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Abstract: It is a challenge to identify the parameters of a mechanism model under real-time operating
conditions disrupted by uncertain disturbances due to the deviation between the design requirement
and the operational environment. In this paper, a novel approach based on reinforcement learning is
proposed for forging machines to achieve the optimal model parameters by applying the raw data
directly instead of observation window. This approach is an online parameter identification algorithm
in one period without the need of the labelled samples as training database. It has an excellent ability
against unknown distributed disturbances in a dynamic process, especially capable of adapting
to a new process without historical data. The effectiveness of the algorithm is demonstrated and
validated by a simulation of acquiring the parameter values of a forging machine.

Keywords: parameter acquisition; mechanism model; reinforcement learning; forging machine

1. Introduction

Complex engineering systems are with a high requirement for system reliability and
control and production performance. A variety of technologies are developed to support
the monitoring, optimization, and control for complex industrial processes such as chemical
processes, manufacturing systems, power, and energy systems [1–3]. The forging process
that enhances the mechanical properties by compressing the microstructure of parts [4] is
widely applied in the fields of mining equipment, thermal hydro wind power generation
equipment, nuclear power equipment, petroleum, and so on. As the key equipment,
a forging machine should provide a precise pressing speed with a huge force to achieve
the technological requirements of forging pieces. Therefore, the control of the forging
machine is the guarantee of high forging quality. The control algorithms have made great
progress from conventional PID-based algorithms [5] to advanced model-based control
algorithms, including sliding mode control [6,7], back-stepping control [8], and feedback
linearization [9], in order to obtain higher performance. However, the effects of these
control algorithms strongly depend on the accuracy of the mechanism model. In [10,11],
fuzzy-based control was proposed by using fuzzy rules instead of the mechanism model,
but it cannot achieve the requirement of high precision. It is worthy to point out that
the equivalent models, including regression models [12], neural networks [13], support
vector machines [14], and so on [15], are alternatives of the mechanism model. These
equivalent models overcome the difficulty of mechanical analysis, but at the cost of the
model’s extension and physical meanings. Up to now, the mechanism model is still feasible
for precision control of the forging machine.

The mechanism knowledge of the forging machine has been mastered based on
the related principles such as fluid mechanics, dynamics, and machinery technology.
For example, the dynamic behaviors of the forging machine were analyzed according
to the mechanism model [16]. A focus of the mechanism model with known structure
is to determine the parameters, which is often by the way of offline identification and
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online correction. Especially for a forging machine, most parameters come from the design
handbook of forging machine [17] in which the values of parameters are recorded under the
pre-set environment. The others are estimated based on the states of the forging machine by
kinds of sensors. A number of offline identification methods such as least square method,
maximum likelihood, Bayesian estimation, posteriori estimates, and minimizing maximum
entropy were shown in reviews [18–20]. Reference [21] proposed to minimize the entropy
of a kernel estimation, constructed from the residuals to deal with the case of not using
the maximum likelihood estimation. In reference [22], a system parameter estimation
method based on deconvolution of the system output process and explicit Levenberg
optimization method was presented. Reference [23] presented a new derivative-free search
method for finding models of acceptable data fit in a multidimensional parameter space
and made use of the geometrical constructs known as Voronoi cells to derive the search
in the parameter space. Reference [24] described a method for estimating the Nakagami
distribution parameters by the moment method in which the distribution moments were
replaced by their estimates. In order to trace the varying working parameters, the online
estimated techniques were developed to improve the accuracy of model. The recursive
parameter estimations were introduced to the linear model [25], the bilinear system [26],
and the ARMA system [27]. In [28], an estimated noise transfer function was used to filter
the input–output data of the Hammerstein system. By combining the key-term separation
principle and the filtering theory, a recursive least squares algorithm and a filtering-based
recursive least squares algorithm were addressed. Reference [29] proposed a parameter
estimation algorithm using the simultaneous perturbation stochastic approximation (SPSA)
to modify parameters with only two measurements of an evaluation function regardless
of the dimension of the parameter. Reference [30] collected time-series data from an
experimental paradigm involving repeated training and investigated the effect of various
clustering methods on the parameter estimation. Reference [31] provided a servo press
force by employing a novel dual-particle filter-based algorithm, achieving a maximum
relative error in the force estimation of 3.6%.

