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Abstract: This paper presents an algorithm for efficient uncertainty quantification (UQ) in the
presence of many uncertainties that follow a nonstandard distribution (e.g., lognormal). Using the
polynomial chaos expansion (PCE), the algorithm builds surrogate models of uncertainty as functions
of a standard distribution (e.g., Gaussian variables). The key to build these surrogate models is
to calculate PCE coefficients of model outputs, which is computationally challenging, especially
when dealing with models defined by complex functions (e.g., nonpolynomial terms) under many
uncertainties. To address this issue, an algorithm that integrates the PCE with the generalized
dimension reduction method (gDRM) is utilized to convert the high-dimensional integrals, required
to calculate the PCE coefficients of model predictions, into several lower-dimensional ones that can be
rapidly solved with quadrature rules. The accuracy of the algorithm is validated with four examples
in structural reliability analysis and compared to other existing techniques, such as Monte Carlo
simulations and the least angle regression-based PCE. Our results show our algorithm provides
accurate UQ results and is computationally efficient when dealing with many uncertainties, thus
laying the foundation to address UQ in complex control systems.

Keywords: dimension reduction; polynomial chaos expansion; uncertainty analysis; nonstandard
distribution; statistical moments

1. Introduction

Uncertainty, originating from the inherent randomness of a complex system, is com-
mon in first-principle models widely used in various engineering problems. Uncertainty
quantification (UQ), which quantitatively studies the impact of uncertainty on a system’s
performance, is important since uncertainty in model parameters (e.g., external loads,
geometry, and material properties in a complex system) can degrade the accuracy of model
predictions, thus affecting prediction-based control design and analysis. Many UQ ap-
proaches have been developed and applied to engineering problems to improve a system’s
performance [1–8]. For example, reliability assessment has been explored for the controlled
structures of viscoelastic dampers [3], and the stochastic responses of bridge structures
under uncertainty have been studied [4]. Further, reliability-based design optimization
(RBDO), used to consider uncertainty in process design, has been developed for struc-
tural analysis, including the sequential approximate optimization to deal with multimodal
random variables [6] and the adaptive surrogate-based algorithm to replace expensive-to-
evaluate models [7]. A hybrid reliability-based optimization method was also proposed for
thermal structure design [9]. However, several challenges remain unsolved. For example,
a major challenge of existing UQ tools is how to quantify the effect of a large number of
uncertainties on model responses in an accurate and computationally efficient manner.

There are several popular UQ methods, including Monte Carlo (MC) simulations [10,11],
Taylor expansion-based methods [12,13], and polynomial chaos expansion (PCE) [14,15].
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Among these, MC has been widely used since it is easy to implement. It only requires
random generation of samples from the distribution of uncertainty and repetitive execution
of the first principle models with each sample. Despite the apparent simplicity, MC and
its associated approaches are insufficient because they often require a large number of
samples to ensure UQ accuracy, thus increasing the computational cost. To reduce the
computational cost, different variants of MC were developed, which include an active
learning approach to combine Kriging and MC simulation (i.e., AK-MCS) [8]. Further,
the Taylor expansion-based method is another way for UQ, which is effective for less
complicated models [16,17]. This includes the first-order reliability method (FORM) and
second-order reliability method (SORM) [12,18] in structural reliability. However, when
models involve complex nonpolynomial terms, the UQ accuracy of the Taylor expansion-
based method cannot be guaranteed [12,13,18].

Recently, PCE has been used in different areas including the communities of structural
reliability and control theory [4,19]. This approach was proposed by Wiener [14] to quantify
uncertainty that follows a normal distribution and later extended to uncertainty with
several standard distributions (e.g., uniform) by Xiu [20,21]. The PCE-based methods
approximate uncertainty and its effect on model responses with a spectral expansion as a
function of PCE coefficients. The PCE coefficients of uncertainty in models are given by a
prior probability density function (PDF), but coefficients of model outputs are unknown.
Thus, the key of PCE is to solve the PCE coefficients of model responses. Once the
coefficients of model responses (e.g., performance function) are obtained, they can be used
to approximate the PDF of performance function [19,20] and to evaluate failure probability
in reliability analysis [18,22,23]. Since each model response can be represented explicitly
with random variables of input uncertainties, it is useful to obtain the statistics of the
response. Depending on how the PCE coefficients of model responses are calculated, it is
categorized into intrusive and nonintrusive methods [20,24,25].

For the intrusive method, the coefficients of model outputs are obtained by projecting
the governing equations into PCE, which requires calculating the inner product between a
basis polynomial and the equations described with a truncated PCE in a stochastic Galerkin
approach. The inner product generates a family of nested deterministic models to represent
the original stochastic models. Calculating the coefficients with the inner product can be
computationally prohibitive when models have complex functions (e.g., nonpolynomial
functions) and many uncertainties. Nonintrusive PCE is another way, which has been
used in the reliability analysis of bridge, truss, and frame structures [4,19,26,27]. Similar to
MC, the convergence and accuracy of nonintrusive PCE depend on samples used for UQ.
These samples are often referred to as collocation points. While practical, the convergence
and accuracy of the nonintrusive PCE-based UQ can be affected by the total number of
collocation points and by how the collocation points are generated [28,29]. The nonintrusive
methods can be further categorized as a regression-based approach and projection-based
approach, depending on how the PCE expressions of output responses are calculated.
The former estimates the PCE coefficients by minimizing the mean square error of the
approximation of model responses, while each PCE coefficient for the latter is defined
with a multidimensional integral. It should be noted that as the number of uncertainties
increase, both the size of dimension in the integral and the total number of PCE terms
increase. Thus, the projection-based approach can be computationally demanding.

To address these issues, our previous works [29,30] have presented algorithms to
combine the PCE with the generalized dimension reduction method (gDRM) or M-variate
DRM [31]. This approach approximates high-dimensional integrals in the spectral projec-
tion (SP) [28] with a few low-dimensional ones. These low-dimensional integrals involve
at most M integration variables [29] that are much smaller than the number of uncertain-
ties. To further reduce the computational cost, the lower-dimensional integrals resulting
from the gDRM were calculated with a sampling-based method (i.e., Gaussian quadra-
ture rules) [30]. However, our previous works only deal with uncertainty that follows a
standard distribution as done in the classic PCE theory.
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Uncertainty may have nonstandard distributions. For example, lognormal distribution
describes several natural phenomena, e.g., the bubble size distributions in the gas-liquid
and gas-liquid-solid systems [32]. Because there is an explicit relationship between the
lognormal and normal variables, we capitalize on the relationship following the work
by Ghanem in [33] to efficiently deal with the lognormal uncertainty. Several tools were
developed to approximate lognormal random variables [20,24,34–39], which include the
isoprobabilistic transformation, such as the Rosenblatt or Nataf transformation [37,38],
that transforms the original random variable into independent normal variables. Besides,
the lognormal distribution was described in [39] by constructing orthogonal polynomials
using the Stieltjes–Wigert polynomials. Compared to existing techniques, our algorithm
approximates a lognormal distribution with a normal random variable based on the explicit
relationship [33] and couples the PCE-based approximation with the gDRM to quantify the
effect of many uncertainties on model responses in a computationally efficient way.

