2.

Precipitable Water The total column preciptable water content. Units are kg/m2.

Relative Humidity The air relative humidity (2 m above ground level). Units
are percentages.

SFC pressure The air pressure at ground level. Units are hPa.

Snow Depth The snow depth liquid-water-equivalent. Units are cm.

Wind Direction The wind direction (10 m above ground level). This is the meteo-
rological convention. 0 represents northerly wind (from the north);
90 represents easterly wind (from the east); 180 represents southerly
wind (from the south); 270 represents westerly wind (from the west).
Units are degrees.

Wind Speed The wind speed (10 m above ground level). Units are m/s.

Zenith The angle between a line perpendicular to the earth’s surface and
the sun (90 deg = sunrise and sunset; 0 deg = sun directly overhead).
Units are degrees.

4. Methodology

This paper proposes a forecasting method that utilizes dimensionality reduction and
clustering techniques to group days that exhibit similarities in terms of electric consumption
behavior. Days that are grouped into the same cluster are thought to contain shared features,
whether those features be temporal, as seen in Table 2, or meteorological or otherwise.
The formed clusters (per household) were used for 2 purposes in this study: firstly, to
train a classification model that utilizes available context information to assign a new day
to the correct cluster and secondly, for the application of a novel deep learning method
on a per-cluster basis to forecast future energy consumption. A detailed overview of the
proposed model can be seen in Figure 2.

In short, we started off by resampling the data present in both the REFIT dataset and
the UCID dataset into a common resolution so that we could directly compare results.
We resampled both datasets to a common resolution of 15 min per sample, as this lined
up well with the native resolution of the meteorological data that was provided to us by
Solcast. Following this, we cleaned both datasets and ridded them of any days containing
an incomplete number of records (here, incomplete refers to any days containing less than
96 records given that we split each day into a total of 96 chunks). After this, we took a
subset of each of our datasets (60% of the total data for the REFIT and UCID datasets,
henceforth referred to as Set A) and left out the remaining 40% (henceforth referred to
as Set B) in order to validate the results of our forecasting model. We then reduced the
overall dimensionality of a single day, going from a total of 96 features to a much more
manageable 2 through a combination of statistical and machine learning techniques and
generated clusters based on the new, 2-dimensional data set by utilizing a density-based
clustering algorithm. Following this, we trained and optimized a classifier on Set A and
used it to generate cluster labels for the previously withheld Set B. Finally, we trained our
forecasting models, one per cluster, on the data present in Set A and used the data present
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in Set B to act as both a validation set as well as a training set from which we obtained the
final results regarding the forecasting accuracy.

Figure 2. Proposed daily profile extraction and load forecasting model.

4.1. Stage 1—Data Collection and Cleaning

As mentioned previously, this study utilized available historical energy consumption
data on an individual household basis. As part of stage 1 of our forecasting pipeline, time
series data on daily electricity consumption needed to be collected from an individual
household meter for an adequate amount of time at an ideal resolution to obtain acceptable
results. After collection of, or in our case, loading in, the data, we performed common
preprocessing techniques to account for noisy or otherwise missing data that occurred
during the transmission of the data from the meters. The available data were resampled
into a resolution of 15 min, and any days that contained less than 96 values (given that
days were divided into 96 intervals of 15 min) were dropped from our dataset. All other
days that contained NaN values were also not considered and were subsequently dropped
from our dataset.

4.2. Stage 2—Dimensionality Reduction and Clustering

Given that each day in our dataset was represented by 96 dimensions, with each
dimension comprising the mean active power consumption over a time period of 15 min,
the first logical step to undertake was to transform the data in a manner that enabled our
clustering techniques to more efficiently determine which days exhibited similarities in
terms of electric consumption behavior. This dimensionality reduction step comprised 2
parts. To start things off, we divided each day into 5 different periods (as per the work of
Yildiz et al. [3]), as follows:

1. Morning: 06:00–11:00;
2. Late morning/afternoon: 11:00–15:00;
3. Late afternoon/early evening: 15:00–20:30;
4. Evening: 20:30–23:30;
5. Late evening/early morning: 23:30–06:00.
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Following that, we represented each period by its respective mean, and minimum,
and maximum values as well as its standard deviation. The outcome of performing
this was that each day was represented by a total of 20 dimensions, rather than the
initial 96, a reduction of ∼80%. We were able to reduce this even further, and even
visualize our data in 2 or 3 dimensions, by making use of either the t-Distributed Stochastic
Neighbor Embedding (t-SNE) [23] or Uniform Manifold Approximation and Projection
(UMAP) [24] algorithms. The most important hyperparameter to tune for either algorithm
is the perplexity hyperparameter for the t-SNE algorithm and the equivalent nneighbors
hyperparameter for the UMAP algorithm. During our research, we found that the optimal
value for either of these hyperparameters was N