As a foundation, a lot of effective historical data are necessary for parameter iden-
tification. Unfortunately, a forging machine is often working on batch processes whose
parameters are different in each batch, and are even impossible to be known for new
forging pieces. This means the parameters of the mechanism model for a forging machine
will need to be determined from as few data as possible. From the perspective of data
effectiveness, the classical parameter identification methods, whether offline estimation
or online correction, are based on the least squares concept with the assumption of data
following a normal distribution. It needs an appropriate window to observe the data
because the statistical characteristics hide in the collected data. However, the difference
of forging material quality and the variable pressure caused by pipe diameter change
and flow rate change will lead to some disturbances that cause the data noise to be in an
unknown distribution. So it is a challenge to determine the parameters of a model for a
forging machine online to meet the needs of a complex environment.

Reinforcement learning (RL), motivated by psychology, statistics, neuroscience, and computer
science, is about learning from interaction how to behave in order to achieve a design
goal [32–34]. It will get rid of the limitation of training samples by learning directly from
the raw data online. Through the learning process, an optimal action will be achieved to
respond to the states. By sensing the current states, the RL does not need the assumption
of prior distribution of noise. By episodes training, the action will overcome the overfitting
difficulty and become robust due to eliminating the disturbance gradually. If the parameters
were taken as the actions, they would be determined by reinforcement learning without
thinking about the assumptions and disadvantages of the methods. In the case of a forging
machine, it is a feasible approach to find the optimal values of the model parameters in a
new condition under disturbances. There are some mature algorithms in the RL family,
such as Q-learning [35], actor–critic [36], and deep reinforcement learning [37]. In this
study, the Q-learning algorithm is proposed to determine the model parameters under the



Processes 2021, 9, 1848 3 of 19

working condition due to its simplicity. The contributions of this paper can be summarized
as follows:

(1) The parameters are identified only based on the information of one period, which is
promising for online control.

(2) The values of parameters are determined directly by raw data without any assump-
tions of noisy characteristics.

(3) The parameters have strong stability through a number of training episodes, which
resists the bad influence of disturbance of unknown law.

The rest of this paper is organized as follows. Section 2 gives the model of pressing-
down in forging machine that shows the state variables and the parameters. Section 3
describes the RL’s procedure and releases the proposed approach. In Section 4, the model
parameters are elaborated by the proposed approach and comparisons are made with two
classical methods. Finally, conclusions are drawn in Section 5.

2. The Model of the Pressing-Down in Forging Machine

A semisolid metallic confectioning constant-speed isothermal forging is an important
forging technique especially for light-weight alloy confectioning in the aerospace industry.
The typical structure of the forging machine is illustrated in Figure 1, and the model has
been built in our previous work [38]. It is repeated here for integrity.
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Figure 1. Typical structure of forging machine [38].

The function of the forging machine in pressing-down phase is affected by the oil
pipe-line, the proportional servo valve, and the hydraulic cylinder with abandoning the
auxiliary attachments.

2.1. The Oil Pipe-Line

The pressing speed in the pressing-down phase is always slow to meet the craft
needs, so the oil works in the state of filament flow. Taking a pipe oil column as an object,
the pressure balance equation is in the form of Formula (1).

ρS1l
d(q1/S1)

dt
= (p1 − ps)S1 −

128µl
πd2 q1S1 (1)
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Let R = 32µ
ρ , so Formula (1) becomes

1
S1

dq1

dt
=

p1 − ps

ρl
+

R
S1

q1 (2)

The difference between input volume and output volume is equal to the sum volume
of oil compress and pipe swelling. So the oil continuity equation is

q2 − q1 =
S1l
K

d(p1 − ps)

dt
(3)

where q1 and q2 are the oil flow in pipe and the output oil flow of proportional servo valve,
p1 and ps are the input pressure of proportional servo valve and the pressure of a constant
rate pump output, S1 and l are the sectional area of pipe and the length of oil pipe, and K
is the young’s modulus of oil equal volume.