In summary, this work expands our previous work to couple the gDRM with the
PCE to quantify the effect of nonstandard uncertainties on model outputs. For algorithm
validation, lognormal and Weibull distributions are chosen as the testbed, which are
approximated with standard random variables [20,33]. In addition, four examples in
structural reliability analysis were chosen to show the efficiency of the algorithm and to
discuss the UQ accuracy by comparing the results with recent works in the literature.

This paper is organized as follows. A brief description of the PCE-based UQ is given
in Section 2. Section 3 shows procedures to approximate nonstandard uncertainty, followed
by the gDRM-based PCE to deal with high-dimensional UQ problems. For algorithm
verification, four numerical examples in structural reliability analysis are presented in
Section 4, and a brief conclusion is given in Section 5.

2. Background of Polynomial Chaos Expansion (PCE)

Suppose that a stochastic process can be defined as u = K(g), where g = (g1, . . . , gn) ∈
Rn is a Gaussian vector involving n uncertain parameters (n ≥ 1) and K is the function to
describe the relationship between a model response u and g. It is assumed each parameter
in g is independent, i.e., any correlation among uncertain parameters is not considered. In
this work, uncertainty in model parameters, i.e., input random variable of the models, is
hereafter referred to as parametric uncertainty.

To obtain a PCE expression of u, the first step is to rewrite each parametric uncertainty
gi as a function of a Gaussian variable xi as in [20]:

gi = gi(xi) =
p

∑
k=0

gi,k Hk(xi) (1)

where
{

gi,k

}
are the PCE coefficients to estimate the ith parametric uncertainty, which is

defined by the ith standard normal distribution, i.e., xi~N (0, 1). These coefficients
{

gi,k

}
are often assumed to be a given a priori or can be estimated with parameter estimation
techniques [40]. In (1), Hk is the one-dimensional Hermite polynomial basis function, and
the polynomial order p defines the number of terms to approximate gi. Uncertainty in
model parameters will introduce uncertainty in model responses. Thus, once the PCE
coefficients of uncertainty in (1) are available, the PCE expansion of model response u can
be subsequently defined with random variables as [20]:

u(x) = K(g) =
m−1

∑
j=0

uj Hj,n(x) (2)

where x = (x1, . . . , xi, . . . , xn) and
{

Hj,n(x)
}

are the jth n-dimensional orthogonal poly-
nomials defined by basis functions {Hk(xi)} for each uncertainty. Explicit expressions of{

Hj,n(x)
}

can be found in [15]. In (2),
{

uj
}

are the deterministic PCE coefficients of model
response u, which are unknown and have to be calculated. Further, m is the total number
of terms to approximate u(x), which can be calculated with the number of parametric
uncertainty n and the polynomial order p as in [20]:
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m =
(n + p)!

p!n!
(3)

Unlike
{

gi,k

}
, PCE coefficients of model response,

{
uj
}

, are unknown and have to
be calculated by projecting (2) onto each polynomial basis function Hj,n and by using the
spectral projection (SP), which can be defined as in [20]:

uj =
〈u(x)Hj,n(x)〉
〈H2

j,n(x)〉
(∀j ∈ {0, . . . , m− 1}) (4)

where the angle brackets 〈·〉 represent the inner product operator for the n-dimensional random
space Rn defined by x. For example, the inner product of a function f (x) is defined as:

〈 f (x)〉 =
∫
Rn

f (x)W(x) dx (5)

whereW(x) is the weighted function defined by the joint PDFs of random variables x. Note
that the inner product of f (x) in (5) can be further specified by the expectation operator
E[·], i.e., E[ f (x)] = 〈 f (x)〉. Accordingly, the PCE coefficient uj in (4) can be further written
as in [20]:

uj =
1
γj

∫
Rn

u(x)Hj,n(x)W(x) dx (6)

where γj = E
[

H2
j,n

]
is the normalization factor. It is worth mentioning that the jth normal-

ization factor of the Hermite polynomial basis can be easily calculated as γj = j! [20]. In
addition, the multidimensional integral in (6) is solved over the entire random domain Rn

of x, andW(x) here is the Gaussian weighted function. By substituting the PCE coefficients
in (6) into (2), uncertainty in model responses can be rapidly estimated. For example, the
statistical central moments µu and σ2

u , i.e., mean and variance of model response u, can be
analytically calculated as in [20]:

µu = E[u] = E

[
m−1

∑
j=0

uj Hj,n

]
= u0E[H0,n] + E

[
m−1

∑
j=1

uj Hj,n

]
= u0 (7)

σ2
u = E

[
{u− E[u]}2

]
= E

{m−1
∑

j=0
uj Hj,n − uj,0

}2


= E

{m−1
∑

j=1
ujHj,n

}2
 =

m−1
∑

j=1

{
uj
}2E

[
H2

j,n

] (8)

where H0,n ≡ 1 is the constant polynomial. As seen in (7) and (8), the first PCE coefficient u0
can be used to estimate the mean, while the rest of the coefficients (uj 6=0) and the expectation

of the squared basis functions (E
[

H2
j 6=0,n

]
) can be used to estimate the uncertainty around

the mean of u [20]. Similarly, other higher-order statistical central moments, such as
skewness su and kurtosis κu, can be rapidly calculated with the high-order PCE coefficients
as in [41].

su = E
[
{u− E[u]}3

] 1
σ3

u
= E

{m−1

∑
j=0

uj Hj,n − uj,0

}3
 1

σ3
u
= E

{m−1

∑
j=1

uj Hj,n

}3
 1

σ3
u

(9)

κu = E
[
{u− E[u]}4

] 1
σ4

u
= E

{m−1

∑
j=0

ujHj,n − uj,0

}4
 1

σ4
u
= E

{m−1

∑
j=1

uj Hj,n

}4
 1

σ4
u

(10)

Details to calculate these statistical central moments can be found in [41–43]. These
central moments are used to evaluate the reliability index and failure probability for
structural reliability analysis in moment methods [18,22]. Thus, they are chosen in this
work to discuss the performance of different UQ algorithms in terms of UQ accuracy and
computational efficiency in Section 4.
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3. Efficient UQ for Nonstandard Uncertainties
3.1. Approximation of Lognormal Uncertainties

Since lognormal uncertainty has an explicit relationship with Gaussian uncertainty,
it will be transformed and estimated with the Gaussian variable as in [33]. For clarity,
only a parametric uncertainty, which refers to an input random variable of the model, is
considered, thus the subscript i in (1) will not be used.