1
2 , where N is the number of samples

present in the dataset.
After performing the dimensionality reduction step on our data, we proceeded to

cluster the resulting output by applying the Hierarchical Density Based Spatial Clustering of
Applications with Noise (HDBSCAN) algorithm—a hierarchical, non-parametric clustering
algorithm proposed by Campello et al. [25] that was designed to overcome the main
limitations of DBSCAN. The most substantial changes between HDBSCAN and DBSCAN
come in the form of no longer explicitly needing to predefine a value for the distance
threshold ε. Instead, HDBSCAN generates a complete, density-based clustering hierarchy
over variable densities from which a simplified hierarchy composed of only the most
significanat clusters in the data can be extracted. The only important parameters that need
to be passed to the HDBSCAN algorithm are the minimum size that each cluster is expected
to be. In this case, we set that value to 1

10 (N), where N is the number of samples present in
the dataset. Our reason for selecting this value was predominantly based on the adequate
results observed by Kong et al. [8] in their implementation of the DBSCAN algorithm in a
similar setting whilst utilizing a similar selection in terms of hyperparameter settings. The
other hyperparameter that we chose to tune was the min_samples hyperparameter, which,
in layman’s terms, denotes how conservative we would like to be with our clustering in
terms of restricting clusters to progressively more dense areas and classifying samples from
our dataset as noise. In our case, an arbitrary value of 15 was selected. This was in contrast
to the default value that sets min_samples = min_cluster_size. The resulting clusters can
be found in Section 5 of this paper.

4.3. Stage 3—Data Preprocessing

The first step undertaken (on a per-cluster basis) was to append both temporal data
and meteorological data to our datasets. Table 1 (located in Section 3.3) pertains to the
historical meteorological data concerning the regions associated with our datasets, while
Table 2 pertains to the temporal variables that were taken into consideration as part of this
feature engineering step. Incidentally, as outlined in Table 2, the temporal variables we
have chose to append did not hold much value given their current format. This was due to
their cyclical nature (think of how the 23rd hour of the day is rather close to hours 0 and
1). To handle this, we encoded all temporal variables through the use of both the sine and
cosine functions in an attempt to transpose our linear interpretation of time into a cyclical
state that could be better interpreted by our deep learning model. The result of performing
this so-called encoding can be seen in Figure 3a,b, which illustrates a linear-to-cyclical
encoding of the time of day (as an example).
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Table 2. List of temporal variables that were taken into consideration during the feature engineering
process, as outlined in Section 4.3.

Variable Description

Day An integer value between 1 and 31.

Weekday An integer value between 0 and 6 denoting the different days of the week.

Month An integer value between 1 and 12.

Year An integer value between 2007 and 2010.

Hour An integer value between 0 and 23.

Minute An integer value between 0 and 45 in increments of 15.

Season An integer value between 0 and 3 where 0 denotes Spring, 1 denotes Summer, 2
denotes Fall, and 3 denotes Winter.

Holiday A categorical variable that takes on an integer value of 1 when the day concerned is a
public holiday and 0 otherwise.

(a) (b)

Figure 3. By utilizing a combination of the sine function and the cosine function, we eliminated the possibility that two
different times would receive the same value had we used either function independently. The combination of both functions
can be thought of as an artificial 2-axis coordinate system that represents the time of day. (a) The time of the day represented
as a combination of both sine and cosine waves. (b) Visualizing our cyclical encoding of the time of day.

Following the feature engineering process, the feature selection process heavily re-
volved around minimizing the overall number of features that did not serve as good
predictors of our target variable. To assess which features should be kept and dropt, we
performed a variety of tests to determine which of our features presented a significant
level of independent (or combinatorial) correlation or causation when considering our
target variable for the REFIT and UCID datasets. The primary tests conducted revolved
around the concepts of Granger Causality (see Figure 4) and mutual information gain
(see Figure 5), although other factors (such as a per-variable variance threshold) were also
looked into.
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(a) (b)

Figure 4. Trimmed Granger Causation matrix that displays the Granger Causality of our independent features against our
target variable for the UCID and REFIT datasets. (a) UCID data set. (b) REFIT data set.