2.2. Proportional Servo Valve

The proportional servo valve performs between the servo valve and the proportional
valve. It eliminates the dead band by the way of fluid forerunner. The proportional servo
valve is widely applied in the ultra-low-speed hydraulic machine to control the oil flow to
the hydraulic cylinder. The proportional servo valve is described as

1
ω2

n

d2q2

dt2 +
2ξ

ωn

dq2

dt
+ q2 = Kq A (4)

where ξ amd ωn are the damping rate and the inherent frequency of propositional servo

valve, respectively, Kq = Kn

√
p1−p2

∆pn
is used to compensate the error between the practical

pressure and criterion pressure, and A is the opening of proportional servo valve.

2.3. The Hydraulic Cylinder

The pipe-line between proportional servo valve and the hydraulic cylinder is omitted
due to its short distance. The oil continuity equation of hydraulic cylinder is the form of

q2 = S2v + λc p2 +
Vc

K
dp2

dt
(5)

where S2 is the plunger’s sectional area of exporting cavity of hydraulic cylinder, v is the
moving speed of plunger, λc is the leak coefficient of hydraulic cylinder, p2 is the output
pressure of proportional servo valve, and Vc is the oil volume of upper cavity of hydraulic
cylinder, Vc = V0 + vS.

The dynamic equation of plunger is obtained according to the force analysis with the
form of

p2S2 + mg = m
dv
dt

+ Bv + F + p3S2 (6)

where m is the mass of slider block, g is the acceleration of gravity, B is the viscous damping
coefficient, F is the load resistance, and p3 is the holding pressure of slide block. According
to the design of forging machine, the holding power of slide block is equal to the gravity of
slide block:

p3S2 = mg (7)

The Formula (6) is simplified to Formula (8) by substituting Formula (7) for Formula (6):

p2S2 = m
dv
dt

+ Bv + F (8)
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2.4. The Model of the System as a Whole

Let x1 = q1, x2 = p1 − ps, x3 = dq2
dt , x4 = q2, x5 = p2, and x6 = v. By integrating the

subsystems together, the global forging machine model can be described in the state–space
form

.
x = f (x) + g(x)u (9)

where x = [x1, x2, x3, x4, x5, x6]
T , u = A,

f (x) =

R
S1

S1
ρl 0 0 0 0

− K
S1l 0 0 K

S1l 0 0
0 0 0 1 0 0
0 0 −2ξωn −ωn

2 0 0
0 0 0 K

Vc
−Kλc

Vc
−KS2

Vc

0 0 0 0 S2
m − B

m





x1
x2
x3
x4
x5
x6

,

g = [0, 0, 0, ωn
2Kn

√
x2−x5+Ps

∆pn
, 0,− F

B ]
T

Remark 1. In the model, most parameters such as the length, the sectional area of oil pipe, the mass
of slider block, and the rated flow gain can be valued according to the design. The values of parameters
that are influenced by the surrounding or working conditions will result in the inaccuracy of model.

3. The Proposed Method
3.1. Reinforcement Learning

The basic frame of reinforcement learning is shown in Figure 2. At each time step k,
the agent makes observations x(k) ∈ X and takes action u(k) ∈ U, and receives reward
R(x(k + 1), x(k), u(k)) ∈ R.
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The expected return that is received in the long run is described using the state–action
value function V(x, u), under the condition of first taking an arbitrary action u ∈ U from a
certain state x ∈ X and subsequently acting according to a certain control series π. So the
value function Vπ(x(k), u(k)) at time k is defined as

Vπ(x(k), u(k)) =
∞

∑
t=k

γR(x(k + 1), x(t), u(t)) (10)

where γ ∈ [0, 1] is the discount factor.
The value function Vπ(x(k + 1), u(k)) at time k + 1 is defined as