Suppose a normally distributed uncertainty g(x) is approximated with a random
variable x; and a lognormal uncertainty l(x) can be calculated by taking the exponential
operator exp[·] of g(x), which results in a relationship as in [33]:

g(x) = ln l(x), l(x) = exp[g(x)] (11)

In (11), g(x) will be referred to as the normalized Gaussian distribution, and the mean
and the variance of g(x) are defined as µg and σ2

g , respectively. As done for the Gaussian
uncertainty in (1), let one assume that l(x) can be approximated with a PCE expansion as in:

l(x) =
p

∑
k=0

lk Hk(x) (12)

where
{

lk

}
are the PCE coefficients, describing the original lognormal uncertainty, which

will be derived based on normalized Gaussian variables. As defined in (1), Hk is the
Hermite polynomial basis function. Since the first coefficient of PCE in (12) represents
the mean value as described in (7), l0 can be easily given as µl = eµg+(σ2

g /2) [33]. For
other higher-order terms, we apply the SP to calculate PCE coefficients as a function of
the normalized Gaussian random variables. Following the similar procedures to calculate
the coefficients of model responses in (4), the resulting PCE expansion of the lognormal
uncertainty in (12) can be represented as in [20,33]:

l(x) =
p
∑

k=0
lk Hk(x) = l0

p
∑

k=0

σk
g

k! Hk(x)

= l0

(
1 + σgx + 1

2! σ
2
g
(
x2 − 1

)
+ 1

3! σ
3
g
(
x3 − 3x

)
+ . . .

) (13)

Once the PCE coefficients of a lognormal uncertainty are available, the resulting un-
certainty in model response as in (2) can be approximated following the similar procedures
as in Section 2.

Compared to the PDF of the Gaussian random variable that has a symmetrical shape,
the required polynomial order p in (13) for approximating the original lognormal uncer-
tainty needs to be carefully selected to capture its asymmetric property, such as the long tail.
As an example, Figure 1 shows the simulation results of a lognormal uncertainty, where
three different polynomial orders (i.e., p = 2, 3, and 4) were used. Note that the PDFs
shown in Figure 1 are estimated with the kernel density estimation function in MATLAB.
The accuracy to approximate a lognormal distribution with different polynomial orders is
compared to MC with 107 samples.

As seen in Figure 1, the accuracy to approximate a lognormal uncertainty can be
affected by p and the magnitude of uncertainty. When uncertainty is small, the approxima-
tion of a lognormal uncertainty with different p values exhibits almost identical results as
in Figure 1a. Whereas, when uncertainty is large, there is a noticeable difference between
the PCE-based approximation and MC. However, when p was increased (>2), as seen in
Figure 1b, the difference between the PCE-based approximation and MC is insignificant.
Thus, we focus on two different values of p (2 vs. 3) in this work to show the performance
of the UQ method, which will be discussed in Section 4.
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Figure 1. Illustration of the effect of polynomial order on the approximation accuracy of a lognormal
uncertainty. The PCE-based approximation of a lognormal uncertainty is built with the normalized
Gaussian variable with different polynomial orders and compared to the MC-based method. The
mean value of l was set to 1 in both graphs, but two different standard deviations were used: 0.1 was
used in (a) and 0.3 was used in (b).

3.2. Approximation of Other Nonstandard Uncertainties

Compared to approximating a lognormal uncertainty with a PCE expression that
has an explicit correlation to a Gaussian random variable, the approximation of other
nonstandard uncertainties can be made with its probability distribution function [20]. To
estimate a nonstandard uncertainty in PCE, suppose Y is an uncertainty with nonstandard
distributions (e.g., a Weibull distribution), which has a PCE expression as:

Y(x) =
p

∑
k=0

YkΨk(x) (14)

where
{

Yk
}

are PCE coefficients, and {Ψk} are polynomial basis functions. Considering
Y follows a nonstandard distribution, the calculation of

{
Yk
}

is difficult since the explicit
correlation between Y and x is unknown [20]. In this work, a technique in [20] is used
to estimate an uncertainty that follows a nonstandard distribution. The resulting PCE
coefficients in (14) can be calculated as:

Yk =
1

γk
E
[

F−1
Y (Fx(x))Ψk(x)

]
=

1
γk

∫
Rn

F−1
Y (Fx(x))Ψk(x)W(x)dx (15)

where Fx is the cumulative distribution function (CDF) defined as Fx(x) =
∫ x
−∞W(t)dt,

and F−1
Y is the inverse of a cumulative distribution function of Y, i.e., FY. For example,

let one suppose that a Gaussian random variable x is used to approximate a Weibull-
distributed uncertainty Y. Then,W(x) is the probability distribution function of x; Ψk is
the Hermite polynomial basis function; Fx is the CDF of the Gaussian random variable x;
and F−1

Y is the inverse of the CDF of Weibull-distributed uncertainty Y. Details about the
derivation of (15) and its approximation are not given for brevity and can be found in [20].

3.3. Modified gDRM-Based PCE Using Quadrature Rules

When the PCE coefficients of uncertainty are available, such as (1) for the normal
and (12) for lognormal uncertainty, SP is used to calculate the PCE coefficients of model
response in (2), which requires calculating multivariate integrals as in (6). As in (3), the
total number of terms (m) to accurately approximate uncertainty in model response in (2)
is a function of the polynomial order (p) and the total number of uncertainties (n). When p
is large (e.g., >2) and when the number of uncertainties increases, the number of terms in
(2) can be greatly increased. This can increase the computational cost to calculate the PCE
coefficients of model outputs. To reduce the computational cost, the gDRM will be used
with quadrature rules to quickly calculate the PCE coefficients as in [30]. This approach is
hereafter referred to as the modified gDRM-based PCE (or mgDRM-PCE).
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Suppose that a continuous and differentiable function can be defined as
f (x) = u(x)Hj,n(x), which is a portion of the integrand in (6). Then, the multivariate
integral in (6) is rewritten as:

E[ f (x)] =
∫
Rn

f (x)W(x) dx (16)

whereW(x) represents the weighted function described by the joint PDFs of x. Note that
the function f (x) is defined to easily calculate a specific PCE coefficient uj in (6), and this
expression can also be reused for different j = 0, 1, . . . , m− 1.