(a) (b)

Figure 5. Mutual information gain with regard to our independent features and target variable for the UCID and RE-
FIT datasets. (a) UCID dataset. (b) REFIT dataset.
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When taking our target variable into consideration, the notion of outliers (and how to
deal with them) was inevitable. Leaving them in was one possibility, as some level of noise
is unavoidable in the data collection process, and training our models on unrealistically
curated data would not serve to produce an accurate representation of a real-life scenario
in which a model of this caliber could be applied. Alternatively one method, explored
during prior, related research [6], works on the basis of defining upper and lower bounds
based on the interquartile range (IQR). The IQR is calculated as the difference between the
75th (Q3) and 25th (Q1) percentiles of the data and comprises the box in a traditional box
and whiskers plot. Using the IQR, outliers can be defined as any values that are predefined
factors below the 25th percentile or above the 75th percentile, as follows:

Q1 − (1.5 ∗ IQR) < x < Q3 + (1.5 ∗ IQR) . (1)

Figure 6a,b represents the distribution of values for our target variable over the
different months of the year before and after removing outliers.

(a) (b)

Figure 6. Illustration of the distribution of values with respect to the global active power of the UCID dataset before and
after removing outlier values, as defined by Equation (1). (a) Before removing outliers. (b) After removing outliers.

Smoothing or filtering the data can also be done through the use of a variety of tech-
niques and can help to alleviate some of the issues inherent to the noise present in data
as a byproduct of the data collection process. An example of performing a preliminary
smoothing step on energy consumption data can be seen in the work of Hsiao [4], in which
a moving (or rolling) average method was utilized.

With regard to our proposed forecasting pipeline, we utilized Savitzky–Golay filters
[26] to smooth our raw electrical energy consumption data as, when compared to the
moving average method, Savitzky–Golay filters tend to do a better job at preserving the
integrity of raw data. Figure 7a,b serves to illustrate the application of both the moving
average method as well as the Savitzky–Golay filter method on a subset of our (raw) dataset
in order to better visualize the differences between the methods.
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(a) (b)

Figure 7. Illustration of the application of the moving average method and the Savitzky–Golay filter method to smooth
a subset of our raw data. (a) Application of the moving average method with a window size of 3. (b) Application of the
Savitzky–Golay filter method with a polynomial order of 3 and a window size of 5.

When considering the trend component of our data (obtained through performing an
additive time series decomposition step, as seen in Figure 8), a preliminary smoothing step
can be undertaken through the use of Locally Weighted Scatterplot Smoothing (LOESS).
This is illustrated in Figure 9.

Figure 8. The outcome of performing time series decomposition on a subset of the UCID dataset.
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Figure 9. An illustration of the previously obtained trend component both with and without the
application of LOESS.

The final step taken as part of Stage 3 of the forecasting pipeline was to split the data
into 3 subsets that served to act as training, validation, and testing sets that were fed to our
classification tree and the CNN-LSTM network that we used for the purpose of forecasting.
A split employing an arbitrarily selected ratio of 60:20:20 was taken. Given the nature of our
study, we chose not to shuffle the data in either of the generated sets as we were primarily
interested in our model’s capability to forecast future trends in energy consumption given
a measure of historically available data.

4.4. Stage 4—Training and Testing

In contrast to the earlier stages, stage 4 is subdivided into Sections 4.4.1 and 4.4.2,
where Section 4.4.1 serves to present an overview of our classification model, while
Section 4.4.2 serves to present an overview of our forecasting model.

4.4.1. Stage 4.1—Classification Tree

Before attempting to forecast trends in energy consumption, we needed to establish, or
otherwise ascertain, our ability to correctly assign a new point (or day) to the correct cluster.
Given that the previously discussed clustering step separated the days in our dataset
on the basis of similarity in terms of patterns in energy consumption, it was predicted
that this would not be an easy feat, as it was predicted that the remaining available
context information may not suffice to provide relevant information to draw up a decision
boundary (of sorts) that serves to differentiate individual clusters.