Vπ(x(k + 1), u(k)) =
∞

∑
t=k+1

γR(x(t + 1), x(t), u(t)) (11)
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According to the theory of dynamic programming

Vπ(x(k), u(k)) = R(x(k + 1), x(k), u(k)) + Vπ(x(k + 1), u(k)) (12)

Unfortunately, the value function Vπ(x(k), u(k)) and Vπ(x(k + 1), u(k)) is not ob-
tained because no one knows the rewards after time k + 1. To remove this obstacle, the Q-
function is designed with Q(x(k), u(k)) and Q(x(k + 1), u(k)) replacing Vπ(x(k), u(k))
and Vπ(x(k + 1), u(k)), respectively

Let

δ = R(x(k + 1), x(k), u(k)) + γQ(x(k + 1), u(k))−Q(x(k), u(k)) (13)

The u(k) will be optimized by a process of seeking δ approach to zero.
As an important member of reinforcement learning family, the basic step of Q-

algorithm is carried out as Procedure 1 [30].

Procedure 1.
Initialize Q(x(k), u(k)) arbitrarily
Repeat (for each episode)
Initialize x(k)
Repeat (for each step of episode)
Choose u(k) from x(k) using policy derived from Q (e.g., ε− greedy)
Take action u(k), observe R(k), x(k + 1)

Q(x(k), u(k))← Q(x(k), u(k)) + α
[

R(k) + γmaxu(k+1)Q(x(k + 1), u(k + 1))−Q(x(k), u(k))
]

x(k)← x(k + 1)
until x(k) is terminal.

Remark 2. There is only state information in Procedure 1. One can obtain the optimal action online
by using two states, x(k) and x(k + 1), in the process of maximizing the value function. By this
way, it makes an online control become possible because this approach gives up the requirement of
sliding window length.

3.2. The Proposed Approach

The scheme of proposed approach is shown in Figure 3.
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A model that consists of undetermined parameter p (p ∈ Rm) is paralleled to the
forging machine under the controller. The state variables of model are recorded as x(k)
and x(k + 1) at sampling k and k + 1, which are connected by a delay link z−1. The unde-
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termined parameter p is regarded as the action of Q-algorithm. Therefore, the Q-algorithm
following Procedure 1 is applied to determine the parameter p based on x(k) and x(k + 1)
and finally, the optimal parameter p∗ will be obtained when it is convergent.

To explicate Q-algorithm for the acquisition of model parameters, the key concepts of
the proposed Q-algorithm are illustrated as follows.

(i). Action space, reward, and value function

The action space is made up of the undetermined parameter p. The values of param-
eter are usually inconsistent with the working condition, which will disturb with model
accuracy. A goal is to determine their values responding to the surroundings.

The forging machine’s velocity is designated a constant pressing speed or a given
curve of speed during a certain temperature range according to the properties of forging
materials, so the reward R(k) is selected as the reciprocal of change for absolution error
between the measured speed and the set speed at adjacent sampling times k and k + 1

R(k) =
1

||v(k)− vset(k)| − |v(k + 1)− vset(k + 1)|| (14)

where v(k) and vset(k) are the measured speed and the preset speed at sample k; v(k + 1)
and vset(k + 1) are the measured speed and the preset speed at sample k + 1. Here, using
v instead of x6 that is the sixth component of state vector x is only to stress the physics
meaning.

Let s = [x; u] so the value functions V(s(k), p(k)) and V(s(k + 1), p(k + 1)) from
samples k and k + 1 are defined by Formulas (15) and (16)

V(s(k), p(k)) =
∞

∑
i=k

R(i) (15)

V(s(k + 1), p(k + 1)) =
∞

∑
i=k+1

R(i) (16)

(ii). Q-function

The value functions V(s(k), p(k)) and V(s(k + 1), p(k + 1)) are replaced by Q-function
according to the Q-algorithm because the value functions are not obtained due to the
unknown rewards after sample k. The early Q-function that is applied for the discrete
space is presented as a look-up table of states row and actions column. When the states
or actions are continuous, their discretization will lead to the curse of dimensionality by
generating an exponentially increasing complexity of algorithm and insufficient storage.
Therefore, the parameterized function is proposed to fit the Q-function with the form