Following the definition of gDRM [31] and the representation in (16), each of the
unknown PCE coefficients of the model response in (6) can be calculated as in [29]:

uj(x) =
1
γj

E[ f (x)] ∼=
1
γj

M

∑
r=0

(−1)r
(

n−M + r− 1
r

)
E[ fM−r] (17)

where fM−r in the expectation operator E[·] is a function of (M − r) random variables
selected from x. In this way, several lower-dimensional functions, involving up to M
random variables of x, can be used to approximate the original function f, which is written
as in [31]:

fM−r = ∑
d1<d2<...<dM−r

f
(
0, . . . , 0, xd1 , 0, . . . , 0, xd2 , 0, . . . , 0, xdM−r , 0

)
(18)

where d1, d2, . . . , dM−r ∈ {1, 2, . . . , n}. Since the gDRM considers combinations of the

random variables in x, the total number of terms in (18) can be calculated as
(

n
M− r

)
.

Notably, the last term in (18), when M = r, can be calculated as f0 = f (0), which can be
solved by setting the mean values of all random variables x to 0. For example, when a
bi-variate dimension reduction method (BiDRM) is used, i.e., M = 2, the n-variate function

f (x) will be approximated with
(

n
2

)
two-variate functions,

(
n
1

)
one-variate functions,

and a constant term f0. Thus, the expectation of fM−r, i.e., E[ fM−r] in (17), results in a
(M− r)-dimensional integral for each combination of (M− r)-random variables selected

from x, which gives
(

n
M− r

)
(M− r)-dimensional integrals in total.

As noted in [29,30], the accuracy to approximate a high-dimensional integral with
several lower-dimensional ones increases as M increases. For example, compared to
the BiDRM, a tri-variate DRM (TriDRM) approximates a high-dimensional integral in

(16) with
(

n
3

)
three-dimensional integrals,

(
n
2

)
two-dimensional integrals,

(
n
1

)
one-dimensional integrals, and a constant term f0. As such, extra effort is required to

calculate
(

n
3

)
additional three-dimensional integrals. Since the total number of lower-

dimensional integrals increases, the computational time to approximate (16) may increase.
To address this issue, we will estimate the resulting lower-dimensional integrals with
quadrature rules [44] to reduce the computational cost [30,31]. It should be noted that this
approach reduces the computational difficulty to evaluate high-dimensional integrals using
sampling methods, which appears to be methodologically similar to the anchored analysis-
of-variance (ANOVA) expansion in [45]. However, the anchored ANOVA expansion is
dependent on the choice of the anchor point, which impacts the accuracy of the expansion
and the truncation dimension [45], while the mgDRM does not require any strategy for the
decomposition procedure in (18). A detailed description on the ANOVA expansion can be
found in [45,46].

To calculate the expectation of one-variate function E[ f1]—an integral only involves a
single random variable, e.g., xd1 of f1 in (18), a one-dimensional quadrature rule can be
defined as [30]:∫ ∞

−∞
f
(
0, . . . , 0, xd1 , 0, . . . , 0

)
W(xd1)dxd1

∼=
θ1

∑
q1=1

f
(

0, . . . , 0, xq1
d1

, 0, . . . , 0
)
·αq1

d1
(19)
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where
{

xq1
d1

, α
q1
d1

}θ1

q1=1
is a set of quadrature points (xq1

d1
) and their corresponding weights

(αq1
d1

) used to compute the one-dimensional integral resulting from the gDRM. In this work,
Gauss–Hermite quadrature rules [44] are used to estimate low-dimensional integrals in
(17) in the gDRM step.

To generate quadrature points to approximate multidimensional integrals in (17), a
full tensor product grid can be constructed based on the one-dimensional quadrature rules.
Note that these lower-dimensional integrals resulting from the gDRM only involve a few
integration variables. Thus, the approximation with the full tensor product grid can be
finished in real time.

To better illustrate the quadrature points-based approximation, suppose the PCE
coefficients of model outputs in (17) are calculated with the TriDRM. This implies that these
lower-dimensional integrals to approximate the multidimensional integrals in SP involve
at most three random variables in x (or M = 3). That is, a multidimensional integral

(E[ f (x)]) is estimated with
(

n
1

)
one-dimensional,

(
n
2

)
two-dimensional, and

(
n
3

)
three-dimensional integrals in total, which can be computed with the quadrature rules as
in [30]:

E[ f1] ∼= ∑
d1

{
θ1

∑
q1=1

f
(

0, . . . , 0, xq1
d1

, 0, . . . , 0
)
·αq1

d1

}
(20)

E[ f2] ∼= ∑
d1<d2

{
θ1

∑
q1=1

θ2

∑
q2=1

f
(

0, . . . , 0, xq1
d1

, 0, . . . , 0, xq2
d2

, 0, . . . , 0
)
·
(

α
q1
d1
⊗ α

q2
d2

)}
(21)

E[ f3] ∼= ∑
d1<d2<d3

{
θ1
∑

q1=1

θ2
∑

q2=1

θ3
∑

q3=1
f
(

0, . . . , 0, xq1
d1

, 0, . . . , 0, xq2
d2

, 0, . . . , 0, xq3
d3

, 0
)

·
(

α
q1
d1
⊗ α

q2
d2
⊗ α

q3
d3

)} (22)

where θi (i = 1, 2, 3) is the number of quadrature points, xqi
di

, for each integration variable;

α
qi
di

is the weight of each quadrature point; and ⊗means the tensor product. In summary,
the total number of quadrature points for low-dimensional integrals can be defined as

Q =
M−r
∏
i=1

θi = θM−r
i [44]. It is important to note that as the dimension of a random

space increases, the number of integrals resulting from gDRM increases. In this case, the
total number of evaluations of these integrals with quadrature points is also increased,
which may increase the computational cost. This issue will be discussed with benchmark
examples in Section 4.

3.4. Summary of the UQ Algorithm

Our algorithm quantifies the effect of nonstandard uncertainty on model responses by
coupling PCE with the gDRM. A flowchart summarizing the procedures of the modified
gDRM-based PCE to deal with nonstandard random variables is shown in Figure 2.

As in Figure 2, nonstandard uncertainties are firstly approximated with standard
random variables. Once the PCE-based surrogate model of parametric uncertainty, i.e., an
input random variable of the models is available, model responses can be approximated
with coupled PCE coefficients as in (2). The PCE coefficients of model responses are
calculated with (4). This produces high-dimensional integrals, which are not trivial to
solve, especially when the number of uncertainties is large and when the model involves
nonpolynomial terms. To address this, the gDRM, such as the BiDRM and TriDRM noted in
Section 3.3, is used to convert the high-dimensional integral into few low-dimensional ones.
To further decrease the computational cost, quadrature points generated with Gaussian-
quadrature rules are used to numerically solve these low-dimensional integrals. The
approximation of lower-dimensional integrals is highlighted in green boxes in Figure 2.
Once the PCE coefficients of model responses are available, the statistical moments of
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model outputs (e.g., mean, variance, skewness, and kurtosis) can be quickly calculated
with (7)~(10).
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4. Benchmark Examples in Structural Reliability Analysis

Four examples in structural reliability analysis are chosen to illustrate the performance
of the UQ algorithm to deal with nonstandard uncertainties. The correlation among
uncertainties is not considered, since our objective is to study the applicability of the
algorithm to tackle many uncertainties. When uncertainties are correlated, the number
of random variables to approximate uncertainties will be decreased, thus reducing the
number of dimensions. To evaluate the UQ accuracy, statistical moments (mean, standard
deviation, skewness, and kurtosis) are calculated and compared with other techniques,
which include MC simulations and the least angle regression-based PCE.