The first step toward ensuring that a decently trained classifier had been developed
was to deal with the glaring problem of class imbalance. The results of our clustering
step led us to an uneven distribution of days among the different class labels, which
could have led to poor predictive performance, as standard classification algorithms are
inherently biased to the majority class. A common means to alleviate this issue is to either
undersample the majority class(es) or oversample the minority class(es). In this study, we
utilized the SMOTE algorithm [27], a form of informed oversampling, which works on the
basis of generalizing the decision region for minority classes and thus provides us with
synthetic samples while preventing overfitting. For further explanations as to the workings,
advantages, and shortcomings of this algorithm, we refer the reader to the initial paper
by Chawla et al. [27] as well as Figure 10, which provides a layman’s explanation of the
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algorithm. The results of applying the SMOTE algorithm and the overall negation of the
previously mentioned class imbalance can be seen in Figure 11.

Figure 10. An illustration of the Synthetic Minority Oversampling Technique (SMOTE) algorithm in
the case of 2 classes depicted by blue squares (minority class) and red circles (majority class). The
blue square on the far left is isolated from other members of its class and is surrounded by members
of the other class; this is considered to be a noise point. The cluster in the center contains several blue
squares surrounded by members from the other class and thus is indicative of potentially unsafe points
that are unlikely to be random noise. Finally, the cluster in the far right contains predominantly
isolated blue squares. The algorithm will then generate new synthetic samples, prioritizing the
safer regions.

Figure 11. Number of samples per class label after applying the SMOTE algorithm.

After handling the class imbalance problem, we shifted our attention to feature engi-
neering and the feature selection process of this particular classification problem. In this
scenario, the available context information that we had was purely temporal (ordinal day
of the week/year, month, season, etc.) and historical as well as forecasted meteorological
data (air temperature, humidity, cloud opacity, etc.), and this served to act as the baseline
features received by our classifier and used to assign new samples into the previously
generated clusters.

As part of our research, we made use of a Random Forest Classifier, the hyperparame-
ters of which were tuned through a randomized search over a predetermined distribution
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of values for each hyperparameter. After assessing the optimal hyperparameters for our
use-case, we passed the model as well as the complete set of features through a feature
selection algorithm titled Recursive Feature Elimination and Cross-Validation (RFECV),
which works by providing a cross-validated selection of the most important features when
considering a target label and pruning the less important features. Application of this
algorithm reduced the overall number of features that our Random Forest Classifier utilized
from an initial 77 down to a mere 24 (as shown in Figure 12)—an overall reduction of
∼68%, which was predicted to lead to better predictive and run-time performances.

After transforming the dataset and pruning the less important features we, once again,
trained the model on the new transformed dataset utilizing 5-fold stratified cross-validation
to assess whether our model was overfitting at any stage and to ensure an even distribution
of class labels for each validation set. We conducted a quick inspection of the now fitted
model by calculating the permutation feature importance on a per-feature basis to validate
whether the final set of features was relevant when attempting to classify a new sample
into the correct cluster. By definition, the permutation importance of a feature is the overall
decrease in accuracy of our model when the said feature’s values are randomly shuffled.
By implementing this concept, we broke the relationship between the feature and the
target label and were able to assess the dependence of our model on that feature, the
results of which can be seen in Figure 13. It is important to note that, when calculating the
permutation importance of strongly correlated features, the model will still have access to
the shuffled feature through its correlated feature, which will result in lower importance
values for both features when they might actually be important. To address this, we pruned
the data set and removed subsets of features with strong inter-correlation.

Figure 12. Assessing the number of important features through the use of the Recursive Feature
Elimination and Cross-Validation (RFECV) algorithm. In this particular scenario, the optimal number
of features was pruned down from a total of 77 to a mere 24.
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Figure 13. The permutation importance of each of the features chosen as part of our fitted Random
Forest classifier.

The final model was then ready to accept new samples and assign them cluster labels
based on the training procedure outlined through Section 4.4.1.