Q(s(k), p(k)) = f (s(k), p(k), θ) (17)

where f and θ are a parameterized mapping and the parameters, respectively. Let s = [s; p],
an approximator is used to substitute for the unknown parameterized mapping, and there
is

Q̂(s) =
n

∑
i=1

φi(s)θi (18)

where φi(s, a) is usually selected as Gauss radial kernel function due to its simplicity, whose
form is

φi(s) = e
− ‖s−si‖

2

2σ2
i (19)

in which si is the central coordinates of i-th radial kernel function and σi is the width of i-th
radial kernel function.
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(iii). Exploitation and exploration

There are two ways to determine the action in RL. The exploitation is used to get the
best action from the Q-function that is based on the reward received. The exploration is
used to escape the local optimization of exploitation by randomly giving the action. As a
compromise of exploitation and exploration, the ε− greedy algorithm is proposed to evolve
the action. The agent selects the action that maximizes the Q-value function according to
the probability ε that is usually a large probability event. In addition, it selects the action
randomly according to the probability of 1− ε from the action space, which makes sure the
action exploration is within the unknown area. The form of ε− greedy algorithm is

p(k + 1) =

 argmax
p(k)

Q(s(k), p(k), θ), Pr < ε

rand(U), Pr ≤ 1− ε
(20)

where p(k) and p(k + 1) are the acquisition parameter at k and k + 1, respectively, Pr is the
probability of select action, and U is the action set.

(iv). The Process of Method

The proposed algorithm is summarized as Procedure 2. In this procedure, the input
states are x(k), u(k) and x(k + 1), whose physical meanings are shown in Section 2, and the
output parameter is p.

Procedure 2.
Step 1: Give a state x(k) and the control u(k) and then construct s according to s = [x; u ]
Step 2: Select parameters p(k) randomly.
Step 3: Observe the next state x(k + 1)
Step 4: Receive immediate reward R(k) according to Formula (14)
Step 5: select p(k + 1) according to Formula (20)
Setp6: Compute Q(s(k), p(k), θ) and Q(s(k + 1), p(k + 1), θ) according to the Formulas

(18) based on the model of Formula (9)
Step7: Compute the time series error δ(k) according to

δ = R(k) + γQ(s(k + 1), p(k + 1), θ)−Q(s(k), p(k), θ)
Step 8: Update Q(s(k), p(k), θ) according to

Q(s(k), p(k), θ)← Q(s(k), p(k), θ) + αδ
Step9: x(k)← x(k + 1), u(k)← u(k + 1) and p(k)← p(k + 1)
Step 10: Repeat steps 3 to 9 until it is convergent. The output p is the convergent p(k) in

which p(k) = p(k + 1) = p.

(v). Convergence

The convergence of Q-algorithm can be found in [35,36].

4. Case Studies

The forging machine usually keeps a good state at the early life stage. In this stage,
the values of parameters after a fine machine debugging always coincide with the design
condition, except for the viscous damping coefficient B because it is prone to be influenced
by the temperature and working condition. With time elapsing, the leakage becomes the
main uncertainty of the forging machine. A little leakage is permitted for the forging
machine if the leakage does not affect the work process. Nevertheless, the forging machine
needs to be repaired if there appears much leakage. Therefore, we chose the viscous
damping coefficient B and leakage coefficient λc as the identification parameters. These
two parameters are unmeasurable, which make their values unverifiable in practice. As a
result, we conducted a simulation to verify the proposed method.

4.1. Data Source

The state space model of (9) was used to simulate a forging machine. The values of
model parameters are shown in Table 1 according to the design condition.
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Table 1. The parameters values under the design condition.