4.1. Example 1: Linear Performance Function

As given in Figure 3, a linear performance function is used to study the plastic collapse
mechanisms of a one-bay frame, which is mathematically described as in [47,48]:

Z = u(X) = X1 + 2X2 + 2X3 + X4 − 5X5 − 5X6 (23)
Following [47,48], X1~X6 in (23) are assumed to be independent and lognormally

distributed; the mean and standard deviation of each variable are listed in Table 1. In
this case study, all parameters are considered as parametric uncertainties, resulting in
a six-dimensional random space. Since uncertainty follows a lognormal distribution,
Hermite polynomials were used as the basis functions to build the PCE-based surrogate
model of the response Z in (23).

The first step to build a surrogate model of Z in (23) is to formulate the PCE expressions
of lognormally distributed uncertainties, X1~X6. In this case study, (13) was used to build a
PCE model for each uncertainty with normalized Gaussian variables that are related to the
lognormal uncertainty as in Section 3.1. The second coefficients of the normalized Gaussian
variables (i.e., σg for X1~X6) were calculated as 0.0998 for X1~X4 and 0.2936 for X5 and
X6, respectively. These were also used to derive the explicit PCE expressions of lognormal
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uncertainties as in (13). Once the PCE expressions of uncertainties (X1~X6) were available,
the mgDRM-PCE in Section 3.3 was used to compute the PCE coefficients of Z in (23).
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Figure 3. Illustration of the one-bay frame for a plastic collapse mechanism [48]. Reprinted from [48],
Copyright (2019), with permission from Elsevier.

Table 1. Details of the uncertain variables in Example 1 [47,48]. Reprinted from [48], Copyright
(2019), with permission from Elsevier.

Variable Distribution Type Mean Standard Deviation

X1 Lognormal 120 12
X2 Lognormal 120 12
X3 Lognormal 120 12
X4 Lognormal 120 12
X5 Lognormal 50 15
X6 Lognormal 40 12

In this case study, different polynomial orders of X1~X6 (p = 2 vs. 3) and different
numbers of random variables in the gDRM (M = 2 vs. 3) were used. The UQ accuracy
with different combinations of p and M was compared to the results of MC by calculating
the relative error (εR), which is defined as in:

εR =

∣∣∣∣ eMC − e
eMC

∣∣∣∣ (24)

where eMC is a reference of a specific statistical moment calculated with MC, and e rep-
resents the corresponding statistical moment calculated with other UQ methods. The
simulation results are summarized in Table 2 and compared with existing algorithms: a
recent work in [48] that integrates the BiDRM with a high-order unscented transforma-
tion [49] and the least angle regression-based PCE (LAR-based PCE) [50,51]. For MC, 107

samples were used for each uncertainty to ensure UQ accuracy.
In Table 2, mBiDRM-PCE means that the quadrature rules were used to estimate inte-

grals from the BiDRM, which involve at most two integration variables, while mTriDRM-
PCE means that the quadrature rules were applied to the TriDRM, which has at most three
integration variables. The BiDRM converted a six-dimensional integral into 15 two- and
6 one-dimensional ones, while 20 three-, 15 two-, and 6 one-dimensional integrals were
used in the TriDRM. In addition, five quadrature points of each dimension were generated
following the Gauss–Hermite quadrature rules (i.e., θi = 5), for which a full-tensor product
grid was built to calculate the low-dimensional integrals from the BiDRM and the TriDRM.

In addition, for the LAR-based PCE, the LAR procedure was implemented to select a
set of basis polynomials to build a sparse PCE and estimate the unknown PCE coefficients
of the response Z in (23) with the least square regression. It is important to note the LAR-
based PCE in this work does not involve the adaptive solver as in [52] because our objective
is to assess the accuracy of the surrogate model derived by the gDRM-based PCE. To obtain
model evaluations of Z, 1000 pairs of random samples of parametric uncertainties were
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used. Thus, the total number of model runs is 1000. Further, the LAR method was used to
identify the sensitive basis polynomials of output Z until the maximum correlation between
the residual and the basis polynomials is less than a preselected effective value, which was
set to 1.0 × 10−6. In this case study, two different polynomial orders (p = 2 and 3) were
studied. Thus, the number of PCE terms of LAR-based PCE was 13 and 19, respectively. In
contrast, the number of PCE terms for our algorithm was 28 and 84, respectively.

Table 2. Summary of statistical moments and their relative errors in Example 1.

UQ Methods µZ [εR] σZ [εR] sZ [εR] κZ [εR]

MC 269.9226 103.2812 −0.5276 3.6135

mBiDRM-PCE (p = 2) 270.0000
[0.0287%]

103.2173
[0.0619%]

−0.4840
[8.2758%]

3.3813
[6.4250%]

mBiDRM-PCE (p = 3) 270.0000
[0.0287%]

103.2703
[0.0105%]

−0.5261
[0.2911%]

3.5897
[0.6577%]

mTriDRM-PCE (p = 2) 270.0000
[0.0287%]

103.2173
[0.0619%]

−0.4840
[8.2758%]

3.3813
[6.4250%]

mTriDRM-PCE (p = 3) 270.0000
[0.0287%]

103.2703
[0.0105%]

−0.5261
[0.2911%]

3.5897
[0.6577%]

LAR-based PCE (p = 2) 270.0000
[0.0287%]

103.2173
[0.0619%]

−0.4840
[8.2758%]

3.3813
[6.4250%]

LAR-based PCE (p = 3) 270.0000
[0.0287%]

103.2703
[0.0105%]

−0.5261
[0.2911%]

3.5897
[0.6577%]

Reference [48] 270.0010
[0.0291%]

103.2146
[0.0645%]

−0.5165
[2.1124%]

3.6980
[2.3383%]

As seen in Table 2, the difference in the mean value of Z (µZ) calculated with the
mBiDRM-PCE and mTriDRM-PCE is insignificant, and their results are almost identical
to MC. For the other higher-order statistical moments, it was found that the relative error
is relatively larger when p was set to 2, as compared to the results when p was set to
3. This indicates that more polynomial terms to approximate a lognormal uncertainty
can improve the UQ accuracy. Besides, compared to the LAR-based PCE, our algorithm
shows identical results for the four statistical moments, which demonstrates the accuracy
of the gDRM-based PCE. It was also found that, when p was set to 3, the mBiDRM-PCE
outperforms the results in a recent work [48], for which only the BiDRM was used. This
shows the advantage of combining the PCE with the gDRM, because PCE can not only
provide an analytical expression for model responses as a function of random variables,
but also explicitly quantify the impact of approximation on UQ accuracy.