4.4.2. Stage 4.2—CNN-LSTM Network

Finally, when taking the forecasting step of our method into consideration, we chose
to implement a CNN-LSTM model in which the Convolutional Neural Network (CNN)
component is used to learn the relative importance of each of the features (temporal as well
as meteorological) and this is passed to the network as input in what we can loosely call a
feature extraction step. The extracted features are then passed to the LSTM portion of the
network, which learns the temporal relationships with past, or otherwise historical, values
of said features with the present, or future, value(s) of the target variable, and finally, an
output prediction is made. The combination of both CNN and LSTM components allows
the network to learn spatio-temporal relationships between the features being passed
as input and the target variable that we are attempting to forecast. In contrast to other
architectures and forecasting models, this architecture is demonstrably more efficient for
tackling time series problems such as those of residential energy consumption forecasting
[9]. The sample network illustrated in Figure 14 can be expanded to forecast multiple
time steps ahead with minor adjustments and is capable of understanding patterns at
variable time resolutions. For the purposes of this example, we used the previously defined
resolution of 15 min using a window of 24 historical values (t − 24, t − 23, ..., t) to make
a prediction one step into the future (t + 1) for both the previously established trend
component as well as the raw, unadulterated data.
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Figure 14. A simple, example CNN-LSTM network that makes one-step-ahead predictions.

To train our network, we utilized Adam [28]: an adaptive learning rate optimization
algorithm that was designed specifically for training deep neural networks. In contrast to
the ever-familiar Stochastic Gradient Descent, Adam leverages the power of adaptive learn-
ing rate methods and momentum to allocate individual learning rates for each parameter
of the network being trained. For further explanations about workings of this algorithm,
we refer the reader to the initial paper by Kingma and Ba [28]. Additionally, when training
our network(s), we made use of a variety of techniques to improve generalization and
prevent overfitting of the training data set(s). The first of these techniques was the notion
of early stopping. Early stopping is a form of regularization that monitors the validation
loss (or generalization error) and aborts training when the monitored values either begin to
degrade or do not shift for an arbitrarily set number of epochs. The second technique used
worked on the notion of employing a variable learning rate which, in theory, facilitated
convergence of our weight update rule and prevented learning from stagnating, thus
allowing us to break through plateaus and avoid settling at local minima. For the purposes
of our experiments and procuring the results showcased in Section 5, we implemented a
network on a per-cluster basis for both the raw data as well as the trend component of each
of our datasets. The networks implemented served to provide one-step-ahead forecasts as
well as one-shot 12-step-ahead (3 h) forecasts as proof of concept.

5. Results and Discussion

Following the brief example in Section 4, we extended the implementation to house
12 of the REFIT dataset. The subsequent sections demonstrate the efficacy of both the
classification step aand the forecasting step of our method.
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5.1. Clustering

The first results presented are those of the clustering step of our method. We start
off by presenting a scatter plot of the two-dimensional output obtained as a result of
performing the UMAP algorithm on the UCID dataset, which can be seen in Figure 15. This
allows us to clearly visualize the two-dimensional interpretation of the samples present in
the UCID dataset. Each of the points found on the two-dimensional surface in Figure 15
represents a single day, and given that the UMAP algorithm claims to preserve both the
local as well as most of the global structure present in the data, we can safely assume
that distances between the samples are conducive to the similarity in terms of energy
consumption as per the previously segmented interpretation of the data.

Figure 15. The output of performing the UMAP algorithm on the 20-dimensional UCID dataset.
Each point in this figure represents a single sample (or day) within our dataset mapped onto a
2-dimensional surface.

Following this, we present the results of applying the HDBSCAN algorithm on the
resulting two-dimensional output observed in Figure 15, which can be seen in Figure 16.
Immediately, the HDBSCAN algorithm’s potential for recognizing densely populated (as
well as variably shaped) regions of samples without needing a priori knowledge about
the number of clusters present in the data can be observed. In addition to this, we note
the HDBSCAN algorithm’s capability to recognize noise points (note the subset of points
coloured in black that do not clearly belong to any of the three generated clusters), which is
a clear advantage over many other clustering algorithms. Given our previous assumption,
it is safe to assume that the generated clusters visualized in Figure 16 contain samples that
exhibit some measure of similarity with regards to their energy consumption patterns.



Processes 2021, 9, 1870 20 of 27

Figure 16. The output obtained from performing the HDBSCAN algorithm on the 2-dimensional
UCID dataset previously seen in Figure 15.

For the sake of comparison, we present the output obtained by applying the k-means
clustering algorithm (assuming k = 3) on the same two-dimensional representation of the
UCID dataset (visualized in Figure 15) which can be seen in Figure 17. We immediately note
the capability of the HDBSCAN algorithm to capture a better representation of the clusters
present in our two-dimensional representation of the UCID dataset. The representation of
outliers as noise points and not having to have a priori knowledge of the number of clusters
present in the data we are working with are definite advantages that further compound
our choice of clustering algorithm in our proposed model.