ξ ωn R S1 ρ l m K S2 V0 Kn Ps ∆pn

m2 kg/m3 m kg m2 m2 Mpa pa

0.7 70 0.0064 0.0138 870 7 1 × 104 1 × 1010 0.02463 4.9 × 10−3 2 × 10−4 12 3.5 × 106

A controller is necessary for a forging machine to guarantee the quality of pressing
process, therefore, a PID controller was used to simulate this situation. We chose a PID
controller because here we focus on verifying our proposed method rather than discussing
the control method. The PID controller is enough to provide the states and control for
the proposed approach. The data series were generated by solving the model (9) with
ODE45 that applies the fourth-order Runge Kutta algorithm to provide the candidate
solution and the fifth-order Runge Kutta algorithm to control errors. These continuous
sequences provided the data source by adding two kinds of noise with uniform distribution
or Gaussian distribution as a simulation of real data. The set speed was changed from
0.02 to 0.08 that is consistent with the requirement of a typical pressing process. A typical
control process that includes a transition process and a stable process is shown in Figure 4.
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Figure 4. A typical control process (the set speed = 0.05).

The subsequent simulation was carried out at the platform of MatlabR2011b with the
computer of Intel® Core™ 2 Duo CPU E7300 @2.66GHz 2.67GHz.

4.2. Acquisition of the Viscous Damping Coefficient

According to experiments, the viscous damping coefficient B is usually during 10–
30 for this model. As a result, the value of 15 was chosen as the predetermined value
and targeted by the proposed approach according to Procedure 2. The episodes training
process is shown in Figure 5, where the subgraph above is with the noises of the uniform
distributions and the subgraph below is with the noises of the Gaussian distributions.
It is generally believed that the training time is related to the nature of the object and the
computer performance. In order to avoid the time difference caused by different computer
performance, we used the number of the episodes as an index of training time.
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Figure 5. The episode training process of viscous damping coefficient (B was predetermined as 15).

Figure 5 shows there is a trial process at the beginning of training because there is no
priori information on B. After a trial of about 3000 episodes, the best historical value of
B that indicates 20 for the above subgraph and 15.0626 for the below subgraph appears
during the process of seeking the best reward. After about 10,000 episodes, a better value
of 14.5000 occurs for the above subgraph. In contrast, a value of 15.0626 for the below
subgraph is unchanged until the episodes terminate.

The viscous damping coefficient B was changed from 15 to 20 to test the proposed
method. The episodes training process is shown under a uniform distribution (the above
subgraph) and under a Gaussian distribution (the below subgraph). Figure 6 shows the
training episodes process similar to Figure 5. It is also seen that the trial process of Figure 6
lasts about 3000 episodes.
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Figure 6. The episode training process of viscous damping coefficient (B was predetermined as 20).

In order to show the accuracy of parameter acquisition, the relative error δ between
the estimated value B̂ and the predetermined value Br is defined as a form of

δ =
(

B̂− Br
)
/Br (21)
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and the results are shown in Table 2

Table 2. The results of viscous damping coefficient without leakage.

Predetermined Value Noise Distribution Acquisition Relative Error

15 Uniform 15.0626 0.4%
15 Gaussian 14.5000 3.33%
20 Uniform 19.0000 5%
20 Gaussian 19.0000 5%

It is seen from Figures 5 and 6 that the excellent results with relative errors no greater
than 5% were obtained in the cases of noises with different distributions.

Further tests under the condition of oil leakage were done to verify the effectiveness
of the proposed approach. For a forging machine, the leakage is prone to go into saturation
and is limited to a small value, so the leakage coefficients λc were assumed as a constant
0.01 and 0.02. The episodes training processes are shown in Figures 7–10. Figures 7 and 8
present the training processes of acquiring the viscous damping coefficient with a goal of
15 and of 20, respectively, under the leakage coefficient of 0.01. Figures 9 and 10 present
the training processes of acquiring the viscous damping coefficient with a goal of 15 and
of 20, respectively, under the leakage coefficient of 0.02. These figures show the proposed
approach will be convergent after episodes training processes, and the final results are listed
in Table 3. Table 3 shows the viscous damping coefficient will approach the predetermined
value Br under different coefficients or different noise distributions, showing a maximal
relative error less than 2%. For training time, there are some differences for different
parameters, such as about 6000 episodes in Figure 7, about 4000 episodes in Figure 9,
and about 3000 episodes in Figure 10. Sometimes the different distributions also have an
effect on the training speed, which is shown in Figure 8.
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Figure 7. The episode training process with leakage of 0.01 (Br = 15).
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Figure 8. The episode training process with leakage of 0.01 (Br = 20).
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Figure 9. The episode training process with leakage of 0.02 (Br = 15).
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Figure 10. The episode training process with leakage of 0.02 (Br = 20).
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Table 3. The results of viscous damping coefficient under leakage.