For comparison, the simulation results of mBiDRM-PCE and mTriDRM-PCE with
different polynomial orders and MC are shown in Figure 4, where the cumulative density
function (CDF) of each UQ method was approximated with the built-in kernel density
estimation function in MATLAB. As seen, the CDF of Z in (23) is almost identical to the
results obtained with MC, when p was 3. This shows our algorithm can accurately quantify
the effect of lognormal uncertainties on model responses.

4.2. Example 2: Roof Structure

The performance function of a roof truss structure as illustrated in Figure 5 was used
to study the UQ accuracy of our algorithm to deal with different nonstandard uncertainties,
when the system involves nonlinear polynomial functions. The performance function is
described as in [19,53]:

Z = u(X) = 0.03− 0.5ql2
(

3.81
A2E2

+
1.13
A1E1

)
(25)

where q and l represent a vertical load and roof span that are used to calculate the nodal
load P = ql/4, and A and E are the cross-sectional area and elastic modulus, respectively.
In this case study, all parameters in the performance function in (25) are uncertain with
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predefined PDFs. This yields a six-dimensional random space (n = 6). Details about the
statistical description of uncertainties are given in Table 3.
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Figure 4. Comparison of the cumulative density functions of Z calculated with the algorithm in this
work and MC in Example 1. (a) mBiDRM-PCE and (b) mTriDRM-PCE.
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Figure 5. Illustration of a roof truss structure [19,53]. Reprinted from [19], Copyright (2018), with
permission from Elsevier.

Table 3. Details of the uncertain variables in Example 2 [19,53]. Reprinted from [19], Copyright
(2018), with permission from Elsevier.

Variable Distribution Type Mean Standard Deviation Unit

q Lognormal 20,000 1400 N/m
l Weibull 12 0.12 m

A1 Lognormal 9.8 × 10−4 5.89 × 10−5 m2

A2 Lognormal 400 × 10−4 48 × 10−4 m2

E1 Lognormal 1 × 1011 6 × 109 N/m2

E2 Lognormal 2 × 1010 1.2 × 109 N/m2

Like Example 1, Hermite polynomials were used as the basis functions, and the PCE
expressions of lognormal uncertainties were constructed with normalized Gaussian vari-
ables. In addition, it is assumed that l follows a Weibull distribution, for which the PCE
expression was approximated with standard random variables using its PDF as described
in Section 3.2. Additionally, to compute the unknown PCE coefficients of the performance
function Z in (25), the mBiDRM and mTriDRM were used to reduce the computational
cost by converting the high-dimensional integrals into low-dimensional ones, which were
further approximated with quadrature points constructed by the Gaussian–Hermite quadra-
ture rules. Note that the number of quadrature points for each dimension θi was set to 5
as done in Example 1. To quantify the UQ accuracy, the relative errors εR defined in (24)
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were calculated by referring to the results of MC. For MC, 107 samples were used to ensure
UQ accuracy.

The results of Example 2 are summarized in Table 4. It is worth mentioning that the
results from previous works (e.g., [19,53]) were not given. This is because the uncertainty
in [19,53] follows a normal distribution and we intentionally introduced lognormal and
Weibull distributions to test the performance of our method to deal with different types
of nonstandard uncertainties. Following Example 1 in the previous section, however, the
LAR-based PCE was chosen to compare the UQ accuracy with two different polynomial
orders (p = 2 and 3). The simulation results are given in Table 4. The total number of
PCE terms for our algorithm is 28 and 84, when the polynomial order for each uncertain
parameter was set to 2 and 3, respectively, while the number of PCE terms of the LAR-based
PCE is 28 and 77 for each polynomial order, respectively.

Table 4. Summary of statistical moments and their relative errors in Example 2.

UQ Methods µZ [εR] σZ [εR] sZ [εR] κZ [εR]

MC 0.0064 0.0024 −0.3004 3.1614

mBiDRM-PCE (p = 2) 0.0064
[0.0065%]

0.0024
[0.0134%]

−0.2955
[1.6162%]

3.1189
[1.3427%]

mBiDRM-PCE (p = 3) 0.0064
[0.0060%]

0.0024
[0.0030%]

−0.3000
[0.1340%]

3.1485
[0.4067%]

mTriDRM-PCE (p = 2) 0.0064
[0.0065%]

0.0024
[0.0156%]

−0.2952
[1.7095%]

3.1186
[1.3512%]

mTriDRM-PCE (p = 3) 0.0064
[0.0060%]

0.0024
[0.0011%]

−0.3000
[0.1374%]

3.1620
[0.0202%]

LAR-based PCE (p = 2) 0.0064
[0.0106%]

0.0024
[0.0231%]

−0.2933
[2.3358%]

3.1172
[1.3961%]

LAR-based PCE (p = 3) 0.0064
[0.0058%]

0.0024
[0.0033%]

−0.2995
[0.2836%]

3.1610
[0.0120%]

Similar to Example 1, it was found that the UQ accuracy can be affected by the
polynomial order (p) and the number of random variables in the gDRM (M). It is important
to note that the mean values (µZ) of different PCE-based gDRM methods in Table 4 reached
the same result (0.0064), since only two significant figures were shown. Specifically, as the
number of p and M increases, the UQ accuracy can be improved. For example, when M
was set to 3 for the mTriDRM and when p was set to 3, the relative error εR of κZ is one
order of magnitude smaller than other methods (~0.0202%). It was also found that when
the polynomial order p was set to 2, the UQ accuracy of LAR-based PCE is close to our
method (mBiDRM and mTriDRM) for all four statistical moments. When p was set to 3,
the UQ accuracy of mTriDRM-PCE has the same order of magnitude as the LAR-based
PCE. This clearly shows the algorithm in this work can deal with nonlinear problems
with nonstandard uncertainties and provide accurate results as one of the most popular
techniques in the literature.

For comparison, Figure 6 shows the CDFs of the performance function Z in (25), with
different combinations of p and M. As seen, the UQ results of our algorithm converge to
MC, as the number of p and M increases. It is important to note that the accuracy of MC is
related to the total number of samples used for UQ. When the model is highly nonlinear
and when the number of uncertainties is large, a large number of samples is required,
thereby increasing the computational cost for MC. This is further discussed with two more
complicated examples below.
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Figure 6. Comparison of the cumulative density functions of Z calculated with the algorithm in this
work and with MC in Example 2. (a) mBiDRM-PCE and (b) mTriDRM-PCE.