Visualizing, or otherwise manually inspecting, the clusters obtained as a result of our
application of the HDBSCAN algorithm was necessary so that we could better understand
whether our clustering algorithm can truly capture the habits of the individuals residing in
the households we are working with. The first step in our analysis of the resulting clusters
was to plot the averaged power consumption on a per cluster basis so that we could clearly
visualize the patterns in power consumption for each cluster. An example of this, in line
with the previous examples showcasing our proposed model on the UCID dataset, can be
seen in Figure 18a. We note that, in this example, a subset of our data (24 samples in total)
was recorded as noise by the HDBSCAN algorithm. Inspecting these samples manually led
us to the confirmation that, of the 4 years worth of data, these 24 days were the only days
that exhibited no tangible shifts in terms of power consumption throughout the entirety of
the day (i.e., the global active power draw observed was completely stationary throughout
this period); however, this is not explicitly outlined in the documentation of the UCID
dataset. This can be seen as a more or less flat line in Figure 18a.
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Figure 17. The output obtained by performing the k-means algorithm on the 2-dimensional UCID
dataset previously seen in Figure 15.

(a) (b)

(c) (d)

Figure 18. Visualization of the generated clusters. (a) Average power consumption per hour of the day for each of the
resulting clusters obtained after utilizing the HDBSCAN algorithm on our 2-dimensional representation of the UCID dataset.
(b) Distribution of the clusters over the different months of the year. (c) Distribution of the clusters over the different days of
the week. (d) Spread of the number of samples per cluster label.
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Figure 18b,c helps us visualize the distribution of the clusters over the months of
the year as well as the days of the week to ascertain whether any of the clusters present
any correlations with these temporal variables. Given that the initial spread of the data
throughout the months of the year and days of the week of the UCID dataset was relatively
uniform, we did not expect to see any bias towards any particular month or day in either
Figure 18b or Figure 18c respectively. At a glance, we notice that clusters 1 and 2 were more
likely to occur on weekdays, with cluster 3 taking over the majority share of the weekend,
which tends to explain the more consistent draw in power throughout the entirety of
the day for samples belonging to cluster 3. Furthermore, samples in cluster 1 tended to
gravitate towards the warmer summer months, peaking in terms of number of occurrences
in the month of July, while samples in clusters 2 and 3 exhibited more uniform spread over
the remainder of the colder months. This could explain the lower average draw in power
present in samples belonging to cluster 1 as a result of the owners of the home not being in
it as often or potentially not needing to make use of appliances to heat up their home (we
note that this data was collected in Sceaux, France which experiences a warm season of ∼3
months with otherwise generally cooler temperatures).

N.B.: It is worth noting that the performance of these same steps on households from
within the REFIT dataset exhibit similar results.

5.2. Cluster Label Classification

The second results to be presented are those of the classification step of our method
(refer to Table 3).

Table 3. Results of training, optimizing, and evaluating a random forest classifier on the cluster labels
obtained for the UCID and REFIT datasets.

Data Set No. of Clusters Accuracy

UCID 3 76%

REFIT—House 12 3 66%

Being able to correctly assign new samples to the correct cluster is imperative so as
to ensure the highest likelihood of achieving a consistently reliable forecasting accuracy.
Given that we had an equal number of three clusters per dataset and that we were working
with a (synthetic) uniform distribution of samples over the different clusters, the scores
outlined in Table 3 are fairly good (a random predictor would achieve an accuracy of 33.3%).
The disparity in the results between the two datasets could predominantly be linked to the
following two reasons:

1. The UCID dataset contained a much larger number of samples (days).
2. The distribution of the samples over the different days of the week and months was

much more uniform in the UCID dataset.

Figure 19a,b allows us to clearly visualize both the correct and the incorrect predictions
made by our model. Interestingly, given that both the clusters formed for the UCID and
REFIT datasets were quite similar in terms of the overall patterns that were captured, the
model fitted for each dataset seems to have made mistakes or incorrect predictions of a
similar magnitude, with cluster 2 containing the largest number of incorrect predictions for
each of the datasets and cluster 1 containing the largest number of correct predictions.
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(a) (b)

Figure 19. Confusion matrices for the REFIT dataset and the UCID dataset. (a) Confusion matrix—UCID. (b) Confusion
matrix—REFIT.