Leakage Coefficient λc
Noise

Distribution Acquisition B Predetermined
Value B

Relative
Error

0.01 Uniform 15.0000 15 0%
0.01 Gaussian 15.2500 15 1.67%
0.01 Uniform 20.0000 20 0%
0.01 Gaussian 20.0000 20 0%
0.02 Uniform 15.0000 15 0%
0.02 Gaussian 15.0000 15 0%
0.02 Uniform 20.0000 20 0%
0.02 Gaussian 19.9375 20 0.31%

4.3. Acquisition of the Leakage Coefficient

The leakage that is marked with leakage coefficient λc in the model will become the
main uncertainty along with the lapsing time of forging machine. The leakage coefficient
was predetermined as a constant 0.01 and 0.02. The learning processes with uniform
distribution and with Gaussian distribution are shown in Figures 11 and 12, respectively.
As for training time, it is affected by different distributions in Figure 11 and about 5000
episodes in Figure 12.
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Figure 11. The learning process of leakage coefficient (λc was predetermined as 0.01).
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Figure 12. The episode training process of leakage coefficient (λc was predetermined as 0.02).
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The values of leakage coefficient λ̂c are acquired when the curve becomes stable. Here,
the absolute error E with the definition of

E =
∣∣λc − λ̂c

∣∣ (22)

was used to replace the former relative error because the value of leakage coefficient is too
small as the denominator of Formula (22), which is prone to an inappropriate relative error.
The results are listed in Table 4. Table 4 shows the absolute errors are not more than 0.0015
in the cases of noisy with different distributions.

Table 4. The results of leakage coefficient.

Predetermined Value Noise Distribution Acquisition Absolute Error

0.01 Uniform 0.0114 0.0014
0.01 Gaussian 0.0075 0.0015
0.02 Uniform 0.0200 0
0.02 Gaussian 0.0187 0.0013

4.4. Acquisition of the Viscous Damping Coefficient and the Leakage Coefficient

In order to test higher dimensionality of parameters, an experiment on acquiring con-
currently the viscous damping coefficient and the leakage coefficient was done. The param-
eters of B and λc were predetermined as 18 and 0.01, respectively. The learning processes
with uniform distribution and with Gaussian distribution are shown in Figures 13 and 14,
respectively, and the results are shown in Table 5, which shows both parameters can reach
a good estimation concurrently in the cases of noisy conditions. Here, all the training times
are less than 5000 episodes.
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Figure 13. The episode training process of viscous damping coefficient and leakage coefficient subject
to noise of uniform distribution.
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Figure 14. The episode training process of viscous damping coefficient and leakage coefficient subject
to noise of Gaussian distribution.

Table 5. The results of the viscous damping coefficient and the leakage coefficient concurrently.

Noise Distribution Parameters Predetermined Value Acquisition

Uniform
Viscous damping coefficient B 18 18.0488

Leakage coefficient λc 0.01 0.0102

Gaussian
Viscous damping coefficient B 18 18.4141

Leakage coefficient λc 0.01 0.0098

4.5. Comparison with Other Methods

A famous BP network approach and the sliding window correlation methods were
chosen as a comparison of the proposed approach. The data series with 160 samples
that was produced by the model with a controller was considered as the data source to
determine the parameters. This data series includes a transient process of 50 and a stable
process of 110 based on the viscous damping coefficient B of 15.