4.3. Example 3: Truss Structure with 13 Members

A 13-bar truss structure [48] was chosen to study the performance of the UQ algorithm
for dealing with a combination of different types of uncertainties. A schematic of the truss
structure is shown in Figure 7, which involves 8 nodes and 13 members.
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In this example, it is assumed that there are three external loads, i.e., P1, P2, and P3,
imposed on nodes 6, 7, and 8, respectively, which follow a normal distribution. Additionally,
the elastance E and the sectional area A for each member are assumed to be independent
and lognormally distributed. The statistical description of each parameter is listed in
Table 5. Finite element analysis was used to quantify uncertainty in the performance
function Z of the 13-bar truss structure, which is mathematically defined as in [48]:

Z = u(X) = hmax − h (26)

where hmax is the threshold describing the maximum allowable deflection, i.e., displace-
ment, and h is the vertical displacement on node 3. In reliability analysis, when the
performance function Z exceeds a limit, e.g., zero in (26), it would be considered as a failure
event. Additionally, the probability of failure events is referred to as the failure probability,
which is often used for structural reliability analysis [54]. Thus, it is essential to calculate
the statistics of the prediction h in a precise and computationally efficient way. Here we
focus on evaluating the displacement h with different UQ methods. The proposed methods
in this work were integrated with finite element analysis to assess the precise prediction h,
and the performance was validated with other UQ techniques, such as MC, LAR-based
PCE, and the method in [48].
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Table 5. Details of the uncertain variables used in Example 3 [48]. Reprinted from [48], Copyright
(2019), with permission from Elsevier.

Variable Distribution
Type Mean Standard

Deviation Unit

E Lognormal 206 20.6 Gpa
A Lognormal 500 50 mm2

P1 Normal 20 3 kN
P2 Normal 20 3 kN
P3 Normal 20 3 kN

As seen in Table 5, there are two lognormal uncertainties and three normal uncer-
tainties. For the lognormal uncertainty, the normalized Gaussian variables and Hermite
basis functions were used to build the PCE surrogate models in (13), while for normal
uncertainty, the formulation of PCE models is defined in (1). Once these PCE models of
uncertainties are available, the resulting surrogate model of h in (26) is described with
unknown PCE coefficients that can be solved with the mgDRM involving five quadrature
points in each dimension (i.e., θi = 5). Two different polynomial orders (2 vs. 3) and two
different values of M (2 vs. 3) were considered. Table 6 summarizes the simulation results.
It is important to note that the total number of samples for each parametric uncertainty in
MC was set to 107 to ensure UQ accuracy.

Table 6. Summary of statistical moments and their relative errors in Example 3.

UQ Methods µZ [εR] σZ [εR] sZ [εR] κZ [εR]

MC 10.6866 1.7808 0.4661 3.3907

mBiDRM-PCE (p = 2) 10.6864
[0.0021%]

1.7802
[0.0306%]

0.4507
[3.3024%]

3.2762
[3.3761%]

mBiDRM-PCE (p = 3) 10.6864
[0.0019%]

1.7807
[0.0030%]

0.4590
[1.5131%]

3.3243
[1.9594%]

mTriDRM-PCE (p = 2) 10.6864
[0.0021%]

1.7803
[0.0273%]

0.4518
[3.0748%]

3.2774
[3.3414%]

mTriDRM-PCE (p = 3) 10.6864
[0.0019%]

1.7808
[0.0000%]

0.4655
[0.1377%]

3.3852
[0.1628%]

LAR-based PCE (p = 2) 10.6863
[0.0032%]

1.7802
[0.0302%]

0.4545
[2.4969%]

3.2810
[3.2371%]

LAR-based PCE (p = 3) 10.6865
[0.0016%]

1.7808
[0.0004%]

0.4652
[0.1860%]

3.3841
[0.1954%]

Reference [48] 10.6865
[0.0013%]

1.7809
[0.0083%]

0.4685
[0.5153%]

3.4052
[0.4273%]

For the implementation of LAR-based PCE, 1000 model runs were used to evaluate
the truss structure model as in Figure 7. Further, the sparse PCE terms were determined
with the LAR algorithm to find the sensitive basis polynomials with a predefined value
(i.e., 1.0 × 10−6) as done in previous examples. Note that the value was used to terminate
the LAR algorithm when the maximum correlation between the residual and the basis
polynomials was below the value. Details of the LAR procedures can be found in [50,51].
In addition, the resulting number of PCE terms for the LAR-based PCE was 21 and 40,
when the polynomial order p was 2 and 3, respectively. In contrast, the total numbers of
PCE coefficients of our method were 21 and 56, which were determined using (3).

As seen in Table 6, it was found that UQ accuracy can be affected by the polynomial
order (p) and the total number of integration variables (M) used in the gDRM. For example,
when the mTriDRM-PCE was used (p = 3 and M = 3), the relative error εR of κh is
~0.1628% in Table 6. This is smaller than the results (~0.4273%) in [48]. As compared to the
LAR-based PCE, our algorithm provides comparable results. This shows the potential of
the gDRM-based PCE to deal with more complicated problems, especially when estimating
the higher-order statistical moments since it was previously considered challenging [55].
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To graphically study the UQ accuracy with different combinations of p and M, Figure 8
shows the estimated CDFs of the displacement h. As seen, the mTriDRM-PCE, when p was
3, can provide almost identical results, as compared to MC.
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Figure 8. Comparison of the cumulative density function of the displacement h calculated with the
algorithm in this work and with MC in Example 3. (a) mBiDRM-PCE and (b) mTriDRM-PCE.

As compared to the first two examples, UQ in this case study requires integrating the
finite element analysis with the PCE, which may increase the computational burden for
UQ. We further studied the computational time to calculate the displacement h with an
office desktop (Core i5-8400 central processing unit (CPU) at 2.80 GHz). Using MC with
107 samples for each uncertainty, it was found that ~31.03 min were required to simulate
all nodes in Figure 7. For the mBiDRM-PCE, it took ~21.36 and 48.06 s to simulate all
nodes, when the polynomial order (p) was set to 2 and 3, respectively. In addition, for the
mTriDRM-PCE, it was found that ~26.28 and 67.31 s were required, when p was 2 and 3,
respectively. The mTriDRM-PCE took longer than mBiDRM-PCE due to the larger number
of integrals that need to be solved. Further, depending on the polynomial order p, the
requisite number of terms in PCE to approximate the displacement h differs as shown in
(3), which leads to the difference in computational times of each method (e.g., mBiDRM-
and mTriDRM-PCE).