5.3. Forecasting Accuracy

Compared with the current state-of-the-art methods presented in modern literature,
particularly with regard to data available that pertain to the UCID data set, our method
yields superior forecasting accuracy at variable resolutions. Table 4 presents a performance
comparison of common models discussed in the literature and our method for forecasting
one step into the future. We note that, at the time of writing, no published studies have
attempted to forecast energy consumption on the REFIT dataset, and thus, rather than
attempting to recreate the results ourselves, we decided to omit them from Table 4 for the
time being.

Table 4. Performance comparison of different methods used for the UCID and REFIT datasets. Note
that these results were obtained for one-step-ahead predictions at a resolution of 15 min from the raw
datasets.

Data Set Method MAE (kW) RMSE (kW) MAPE

UCID
LSTM [9] 0.62 0.86 51.45%

CNN-LSTM [9] 0.34 0.61 34.84%
Proposed 0.14 0.19 21.62%

REFIT
LSTM N/A N/A N/A

CNN-LSTM N/A N/A N/A
Proposed 0.11 0.17 25.77%

Another component that is frequently (attempted to be) forecasted in the literature is
the trend component obtained as part of a time-series decomposition step. We attempted
to tackle this problem ourselves and applied the method to both the smoothed trend
component of the UCID dataset as well as house 12 of the REFIT dataset, the results of
which can be seen in Table 5. We note that the results were good, with a MAPE value of
∼4% achieved for both datasets when forecasting a single time step into the future.

Table 5. Performance metrics obtained when applying our method on the trend component of the
UCID and the REFIT datasets to obtain one-step-ahead predictions.

Data Set MAE (kW) RMSE (kW) MAPE

UCID 0.02 0.02 2.58%

REFIT 0.02 0.02 4.32%
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Finally, we attempted to extend our model by scaling up the number of predictions
from a singular step (15 min into the future in this scenario) to a total of 12 sequential steps
(leading to a grand total of 3 h being forecasted given the previously mentioned step size
of 15 min), the results of which can be seen in Table 6.

Table 6. Performance metrics obtained when applying our method on both the raw data as well as
the trend component of the UCID and REFIT datasets to obtain twelve-step-ahead predictions.

Data Set Method MAE (kW) RMSE (kW) MAPE

UCID Raw 0.37 0.59 38.23%
Trend 0.02 0.02 3.15%

REFIT Raw 0.17 0.31 39.75%
Trend 0.02 0.02 4.75%

Oddly enough, for both the UCID dataset and house 12 of the REFIT dataset, we
achieved marginal improvements with regard to MAPE scores when attempting to build
twelve-step-ahead forecasts on the respective trend components. On the other hand, MAPE
scores for the raw data for each of our datasets fell somewhat substantially, with an overall
loss of about ∼10% when moving from one-step-ahead forecasts to twelve-step-ahead
forecasts, which is more in line with what one could expect in this scenario.

To further showcase or visualize the capabilities of our model, we present
Figures 20a,b and 21a,b, which serve to illustrate one-step-ahead forecasts generated for
a subset of the UCID dataset and house 12 of the REFIT dataset. These figures illustrate
predictions made by each of our individual models on both the raw data as well as the
trend component for the REFIT dataset and UCID dataset over a period of 1 day from our
test set. A cursory glance at Figures 20b and 21b shows us that our model seems to excel
at making one-step predictions on the trend component of the UCID dataset, while the
predictions being made for the trend component of the REFIT data set seem to be slightly
less accurate. When considering the raw data for each of the datasets (Figures 20a and 21a),
the differences are less pronounced, and it seems that the model is capable of making
accurate predictions one step into the future. This might vary between days though and,
given that the days chosen for these illustrations were completely random, it might be the
case that the model performs better (or worse).

(a) (b)

Figure 20. Showcasing the ability of our method to make one-step-ahead predictions on the UCID dataset. (a) UCID—Raw
data. (b) UCID—Trend.
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(a) (b)

Figure 21. Showcasing the ability of our method to make one-step-ahead predictions on the REFIT dataset. (a) REFIT—Raw
data. (b) REFIT—Trend.

N.B. we note that the results obtained as part of Section 5.3 are the averaged results
obtained from training, optimizing, and assessing multiple models, one for each of the
respective clusters obtained as part of stage 2 of our method. Furthermore, all results were
obtained at a resampled resolution of 15 min per timestep; however, similar results have
been observed for variable time resolutions (1 min, 1 h, etc.)