As we know, the BP network has a strong nonlinear approximation ability and an
excellent estimation of recursion problem, which needs the length of input time series to
match the order of the system. Here, we focused on identifying the parameter of viscous
damping coefficient B just in one period. After several attempts, the BP network was
chosen as a 7-20-1 structure with an input of seven variables (six states and one control in
the model of Section 2) and an output of the viscous damping coefficient B. It was trained
by the back propagation algorithm based on a train set of 2000 data from different cases in
which the set speed was changed from 0.02 to 0.08. The learning rate was 0.001. The well-
trained BP network was used to estimate the values of viscous damping coefficient, and the
results are shown in Figure 15.

The values of viscous damping coefficient from sampling 1 to sampling 160 that were
estimated by the BP network and the proposed approach are shown with the black curve
and the red curve. It is seen that the BP network will approach to the viscous damping
coefficient in the stable process, but it is bad in the transient process. The proposed
approach shows an excellent performance that achieves the 15.0625 approaching to the
goal of 15.0000 throughout the whole process.
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The sliding window correlation method, as a kind of conventional parameters iden-
tification method for data series, was applied to estimate the values of viscous damping
coefficient by an optimization of minimizing the sums of squared errors during each ob-
servation window. Considering the sliding window is influenced with the disturbance,
it is prone to change the statistical properties of the observation window. The numbers of
2, 5, 10 and 50 were chosen as the length of sliding window, and the results are seen in
Figure 16.
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It is seen from Figure 16 that the sliding window correlation method and the proposed
approach have a similar accuracy throughout the process from sampling 1 to sampling 160.
However, there are some fluctuations for the sliding window correlation method according
to different window length. The shorter the length of the slide window, the more sensitive
the result, and vice versa. In contrast, the proposed approach shows a fine stability owing
to its episodes training.

The advantages and disadvantages of three methods are summarized in Table 6.
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Table 6. The comparisons of three methods.

Advantage Disadvantage

The BP networks Learning algorithm,
high accuracy in steady state Worse in transient state

The sliding window
correlation method

Optimization algorithm,
high accuracy in steady state and

transient state

Related to the length of the
window and affected by

disturbance

The proposed approach
high accuracy in steady state and

transient state, only using the
data during a period

Long training time

The proposed approach has the ability to obtain a high accuracy of viscous damping
coefficient in steady state and transient state during only a period. To our best knowledge,
there are no other approaches to implement the identification of model parameters with so
little information, which is beneficial to the online control. However, it is limited to a slow
process of the forging machine due to a long training time, though some improvements
have been made, such as eligibility traces and heuristic search. A hardware implementation
of this proposed approach is an attractive request for broader industrial processes.

5. Conclusions

In this paper, reinforcement learning has been addressed to identify optimal parame-
ters values online by directly using raw data in one period. Compared with the BP network
approach, the proposed technique has a good accuracy throughout the whole process.
Compared with the sliding window correlation method, the proposed method has a similar
accuracy but has a better ability to resist the influence of noise. As a result, the proposed
approach has been demonstrated to be effective for online parameter identification in a
simulation of real-time process of a forging machine.
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Nomenclature
Symbol Meanings
ρ Density of oil
µ Dynamic viscosity
λc Leak coefficient of hydraulic cylinder
ξ Damping rate of propositional servo valve
ωn Inherent frequency of propositional servo valve
B Viscous damping coefficient
d Diameter of pipe
Fl Load resistance
K Young’s modulus of oil equal volume
Kn Rated flow gain
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Symbol Meanings
Kq Flow gain of propositional servo valve
l Length of oil pipe
m Mass of slider block
p1 Input pressure of proportional servo valve
p2 Output pressure of proportional servo valve
Ps Pressure of a constant rate pump output
∆pn Valve port pressure drop
q1 Oil flow in pipe
q2 Output oil flow of proportional servo valve
R Intermediate coefficient
S1 Sectional area of pipe
S2 Plunger’s sectional area of exporting cavity of hydraulic cylinder
u Control voltage of proportional servo valve
v Moving speed of plunger
V0 Initial oil volume of upper cavity of hydraulic cylinder
Vc Current oil volume of upper cavity of hydraulic cylinder
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