4.4. Example 4: Planar Truss Structure with 23 Members

A planar truss structure with 23 members as in Figure 9 is considered in this case
study. It is assumed that all parameters cannot be known with certainty, resulting in a nine-
dimensional random space. This allows us to validate the UQ accuracy of the proposed
method for dealing with many uncertainties. Details of model parameters are given in
Table 7.
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Table 7. Details of the uncertain variables in Example 4 [19,56]. Reprinted from [56], Copyright
(2006), with permission from Elsevier.

Variable Distribution Type Mean Standard Deviation Unit

E Lognormal 2.10 × 1011 2.10 × 1010 Pa
A1 Lognormal 2.0 × 10−3 2.0 × 10−4 m2

A2 Lognormal 1.0 × 10−3 1.0 × 10−4 m2

P1 − P6 Weibull 5.0 × 104 7.5 × 103 N

In this case study, E is the elastic modulus; A1 and A2 are the cross-sectional area
corresponding to the specific member; and P1 to P6 represent external loads imposed on
nodes from 8 to 13. As done in Example 3, the finite-element analysis was used to calculate
the performance function Z as in [19,56]:

Z = u(X) = vmax − v (27)

where vmax represents a specific threshold, i.e., the maximum deflection, and v is the
vertical displacement on node 4 that will be approximated with different UQ methods. Our
objective in this example is to accurately approximate uncertainty in v such that the failure
probability can be quantified for structural reliability analysis.

As seen in Table 7, three parameters (E, A1, and A2) follow a lognormal distribution,
while the rest of the parameters follow a Weibull distribution. Thus, the resulting random
space is nine-dimensional, i.e., n = 9. To derive a PCE expression of v and to compute the
statistical moments, the finite element analysis was coupled with the proposed methods, i.e.,
mBiDRM- and mTriDRM-PCE, and two different polynomial orders, i.e., p = 2 and 3, were
investigated. Note that in these methods, the BiDRM approximates a nine-dimensional
integral with 36 two- and 9 one-dimensional integrals, while the TriDRM requires the
evaluations of 84 three-, 36 two-, and 9 one-dimensional ones. These integrals were
calculated with the Gauss–Hermite quadrature rule [44], where the number of quadrature
points for each random variable was set to 5. In addition, the number of samples for MC
was set to 107 in order to compute the relative errors εR in (24) for comparison purposes.
The UQ results and relative errors (εR) are shown in Table 8. Since the distribution of
uncertainties is different as compared to [19,56], the results in these works were not given.
However, LAR-based PCE was simulated for two different polynomial orders (p = 2 and 3)
for comparison. The simulation results are summarized in Table 8. For the LAR-based PCE,
the total number of PCE terms was 55 and 212, when p was set to 2 and 3, respectively. In
constrast, 55 and 220 PCE coefficients were used in our algorithm for the output response,
when p was set to 2 and 3, respectively.

Table 8. Summary of statistical moments and their relative errors in Example 4.

UQ Methods µZ [εR] σZ [εR] sZ [εR] κZ [εR]

MC 0.0794 0.0118 0.4067 3.3010

mBiDRM-PCE (p = 2) 0.0794
[0.0002%]

0.0118
[0.0224%]

0.3976
[2.2522%]

3.2234
[2.3512%]

mBiDRM-PCE (p = 3) 0.0794
[0.0000%]

0.0118
[0.0181%]

0.4131
[1.5571%]

3.3429
[1.2683%]

mTriDRM-PCE (p = 2) 0.0794
[0.0002%]

0.0118
[0.0282%]

0.3951
[2.8698%]

3.2205
[2.4406%]

mTriDRM-PCE (p = 3) 0.0794
[0.0000%]

0.0118
[0.0027%]

0.4086
[0.4477%]

3.3039
[0.0863%]

LAR-based PCE (p = 2) 0.0794
[0.0006%]

0.0118
[0.0162%]

0.3961
[2.6238%]

3.2210
[2.4256%]

LAR-based PCE (p = 3) 0.0794
[0.0008%]

0.0118
[0.0080%]

0.4084
[0.4159%]

3.3032
[0.0667%]
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Similar to previous examples, our method provides accurate results, as the number of
polynomial order (p) and the integration variables (M) in gDRM increase. For example,
the mTriDRM outperforms others when p was 3, since the relative errors are smaller as
in Table 8. In addition, it was found that the mTriDRM-PCE can provide comparable
results to the LAR-based PCE for all statistical moments, thus confirming the accuracy
of the mTriDRM-PCE-based algorithm in this work. For comparison, the CDF of the
displacement v on node 4 was approximated with the proposed method and is shown
in Figure 10. As compared to MC, it was found that mTriDRM-PCE provided the most
accurate result, when p was set to 3. This shows the proposed algorithm can deal with
complicated problems involving many uncertainties.
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We further studied the computational time of the proposed method and compared the
results to MC. Similar to the previous case study, it was found that the computational time
for MC is larger, as compared to the gDRM-based method. For example, ~55.54 min were
required in this case study, when 107 samples were used for each parametric uncertainty for
MC. However, the computational time for the mTriDRM-PCE was found to be ~11.52 min,
when p was set to 3, which is about 80% lower than MC. It is also important to note that
the gDRM-PCE based UQ method, as compared to sampling-based MC, can provide an
analytical expression of the displacement v as a function of uncertainties. This provides
mathematical explanations to gain a deep understanding of the problem for improved
reliability analysis. The analytical expression, for instance, can be combined with sensitivity
analysis techniques to find the most sensitive random variable that can significantly affect
the system’s performance.

5. Conclusions

Using the polynomial chaos expansion (PCE), an uncertainty quantification (UQ) algo-
rithm is presented to deal with many uncertainties that follow nonstandard distributions.
To build PCE-based surrogate models, standard random variables are used to identify the
relationship between nonstandard and standard distributions. To reduce the computational
cost for calculating the PCE coefficients of model outputs, a generalized dimension reduc-
tion method is used to transform a high-dimensional integral resulting from the spectral
projection (SP) into a few lower-dimensional integrals, which can be rapidly solved with
quadrature rules in real-time. To show the UQ accuracy of our algorithms, four examples
of structural reliability analysis were used. As compared to Monte Carlo simulations and
other works in the literature, our results show the superior performance of the algorithms
in terms of UQ accuracy and computational time. This shows the potential of the algorithm
to tackle UQ in more complicated engineering problems that require consideration of many
uncertainties. However, when uncertainty has a nonstandard distribution with a large vari-
ance, more PCE coefficients of uncertainty might be needed in the proposed approach to
ensure UQ accuracy. In this case, it can lead to intensive computational burden in the pres-



Processes 2021, 9, 1856 19 of 21

ence of many uncertainties. Future work will improve the proposed algorithm to address
this issue by identifying orthogonal polynomial functions only for a given uncertainty.
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BiDRM Bivariate dimension reduction method
CDF Cumulative distribution function
gDRM Generalized dimension reduction method
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