6. Conclusions and Future Work

In this study, we showed that the application of a clustering step that utilizes dimen-
sionality reduction techniques, such as t-SNE, and hierarchical density-based clustering in
the form of HDBSCAN leads to significant improvements in forecasting accuracy when
taking individual households into consideration. While this technique is certainly more
complex, in particular with regard to the number of steps and moving parts associated
with the entire pipeline, we maintain that the benefits in terms of the improved forecast-
ing accuracy outweigh the overall increases in time and effort required to train and set
up such a model. The practicality of the model lies in the availability of the data that it
requires to function, primarily with respect to historical energy consumption data for the
individual households in question (which is becoming easier and easier to obtain thanks
to the prevalence of smart meters) and meteorological data, which can easily be obtained
from numerous sources. Furthermore, it is highly likely that, given enough historical data,
the need to further train the model(s) after the initial setup willb be rather low, further
compounding the efficacy of our method.

Another previously discussed benefit of our method is that no prior knowledge of the
number of clusters is required. As there is no guarantee that any two individual households
contain similar numbers of repeating patterns, we avoid running into the problem of overly
generalizing a single working solution that may or may not work given a change in energy
consumption patterns and, instead, present a solution that could potentially extend to
a much larger scale. A potential issue with this implementation, however, is that an
individual household may contain a large number of repeating consumption patterns,
which could possibly lead to an overall decline in what can already be considered a sub-par
performance from our classifier. That said, there is definitely room for improvement to
accommodate these potential risks, specifically with regard to the feature engineering step,
for example, improvements in the classifier accuracy could be seen through the utilization
of a more efficient classifier. Alternatively, the current lack of contextual information that
serves to explain the emergence of the clusters as part of the clustering step could be the
reason for obtaining sub-par accuracy scores as, in its current iteration, the premise of our
clustering step was to group together days that exhibited the highest level of similarity
purely in terms of their energy consumption patterns and, given that this information is
not readily available to us when considering a new day, we were left reaching for straws
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when attempting to explain when any individual household was likely to observe energy
consumption patterns falling within any of the obtained clusters. Evidently, temporal and
meteorological information is not enough to explain the emergence of said clusters, and
other information (perhaps patterns in terms of cluster labels leading up to the new sample)
could serve to improve the classifier accuracy. This is definitely an area of this study that
could be looked into as part of future research. Additionally, regardless of the fact that
the performance of our forecasting model is the highlight of this paper, it is interesting to
note that a byproduct of our method is the potential to extract insights into variables that
affect the daily energy consumption patterns of unique households. A cursory glance at
applying our method to a portion of the data at hand, as an example of the insights that
can be obtained, shows us that some households have frequently occurring patterns that
tend to deviate among the different days of the week while other households have an even
bigger separation across months of the year or even among meteorological factors such as
the temperature or chance of rain.

Additionally, given the previously described practical application within a HEMS or
BEMS setup, our method should allow significant improvements over the current state-of-
the-art methods in terms of improving solutions that are built on the smart grid framework.
Given the greater complexity of our method compared with other available methods, it is
worth noting that an increase in training time is inevitable; however, as previously stated,
this should be a nonissue given the high availability of historical energy consumption data.
The practicality of the method in terms of data requirements is also a nonissue, as the only
data required are the available smart meter data as well as other variables that are easy
to obtain and otherwise publicly available. Another significant advantage of this method
is the insights drawn as a result of obtaining energy profiles unique to each individual
household that would not be readily available without some manual work (usually in
the form of surveys or otherwise) by local energy companies. This method could also
potentially see extensions that go beyond energy consumption forecasting (assuming that
the data on hand comprises a similar structure). To conclude, we note that, as a result
of preclustering our data utilizing a hierarchical density-based clustering algorithm in
the form of HDBSCAN and then training separate CNN-LSTM models on a per-cluster
basis, we achieved an improvement in overall forecasting accuracy with superior MAPE
scores (21.62% in contrast to 34.84%) when considering the current state-of-the-art methods
(LSTM networks, clustering based on K-means, etc.), and ew were also able to form unique
energy profiles for individual households, providing valuable insights into their respective
energy consumption habits as well as the factors influencing their energy consumption.
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